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Feuille d'exercices n°64

Exercice 1 (*)

Soit (Ω,A ,P) un espace probabilisé et X variable aléatoire de loi P(λ) avec λ > 0. Déterminer
P(X pair).

Corrigé : On trouve par σ-additivité

P(X pair) = P

(
+∞⊔
n=0

{X = 2n}

)
=

+∞∑
n=0

P(X = 2n) =
+∞∑
n=0

λ2n

(2n)!
e−λ

Ainsi P(X pair) = e−λ ch (λ)

Exercice 2 (*)

Soit (Ω,A ,P) espace probabilisé etX1, . . . ,Xn variables aléatoires indépendantes avecXi∼P(λi)

et les λi > 0. Déterminer, de deux manières di�érentes, la loi de
n∑

i=1

Xi.

Corrigé : On a GXi
(t) = eλi(t−1) pour t ∈ [ 0 ; 1 ] et i ∈ [[ 1 ; n ]]. Par indépendance des Xi, notant

Sn =
n∑

i=1

Xi, il vient

∀t ∈ [ 0 ; 1 ] GSn(t) =
n∏

i=1

GXi
(t) =

n∏
i=1

eλi(t−1) = e

n∑
i=1

λi(t− 1)

Comme la fonction génératrice caractérise la loi, on en déduit que Sn∼P

Å
n∑

i=1

λi

ã
. On peut pro-

céder par récurrence sur n. Considérons X et Y variables aléatoires indépendantes avec X∼P(λ)
et Y∼P(µ), λ, µ > 0. On a (X+Y)(Ω) ⊂ N puis pour n entier, il vient par probabilités totales

P(X + Y = n) =
+∞∑
k=0

P(X = k,Y = n− k) =
n∑

k=0

P(X = k,Y = n− k)

= e−(λ+µ)
n∑

k=0

λkµn−k

k!(n− k)!
=

e−(λ+µ)

n!

n∑
k=0

(
n
k

)
λkµn−k =

e−(λ+µ)(λ+ µ)n

n!

L'hérédité de la récurrence s'ensuit. On conclut
n∑

i=1

Xi∼P

Å
n∑

i=1

λi

ã
Exercice 3 (*)

Soit (Ω,A ,P) un espace probabilisé et X variable aléatoire de loi G (p) avec p ∈ ] 0 ; 1 [. Justi�er
que 1/X admet une espérance �nie puis la calculer.

Corrigé : Par transfert, on a
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1

X
d'espérance �nie ⇐⇒

∑
n⩾1

1

n
P(X = n) converge

⇐⇒
∑
n⩾1

(1− p)n

n

p

1− p
converge

La série entière
∑
n⩾1

xn

n
admet un rayon de convergence égal à 1 ce qui prouve que

1

X
est d'espé-

rance �nie. Puis, on a

E
Å
1

X

ã
=

p

1− p

+∞∑
n=1

(1− p)n

n
= − p

1− p
ln(1− (1− p))

Ainsi La variable
1

X
est d'espérance �nie avec E

Å
1

X

ã
=

p

p− 1
ln p.

Exercice 4 (*)

Soit (Ω,A ,P) un espace probabilisé et X, Y des variables aléatoires indépendantes de même loi
P(λ) avec λ > 0. Déterminer P(X = Y).

Corrigé : On a par σ-additivité et indépendance de X et Y

P(X = Y) = P

(
+∞⊔
k=0

{X = k,Y = k}

)
=

+∞∑
k=0

P(X = k,Y = k) =
+∞∑
k=0

P(X = k)P(Y = k)

Ainsi P(X = Y) =
+∞∑
k=0

λ2k

(k!)2
e−2λ

Exercice 5 (*)

Soit f : R → R convexe dérivable, (Ω,A ,P) un espace probabilisé et X une variable aléatoire
réelle telle que X et f(X) sont dans L1. Montrer

f(E(X)) ⩽ E(f(X))

Corrigé : La fonction f est convexe donc son graphe se situe au dessus de ses tangentes. En
particulier, on a

∀x ∈ R f(x) ⩾ f ′(E(X))(x− E(X)) + f(E(X))

d'où f(X) ⩾ f ′(E(X))(X− E(X)) + f(E(X))

Passant à l'espérance, on conclut f(E(X)) ⩽ E(f(X))

Exercice 6 (*)

Soit (Ω,A ,P) un espace probabilisé et X1, . . . ,Xn des variables aléatoires dans L2. On note la
matrice des covariances Σ =

(
Cov(Xi,Xj)

)
1⩽i,j⩽n

. Montrer

Σ ∈ S +
n (R)

Corrigé : L'ensemble L2 possède une structure d'espace vectoriel et par linéarité de l'espérance,
la forme
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(X,Y) 7→ Cov(X,Y) = E ((X− E(X))(Y − E(Y)))

est bilinéaire symétrique sur cet espace. Pour U ∈ Mn,1(R), on trouve

U⊤ΣU = Cov

Ç
n∑

i=1

uiXi,
n∑

j=1

ujXj

å
= V
Å

n∑
i=1

uiXi

ã
⩾ 0

Par caractérisation d'une matrice positive, on conclut

Σ ∈ S +
n (R)

Exercice 7 (**)

Soit (Ω,A ,P) un espace probabilisé, X et Y des variables aléatoires indépendantes de même loi
géométrique de paramètre p ∈ ] 0 ; 1 [. On note A la matrice aléatoire réelle dé�nie par

∀ω ∈ Ω A(ω) =

Å
X(ω) X(ω)
−Y(ω) −Y(ω)

ã
Déterminer P(A nilpotente)

Corrigé : Pour ω ∈ Ω, la matrice A(ω) est d'ordre 2 et par conséquent

{A nilpotente} = {A2 = 0} = {X(X− Y) = 0,Y(Y − X) = 0} = {X = Y}

Puis, par σ-additivité et indépendance de X et Y

P(X = Y) = P

(
+∞⊔
n=0

{X = n,Y = n}

)
=

+∞∑
n=1

P(X = n,Y = n) =
+∞∑
n=1

P(X = n)P(Y = n)

On conclut P(A nilpotente) =
+∞∑
n=1

p2(1− p)2(n−1) =
p

2− p

Exercice 8 (**)

Soit (Ω,A ,P) un espace probabilisé, X et Y deux variables aléatoires indépendantes de même
loi G (p) avec p ∈ ] 0 ; 1 [. Déterminer la loi de min(X,Y).

Corrigé : On note Z = min(X,Y). On a clairement Z(Ω) ⊂ N∗ puis, par indépendance et égalité
en loi

P(Z > k) = P(X > k,Y > k) = P(X > k)P(Y > k) = P(X > k)2

Puis P(X > k) = P

(
+∞⊔

ℓ=k+1

{X = ℓ}

)
=

+∞∑
ℓ=k+1

P(X = ℓ) =
+∞∑

ℓ=k+1

p(1− p)ℓ−1 = (1− p)k

Ainsi P(Z > k) = (1− p)2k

Puis ∀k ∈ N∗ P(Z = k) = P ({Z > k − 1}∖ {Z > k}) = P(Z > k − 1)− P(Z > k)

= (1− p)2(k−1) − (1− p)2k = (1− (1− p)2)(1− p)2(k−1)

On conclut Z∼G (1− (1− p)2)

Remarque : On peut aussi établir le caractère sans mémoire de Z.

3



Exercice 9 (**)

Soit (Ω,A ,P) un espace probabilisé et X, Y des variables aléatoires à valeurs dans N.

1. Montrer ∀(A,B) ∈ A 2 |P(A)− P(B)| ⩽ P(A ∩ B̄) + P(Ā ∩ B)

2. En déduire ∀t ∈ [ 0 ; 1 ] |GX(t)−GY(t)| ⩽ 2P(X ̸= Y)

Corrigé : 1. Soit (A,B) ∈ A 2. On a

P(A)− P(B) = P(A ∩ B) + P(A ∩ B̄)−
(
P(B ∩ A) + P(B ∩ Ā)

)
= P(A ∩ B̄)− P(B ∩ Ā)

Ainsi ∀(A,B) ∈ A 2 |P(A)− P(B)| ⩽ P(A ∩ B̄) + P(Ā ∩ B)

2. Soit t ∈ [ 0 ; 1 ]. On a par linéarité du symbole somme

|GX(t)−GY(t)| =
∣∣∣∣+∞∑
n=0

(P(X = n)− P(Y = n)) tn
∣∣∣∣

D'après le résultat de la question précédente, on a pour n entier

|P(X = n)− P(Y = n)| tn ⩽ P(X = n,Y ̸= n) + P(X ̸= n,Y = n)

et les séries
∑

P(X = n,Y ̸= n),
∑

P(X ̸= n,Y = n) convergent avec par σ-additivité
+∞∑
n=0

P(X = n,Y ̸= n) =
+∞∑
n=0

P(X = n,Y ̸= X) = P(X ̸= Y)

et de même pour l'autre somme. Ainsi, on obtient par inégalité triangulaire et linéarité du
symbole somme

|GX(t)−GY(t)| ⩽
+∞∑
n=0

|P(X = n)− P(Y = n)| tn

⩽
+∞∑
n=0

P(X = n,Y ̸= n) +
+∞∑
n=0

P(X ̸= n,Y = n)

On conclut ∀t ∈ [ 0 ; 1 ] |GX(t)−GY(t)| ⩽ 2P(X ̸= Y)

Exercice 10 (**)

Soit (Ω,A ,P) un espace probabilisé, X ∈ L2 et Y = X− E(X).

1. Établir ∀t > 0 t ⩽ E [(t− Y)1Y<t]

2. En déduire ∀t > 0 P(X− E(X) ⩾ t) ⩽
V(X)

V(X) + t2

Corrigé : 1. On a t− Y ⩽ (t− Y)1t−Y>0

Par croissance de l'espérance

∀t > 0 E(t− Y) = t ⩽ E((t− Y)1Y<t)

2. Soit t > 0. D'après l'inégalité de Cauchy-Schwarz, il vient

E((t− Y)1Y<t)
2 ⩽ E((t− Y)2)E(12

Y<t) = (t2 + E(Y2))P(Y < t)

Ainsi
t2

t2 + V(X)
⩽ P(Y < t) =⇒ P(Y ⩾ t) ⩽ 1− t2

t2 + V(X)
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D'où ∀t > 0 P(X− E(X) ⩾ t) ⩽
V(X)

V(X) + t2

Remarque : Il s'agit de l'inégalité de Tchebychev-Cantelli. En appliquant le résultat à la variable
aléatoire −X, on obtient

∀t > 0 P(X− E(X) ⩽ −t) ⩽
V(X)

V(X) + t2

Or, pour t > 0, on a

{|X− E(X)| ⩾ t} = {X− E(X) ⩾ t} ⊔ {X− E(X) ⩽ −t}

d'où P (|X− E(X)| ⩾ t) ⩽
2V(X)

V(X) + t2

inégalité de concentration concurrente de l'inégalité de Bienaymé-Tchebychev. On a

V(X)
V(X) + t2

⩽
V(X)
t2

⇐⇒ V(X) (V(X)− t2) ⩾ 0

Si X n'est pas constant presque sûrement, cette inégalité est plus �ne que celle de Bienaymé-
Tchebychev pour t ∈ ] 0 ; σ(X) [.

Exercice 11 (**)

Soit (Ω,A ,P) espace probabilisé et X variable aléatoire de loi de Poisson P(λ) avec λ > 0.

1. Rappeler la dé�nition de GX et préciser son expression sur R.
2. Démontrer l'inégalité

∀t ⩾ 1 P(X ⩾ 2λ) ⩽ expφ(t) avec φ(t) = −2λ ln t+ λ(t− 1)

3. En déduire P(X ⩾ 2λ) ⩽
(e
4

)λ
Corrigé : 1. La fonction génératrice GX est dé�nie par la somme de la série entière∑

tkP(X = k) =
∑

tk
λk

k!
e−λ = e−λ

∑(tλ)k

k!

Il s'agit donc d'un scalaire multiplié par une série exponentielle de rayon de convergence +∞
d'où la convergence de cette série pour tout t réel avec

∀t ∈ R GX(t) = eλ(t−1)

2. Pour t ⩾ 1, la fonction x 7→ tx = ex ln t est croissante d'où l'inclusion {X ⩾ 2λ} ⊂
{
tX ⩾ t2λ

}
puis l'inégalité

P(X ⩾ 2λ) ⩽ P(tX ⩾ t2λ)

D'après l'inégalité de Markov (la variable aléatoire tX est positive et d'espérance �nie d'après la
première question), il vient

P(tX ⩾ t2λ) ⩽
1

t2λ
E(tX) = e−2λ ln teλ(t−1)

Ainsi ∀t ⩾ 1 P(X ⩾ 2λ) ⩽ expφ(t) avec φ(t) = −2λ ln t+ λ(t− 1)

3. La fonction φ est de classe C 1 sur [ 1 ; +∞ [ puis
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∀t ⩾ 1 φ′(t) = −2λ

t
+ λ ⩾ 0 ⇐⇒ t ⩾ 2

Ainsi, la fonction φ admet un minimum en t = 2 et donc, on a en particulier

P(X ⩾ 2λ) ⩽ expφ(2) = exp [λ(1− 2 ln 2)]

Autrement dit P(X ⩾ 2λ) ⩽
(e
4

)λ
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