ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°65

Exercice 1 (***)

Soit Z ~ () avec A > 0. Déterminer V(X) ot X = ]lgzg.
too  p3ntk
Corrigé : On note Si(z) = Eom pour k € [0; 2]. Les séries entiéres définissant ces
sommes ont un rayon de convergence infini. Puis, on trouve pour z réel
So(x) 4+ Si(x) + Sa(x) =e”

So(z) + 7S1(x) + j2Sy(x) = ei®
So(x) + 7281 (x) + jSa(zx) =ed**

Avec des combinaisons linéaires adaptées, on trouve pour x réel

So(z) = é [e“ +eJ% + ej%} Si(z) = % [em + j%eI* +je12x}

1 . ‘
et S2<a’j> — g [ew +jejx +j2ej21]

o ® S

admet un moment d’ordre 2. Puis, pour z réel

Les séries entiéres Y ont méme rayon de convergence et il s’ensuit que X

—+00 x?m T —+00 £3TL—1 T —+00 x3n+2 T

L E T3 3B 3@

400 2x&‘» _1+oo (3 . 3" :_2+oo 3n—2 1+oo w3n
e ™A
Ainsi V(X) = 9 P\Sl()\) +S2(A) — Ae _/\SQO‘)Q]

Exercice 2 (**%*)

Soit (€2, .27, IP) un espace probabilisé, (X,,),>1 une suite de variables aléatoires indépendantes de
méme loi & valeurs dans N et N une variable aléatoire indépendante des X,, a valeurs dans N.

On pose Yw € Q Sn(w) = > Xy (w)
k=1

1. Justifier que Sy est une variables aléatoire discréte.
2. Montrer I'égalité Gg, = Gy o Gy, .-

3. On suppose X; et N d’espérance finie. Montrer que Sy est d’espérance finie et préciser
E(Sx) en fonction de E(N) et E(X;).

4. On suppose que X; ~ Z(p) et N ~ FZ(\) avec X > 0. Déterminer la loi de Sy.

1



5. Retrouver le résultat précédent sans passer par les fonctions génératrices.

Corrigé : 1. On a clairement Sx(©2) C N puis

+00

VEeN  {Sy=k}=|| ({N:n}ﬂ {ZXi:k}>
n=0 i=1
et > X; est une variable aléatoire comme fonction du vecteur aléatoire (X, ..., X, ). Ainsi, pour

i=1
k entier, I'ensemble {Sx = k} est une union dénombrable d’événements donc un événement ce
qui prouve

’L’application Sn est une variable aléatoire réelle discréte.‘

2. Soit t € [0;1]. Par transfert puis probabilités totales avec le systéme complet ({N =n})
et indépendances des X, avec N, il vient

neN

Gy (t) = ;Zof)tﬂ'MSN —j)= ;i:}f @ZP ( éxk ~jN=n))
_ E <T§tﬂp (kilxk _ j) P(N = m)

D’aprés le théoréme de Fubini pour des familles a termes positifs et indépendance des X;, on
obtient

Gau(t) = > (iitf@(Sn - j)) P(N = n) = fe (HP(N = n) = i’ZGxxt)”P(N — )

n=0 \ j=

D’ou Ggy = Gy o Gy,

+00

3. On a Gy et Gy, dérivable en 1. Comme Gx, (1) = Y P(X; = k) = 1, on a donc Gy o Gx,
k=0

dérivable en 1 ce qui prouve que Sy est d’espérance finie et on trouve

E(Sy) = Gg, (1) = G, (1)Gy 0 Gx, (1) = G, (1)Gx(1)

On conclut La variable Sy est d’espérance finie et E(Sy) = E(X;)E(N).

Remarque : La derniére égalité est appelée identité de Wald.

4.0On a
Vte [0;1] Gsy (t) = Gn(Gx, (1) = Gu(pt + 1 — p) = e PHHI=P=1) = o Ap(t=1)
Comme la fonction génératrice caractérise la loi, on conclut

5. Soit k € N. La famille ({N = n}), .y est un systéme complet d’événements. D’aprés la formule
des probabilités totales, il vient

+00 +00 n
PSx = k)= S B(Sx =k N=n) = S B($X, =k N=n)
n=0 n=0 1=1

Les variables X; et N sont indépendantes d’ou

P(Sx = k) = gp <fx _ k> P(N = n)

i=1



On a > X;~%AB(n,p) dou P (ZXZ = k> = 0 pour n < k et par suite
i=1

i=1

. o D)t e (A1 —p))E
Do VREN  P(Sx=k) = e N e

Avec le changement d’indice £ = n — k, on reconnait une exponentielle

()\p) A (A1 — p))z ()‘p)k A M1— O\p)k _
Vk e N (Sx = k) X ; ) 7 e e e
Ainsi Sn~ Z(pA)

Exercice 3 (***)

Soit (€2, o7, P) espace probabilisé, (X, ),>1 une suite de variables aléatoires indépendantes de loi

P(N) avec A > 0 et S, = > X;. Pour ¢ > A\, montrer qu’il existe r € |0; 1] tel que
i=1

Vn e N P(S,, = nc) <"

Corrigé : Soit ¢ > 0 et n > 1. Par croissance stricte de u — ™, on a {S, > nc} = {5 > e},

A"
La série Zet”me” =e~ Z( A

converge (série exponentielle) et par transfert, on a

n

E(e tX1) Zetn —A _ o Aet-1)

n
BSn = ] e™* est d’espérance finie comme produit de variables indépendantes

k=1
d’espérance finie. D’aprés inégalité de Markov avec la variable alétoire positive e®™» et par

égalité en loi des X, il vient

La variable e

]P)(Sn 2 nc) —P (etSn > etnc) g e—tncE (etSn) — e—mcE (ﬁ eth> — e—tncE (etxl)n
k=1

Ainsi Vi>0  P(S,=nc) <exp(np(t)) avec o(t) =—tc+ Ne'—1)

D’aprés les théorémes généraux, on a ¢ € €1(]0;+00[,R) et

Vi>0  ¢(t)=—-c+Xe!'<0 <= t<In ) avec <E>>0

)]

A
Comme ¢(t) ﬁ 0 et que ¢ décroit strictement sur } 0;In ( ) [, on en déduit
%

o(n(3)) <o

On conclut Ire]0;1] | YneN  P(S, =nc) <"

(5
D’ou P(S,, > nc) < exp [n ( (

Variante : On peut aussi observer
o(t) = —tc+A(1+t+o(t)—1)=t(A—c)+o0(1)) avec A—c<0
—

On en déduit que la fonction ¢ prend des valeurs strictement négatives au voisinage de zéro ce
qui permet de conclure.



Exercice 4 (***)
Soit (€2, 47, P) un espace probabilisé et (U,),>; une suite de variables aléatoires indépendantes
de méme loi uniforme sur [1; N]. Pour n entier non nul, on note

n S, —nm
Snngi et Vn:a—\/ﬁ avec m=E(U;) et o=/V(U)

Pour X une variable aléatoire avec X(£2) fini, on note Mx(t) = E(e®) avec ¢ réel.
+2
Montrer VteR My, (t) —— e=
n—oo

Corrigé : Les variables aléatoires sont finies. Soit ¢ réel. Par indépendance des U;, on a

My ) = 8 (flew 20 ) = 8 (o [ 1020 )

Par transfert, il vient

(e [GR]) = 5E oo [ = 5oo (G Soo (r75)

Alinsi, par une transformation de type « angle moitié », il vient

(o [ - o 2]

)

< ! ) O PN\ovn/ | 1sh (IN/20/n)

ov/n 1—exp<L>_N sh (t/20/n)
oyn

Do % In (My, (£)) = — In(N) + In (sh (EN/20y/7)) — In (sh (t/20+/7))

3

Enfin, avec le développement usuel sh (u) = v + — + o(u?), on obtient

%ln(MVn(t)) — _I(N)+In (2;1\\1/5 (1 4 % <%)2 T (%)))

) ()

2 N?2-1 (
~1In(My, () = —
n (My, () 2n 1202 +o
Ainsi VieER My, (t) —— e
n—o0

Exercice 5 (***)

Soit (€2, 7, IP) un espace probabilisé et (X)r>1 une suite de variables aléatoires réelles discrétes
de méme loi et d’espérance finie. Montrer

1
T
n ke[1;n] n—00

Corrigé : On note M,, = Max \Xk| Soit @ > 0. On a pour k € [1; n]

!Xk\ = | Xl Lyxpi<ay + 1Xe| Lx, 2a



d’o Xil < a4 30 [Xel Lyx,[za)
=1
Ce majorant est indépendant de k et par conséquent
My < a+ 30 (Xl Lix, za)
k=1

Pour k € [1; n], la variable |X;|1{x,>e} €st positive majorée par |X;| et donc d’espérance
finie. Ainsi, par linéarité de I'espérance et égalité en loi des Xy, il vient

1 a
SEM,) < L 4B (X i o
~E(M,) <~ +E (Xi| Lx50))

On note |X4](2) = {z,,n € N} et on pose
V(n,a) € N xR, up(a) = 2 1[0.,1(@)P(|Xq] = 25)

+00
Par transfert, on a E (IX1] L{xi5a)) = > un(a)
n=0

Or, on a pour tout n entier

0 < upla) <z,P(|Xy| =2,) et uy(a) ——0

a—+00

La série de fonction ) ju,, converge normalement donc uniformément et par double limite

E (IXi] 1gx,j2a)) —— 0

a—»+00
Ainsi, pour € > 0, on choisit a assez grand pour avoir £ (|X1| IL{|X1|>Q}) < € puis on choisit un

a
seuil N entier tel que — < ¢ pour tout entier n > N. Par conséquent
n

1
n

1
On conclut -E ( Max |Xk|) —0
n

ke[1;n] n—00

Exercice 6 (***)

Soit (X, )n>1 suite i.i.d. de variables aléatoires suivant la loi géométrique ¥ (p) avec p € |0;1].
On note M,, = Max (X, ...,X,). Déterminer un équivalent simple de E(M,,) lorsque n — +00.

Corrigé : On note ¢ = 1 — p. Soit k entier non nul. On a par indépendance des X;

P(M, < k)) = P (ﬁ (X, < k}) _ f[]P)(Xi < k)

puis par égalité en loi

k k k _
vie[lin] PX<h)=P(| |[{X=0)=SPX=0=p" =p—L =1-¢
-1 (=1 (=1 l—q

et la formule vaut aussi pour £ = 0. Ainsi, on a
Vk e N PM, <k)=1-¢)" et PM,>k)=1-(1-¢""

et par antirépartition, on a dans [0;+00 ]



+00

E(M,) = S POM, > k) = 3 [1— (1 - ¢*)"]

k=0 k=0
On pose Vi=0 ft)=1-(01—4)"

La fonction f est continue par morceaux sur R, , décroissante par composition. Par décroissance
de f, il vient

k41 k
Vk e N ft)dt < f(k) et VekeN*  f(k)< f(t)dt
k k—1
et par sommation
N+1 N N
VN €N f0ar < S0 < 50 + [0
0 k=0 0
— _ _ t t ~ t_ tln(q)
On a f(t) i 1—(1—-ng¢" +o(q")) L _ng = me e

On en déduit l'intégrabilité de f sur R, et faisant tendre N — +0o dans 'encadrement précé-
demment établi, il vient

+00 +00

ft)dt <EM,) <1+ f(t)dt
0 0
On réalise le changement de variables v = 1 — ¢* qui équivaut a ¢ln(q) = In(1 — u) d’on
d In(1 —
dt = - La fonction u v n(l = w) réalise une bijection de |0;1[ sur ] 0;+00 ], de

(1 —u)In(q) In(q)
classe €' et strictement croissante. Ainsi, les intégrales concernées sont de méme nature donc
convergentes et par conséquent égales avec

+00 1 11_un 1 In—1 1 n=1 1
1~ (1—¢)" dt = — / du=——— [ Yuldu=— _—
/o 1= =) @)}y T—u g )y 2 n(g) i+ 1
oo In(n)
Ainsi / 1—(1—-o dt ~ —
A Cl i B I i o o

On conclut EM,) ~ -

Remarque : Dans 'expression sommatoire

+00

E(M,) =3 [1-(1—q")"]

k=0
on peut aussi développer le biné6me a 'intérieur puis permuter les sommes

+0o0 N n n n +0oo n " qe
E(M,) = > > (5) (D" =X () (1) X" = Z(z)(—l)z1 —
k=1¢=1 =1 k=1 =1 q
Exercice 7 (***)
+00 nk
On pose Vn € N* up = > In(k)e ™" —
=1 k!

Soit (€2, 47, P) un espace probabilisé et (Xy)g>1 une suite de variables aléatoires indépendantes

n
identiquement distribuées de loi de Poisson &2(1). On note S,, = > Xy pour n entier non nul.
k=1



In(z) siz>0
On pose Vo e [0;1] flz) =
0 sinon
1. Soit n entier non nul. Déterminer la fonction génératrice de S,, puis préciser sa loi.
n

2. Pour n entier non nul, justifier que f < > est d’espérance finie puis en déduire que u,,
n

n

. : . : S :
est bien défini et déterminer une expression de E (f (—)) en fonction de u,.
n

S50 2 o)
n n—+00 n

4. Montrer Vo > 1 In(z)? < 2z

3. Soit > 0. Etablir P (

5. Soit € > 0 et n entier non nul. Montrer qu’il existe > 0 tel que

o (1(2))- o<z () ()] )
o) (B

6. En déduire un équivalent simple de w,, pour n — +00.

avec A, = {

Corrigé : 1. Soit t € [0;1]. Par indépendance des Xy, il vient pour n entier non nul

G, (1) = ] G, (1) = ™D
k=1

Ainsi Sp~Z(n)
. : S, , o o k\ _,n*
2. Soit n entier non nul. On a f | — | d’espérance finie si et seulement sila série > In| — ) e ”y
n k>1 n .
k
converge absolument ce qui équivaut & la convergence de la série ) ln(kz)% qui a lieu puisque
k=1 '
k
In(k) = o(k) et que la série Z/{:F converge. Par transfert, il vient
—+00 !
Sn too E\ _ nF ot _nk
E (f <Z>> = kglln <E> ey = kglln(k)e i In(n)
. Sn
Ainsi Vn € N* E{f{—))=u,—In(n)
n
3. Soit > 0 et n entier non nul. D’aprés I'inégalité de Bienaymé-Tchebychev, il vient
Sn
IP’( P 1’ > n) < n2n2V<Sn) avec V(S,) =n
Sn 1
On conclut P{|l——1|>2n) = O(-
n n—+o0 n
4. On pose Ve > 1 o(z) =1In(z)* — 2z



La fonction ¢ est dérivable sur [1;+00 [ et par dérivation

Ve > 1 O(xr)=2 (111(:10) — 1)

T

Or, par concavité, il vient Vo > 1 In(z) <z—-1<=z

= —2 <0, on conclut

)* <

5. Soit € > 0. Par continuité de f en 1, on dispose de n > 0 tel que

ce qui prouve ¢'(x) < 0 pour > 1 et comme (1

Ve >1 In

)
(z

Vo >0 le—1l<n = |f(x)—f(1)]<e

Soit n entier non nul. Il vient par inégalité triangulaire

o(1(2)- )| <2+ (%) -ro])

([ (%) - rfs) v ([ (%) o)

ILBn>

i (1 (2)) ] <o (1 (%))
n
6. Soit n entier non nul. On a In(S,)% < 2S,

. . . S
et comme S, est d’espérance finie puisque S, ~ Z(n), on en déduit que In (—”) également.
n

D’aprés I'inégalité de Cauchy-Schwarz, il vient

W) < (1(3))
o (1)) En)

e

]E(f <E>2) <4Zke*”%+21n( n)? < 4n + 21n(n)?

Ainsi E (‘ f

d’on u, —In(n) = O(1)

On conclut u, ~ In(n)




Exercice 8 (***%*)

Soit s > 1 et (N*,P(N*),P) espace probabilisé tel que

A
Vn € N* P({n}) = 5 avec A réel

On pose Vp € N* A, = {n € N* | p divise n}
et on note P I’ensemble des nombres premiers.

1. Déterminer la valeur de .
2. Montrer que les événements (A,),cp sont indépendants.

- 1 -1
3. Etablir I'égalité C(s) =11 <1 — _)
pEP p?

1
4. La famille <—) est-elle sommable ?
D/ pep

Corrigé : 1. Par g-additivité, on a

SSP((n}) = BOV) = 1= A(s) avec (s) = 3 -
Avec \ = % > 0, on a bien P({n}) > 0 pour n entier et Jio]P’({n}) = 1 ce qui prouve que P
définit bien jne probabilité sur (N*, P(N*)). Ainsi "~
1
)
2. Soient pq,...,p, des nombres premiers distincts. On a

ﬂAm ={neN"|Vie[l;n] p;divisen} = {nEN* | Hpi divise n}

i=1 i=1
Puis, pour p entier non nul, on a

B(A) = B({ph ke N =5 2 A _ 1

n

Ainsi P ((n] Api) S ﬁ l = [1P(Ay)
< ) i=1 D5

i=1 H Di i=1
1=1

Ce qui prouve Les événements (Ap)pép sont indépendants.

3. Le seul entier qui n’est divisible par aucun nombre premier est 1, autrement dit
{1=NA4A,
peEP

Notons P = {p,,n € N*}. On sait que I’ensemble P est une partie infinie de N donc dénombrable
ce qui justifie la numérotation des nombres premiers. On a par continuité décroissante puis
indépendance des A,



-r({5)-am ()

~ dim [1P (&) = lim [ (1—P(A,) = lim ﬁ1<1—i>

N—+o00 ,, 7 N—+00 ,, 1 N—+o00 = 2
Do P({1}):A:L:H<1_i>
C(s) pEP p?
1\ L
Passant a I'inverse, on conclut C(s) = ]_L <1 — E)

! |

4. Ona 11 (1—-) = 11 == II z_
peP p<N p pe P p<N k= op” peP,p<N k= opF

Notant {p € P,p < N} ={py,... ,pr} il vient
r N 1 1
I1 Z— [H>X%= X =
peP p<N k= Y ki=0D; ogkl,...,krgNleyi

i=1

En remarquant que tout entier de [ 1; N ] se décompose en produit de facteurs premiers inférieurs
a N, il vient

1\t N1
mo(-)s 3
n

peX ,p<N

N

On a ), — — +oo d’ou par comparaison
n= 1n N—+o00

I <1—1)_1—>+oo

peP,p<N p

Or, on a In ] (1—%>_1: > —1n<1—1>

pEP,p<N pEP,p<N

Notant P = {p,,n € N*} avec (p,)n>1 strictement croissante, on a p, —— +00 puis
n—oo

1 1
~In(1—-—=) ~ =
pn n—>+oopn

1
ce qui prouve que les séries > —1In (1 — —) et > — sont de méme nature et avec
n=1 DPn n>1DPn

%—ln(l—i>: > —ln<—1—1>4>+oo

n=1 Pn PEP,p<pPN p N—+oco

1
on conclut que la série Y — diverge, autrement dit
n}lpn

1
La famille <—> n’est pas sommable.
p peEP
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