
ISM MP, Mathématiques
Année 2025/2026

Feuille d'exercices n°65

Exercice 1 (***)

Soit Z∼P(λ) avec λ > 0. Déterminer V(X) où X = 13|Z
Z

3
.

Corrigé : On note Sk(x) =
+∞∑
n=0

x3n+k

(3n+ k)!
pour k ∈ [[ 0 ; 2 ]]. Les séries entières dé�nissant ces

sommes ont un rayon de convergence in�ni. Puis, on trouve pour x réel
S0(x) + S1(x) + S2(x) = ex

S0(x) + jS1(x) + j2S2(x) = e jx

S0(x) + j2S1(x) + jS2(x) = e j2x

Avec des combinaisons linéaires adaptées, on trouve pour x réel

S0(x) =
1

3

î
ex + e jx + e j2x

ó
S1(x) =

1

3

î
ex + j2e jx + je j2x

ó
et S2(x) =

1

3

î
ex + je jx + j2e j2x

ó
Les séries entières

∑ x3n

(3n)!
et
∑

n2 x3n

(3n)!
ont même rayon de convergence et il s'ensuit que X

admet un moment d'ordre 2. Puis, pour x réel
+∞∑
n=0

n
x3n

(3n)!
=

x

3

+∞∑
n=1

x3n−1

(3n− 1)!
=

x

3

+∞∑
n=0

x3n+2

(3n+ 2)!
=

x

3
S2(x)

et
+∞∑
n=0

n2 x3n

(3n)!
=

1

9

+∞∑
n=0

[3n(3n− 1) + 3n]
x3n

(3n)!
=

x2

9

+∞∑
n=1

x3n−2

(3n− 2)!
+

1

3

+∞∑
n=0

n
x3n

(3n)!

=
x2

9

+∞∑
n=0

x3n+1

(3n+ 1)!
+

x

9
S2(x) =

x

9
[xS1(x) + S2(x)]

Ainsi V(X) =
λe−λ

9

[
λS1(λ) + S2(λ)− λe−λS2(λ)

2
]

Exercice 2 (***)

Soit (Ω,A ,P) un espace probabilisé, (Xn)n⩾1 une suite de variables aléatoires indépendantes de
même loi à valeurs dans N et N une variable aléatoire indépendante des Xn à valeurs dans N.

On pose ∀ω ∈ Ω SN(ω) =
N(ω)∑
k=1

Xk(ω)

1. Justi�er que SN est une variables aléatoire discrète.

2. Montrer l'égalité GSN = GN ◦GX1 .

3. On suppose X1 et N d'espérance �nie. Montrer que SN est d'espérance �nie et préciser
E(SN) en fonction de E(N) et E(X1).

4. On suppose que X1 ∼ B(p) et N ∼ P(λ) avec λ > 0. Déterminer la loi de SN.
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5. Retrouver le résultat précédent sans passer par les fonctions génératrices.

Corrigé : 1. On a clairement SN(Ω) ⊂ N puis

∀k ∈ N {SN = k} =

+∞⊔
n=0

Å
{N = n} ∩

ß
n∑

i=1

Xi = k

™ã
et

n∑
i=1

Xi est une variable aléatoire comme fonction du vecteur aléatoire (X1, . . . ,Xn). Ainsi, pour

k entier, l'ensemble {SN = k} est une union dénombrable d'événements donc un événement ce
qui prouve

L'application SN est une variable aléatoire réelle discrète.

2. Soit t ∈ [ 0 ; 1 ]. Par transfert puis probabilités totales avec le système complet ({N = n})n∈N
et indépendances des Xk avec N, il vient

GSN(t) =
+∞∑
j=0

tjP(SN = j) =
+∞∑
j=0

tj
Å

+∞∑
n=0

P
Å

N∑
k=1

Xk = j,N = n

ãã
=

+∞∑
j=0

Å
+∞∑
n=0

tjP
Å

n∑
k=1

Xk = j

ã
P(N = n)

ã
D'après le théorème de Fubini pour des familles à termes positifs et indépendance des Xk, on
obtient

GSN(t) =
+∞∑
n=0

Ç
+∞∑
j=0

tjP(Sn = j)

å
P(N = n) =

+∞∑
n=0

GSn(t)P(N = n) =
+∞∑
n=0

GX1(t)
nP(N = n)

D'où GSN = GN ◦GX1

3. On a GN et GX1 dérivable en 1. Comme GX1(1) =
+∞∑
k=0

P(X1 = k) = 1, on a donc GN ◦ GX1

dérivable en 1 ce qui prouve que SN est d'espérance �nie et on trouve

E(SN) = G′
SN
(1) = G′

X1
(1)G′

N ◦GX1(1) = G′
X1
(1)G′

N(1)

On conclut La variable SN est d'espérance �nie et E(SN) = E(X1)E(N).

Remarque : La dernière égalité est appelée identité de Wald.

4. On a

∀t ∈ [ 0 ; 1 ] GSN(t) = GN(GX1(t)) = GN(pt+ 1− p) = eλ(pt+1−p−1) = eλp(t−1)

Comme la fonction génératrice caractérise la loi, on conclut

SN∼P(pλ)

5. Soit k ∈ N. La famille ({N = n})n∈N est un système complet d'événements. D'après la formule
des probabilités totales, il vient

P(SN = k) =
+∞∑
n=0

P(SN = k,N = n) =
+∞∑
n=0

P
Å

n∑
i=1

Xi = k,N = n

ã
Les variables Xi et N sont indépendantes d'où

P(SN = k) =
+∞∑
n=0

P
Å

n∑
i=1

Xi = k

ã
P(N = n)
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On a
n∑

i=1

Xi ∼B(n, p) d'où P
Å

n∑
i=1

Xi = k

ã
= 0 pour n < k et par suite

P(SN = k) =
+∞∑
n=k

P
Å

n∑
i=1

Xi = k

ã
P(N = n) =

+∞∑
n=k

(
n
k

)
pk(1− p)n−kλ

n

n!
e−n

D'où ∀k ∈ N P(SN = k) =
(λp)k

k!
e−λ

+∞∑
n=k

(λ(1− p))n−k

(n− k)!

Avec le changement d'indice ℓ = n− k, on reconnaît une exponentielle

∀k ∈ N P(SN = k) =
(λp)k

k!
e−λ

+∞∑
ℓ=0

(λ(1− p))ℓ

ℓ!
=

(λp)k

k!
e−λeλ(1−p) =

(λp)k

k!
e−λp

Ainsi SN∼P(pλ)

Exercice 3 (***)

Soit (Ω,A ,P) espace probabilisé, (Xn)n⩾1 une suite de variables aléatoires indépendantes de loi

P(λ) avec λ > 0 et Sn =
n∑

i=1

Xi. Pour c > λ, montrer qu'il existe r ∈ ] 0 ; 1 [ tel que

∀n ∈ N P(Sn ⩾ nc) ⩽ rn

Corrigé : Soit t > 0 et n ⩾ 1. Par croissance stricte de u 7→ e tu, on a {Sn ⩾ nc} =
{
e tSn ⩾ e tnc

}
.

La série
∑

e tnλ
n

n!
e−λ = e−λ

∑(e tλ)
n

n!
converge (série exponentielle) et par transfert, on a

E(e tX1) =
+∞∑
n=0

e tnλ
n

n!
e−λ = eλ(e t−1)

La variable e tSn =
n∏

k=1

e tXk est d'espérance �nie comme produit de variables indépendantes

d'espérance �nie. D'après l'inégalité de Markov avec la variable alétoire positive e tSn et par
égalité en loi des Xk, il vient

P(Sn ⩾ nc) = P
(
e tSn ⩾ e tnc

)
⩽ e−tncE

(
e tSn

)
= e−tncE

Å
n∏

k=1

e tXk

ã
= e−tncE

(
e tX1

)n
Ainsi ∀t > 0 P(Sn ⩾ nc) ⩽ exp(nφ(t)) avec φ(t) = −tc+ λ(e t − 1)

D'après les théorèmes généraux, on a φ ∈ C 1(] 0 ; +∞ [ ,R) et

∀t > 0 φ′(t) = −c+ λe t < 0 ⇐⇒ t < ln
( c
λ

)
avec ln

( c
λ

)
> 0

D'où P(Sn ⩾ nc) ⩽ exp
[
nφ
(
ln
( c
λ

))]
Comme φ(t) −−→

t→0
0 et que φ décroît strictement sur

]
0 ; ln

( c
λ

) [
, on en déduit

φ
(
ln
( c
λ

))
< 0

On conclut ∃r ∈ ] 0 ; 1 [ | ∀n ∈ N P(Sn ⩾ nc) ⩽ rn

Variante : On peut aussi observer

φ(t) =
t→0

−tc+ λ (1 + t+ o(t)− 1) = t ((λ− c) + o(1)) avec λ− c < 0

On en déduit que la fonction φ prend des valeurs strictement négatives au voisinage de zéro ce
qui permet de conclure.
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Exercice 4 (***)

Soit (Ω,A ,P) un espace probabilisé et (Un)n⩾1 une suite de variables aléatoires indépendantes
de même loi uniforme sur [[ 1 ; N ]]. Pour n entier non nul, on note

Sn =
n∑

i=1

Ui et Vn =
Sn − nm

σ
√
n

avec m = E(U1) et σ =
√
V(U1)

Pour X une variable aléatoire avec X(Ω) �ni, on note MX(t) = E(e tX) avec t réel.

Montrer ∀t ∈ R MVn(t) −−−→
n→∞

e
t2

2

Corrigé : Les variables aléatoires sont �nies. Soit t réel. Par indépendance des Ui, on a

MVn(t) = E
Å

n∏
i=1

exp

ï
t(Ui −m)

σ
√
n

òã
=

n∏
i=1

E
Å
exp

ï
t(Ui −m)

σ
√
n

òã
Par transfert, il vient

E
Å
exp

ï
t(Ui −m)

σ
√
n

òã
=

1

N

N∑
k=1

exp

ï
t(k −m)

σ
√
n

ò
=

1

N
exp

Å−tm

σ
√
n

ã
N∑

k=1

exp

Å
t

σ
√
n

ãk
Ainsi, par une transformation de type � angle moitié �, il vient

E
Å
exp

ï
t(Ui −m)

σ
√
n

òã
=

1

N
exp

ï−tm

σ
√
n

ò
exp

Å
t

σ
√
n

ã 1− exp

Å
tN

σ
√
n

ã
1− exp

Å
t

σ
√
n

ã =
1

N

sh (tN/2σ
√
n)

sh (t/2σ
√
n)

D'où
1

n
ln (MVn(t)) = − ln(N) + ln (sh (tN/2σ

√
n))− ln (sh (t/2σ

√
n))

En�n, avec le développement usuel sh (u) = u+
u3

6
+ o(u3), on obtient

1

n
ln (MVn(t)) = − ln(N) + ln

Ç
tN

2σ
√
n

Ç
1 +

1

6

Å
tN

2σ
√
n

ã2
+ o
Å
1

n

ãåå
− ln

Ç
t

2σ
√
n

Ç
1 +

1

6

Å
t

2σ
√
n

ã2
+ o
Å
1

n

ãåå
1

n
ln (MVn(t)) =

t2

2n
× N2 − 1

12σ2
+ o
Å
1

n

ã
Ainsi ∀t ∈ R MVn(t) −−−→

n→∞
e

t2

2

Exercice 5 (***)

Soit (Ω,A ,P) un espace probabilisé et (Xk)k⩾1 une suite de variables aléatoires réelles discrètes
de même loi et d'espérance �nie. Montrer

1

n
E
Å

Max
k∈[[ 1 ;n ]]

|Xk|
ã
−−−→
n→∞

0

Corrigé : On note Mn = Max
k∈[[ 1 ;n ]]

|Xk|. Soit a ⩾ 0. On a pour k ∈ [[ 1 ; n ]]

|Xk| = |Xk|1{|Xk|<a} + |Xk|1{|Xk|⩾a}
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d'où |Xk| ⩽ a+
n∑

ℓ=1

|Xℓ|1{|Xℓ|⩾a}

Ce majorant est indépendant de k et par conséquent

Mn ⩽ a+
n∑

k=1

|Xk|1{|Xk|⩾a}

Pour k ∈ [[ 1 ; n ]], la variable |Xk|1{|Xk|⩾a} est positive majorée par |Xk| et donc d'espérance
�nie. Ainsi, par linéarité de l'espérance et égalité en loi des Xk, il vient

1

n
E(Mn) ⩽

a

n
+ E

(
|X1|1{|X1|⩾a}

)
On note |X1| (Ω) = {xn, n ∈ N} et on pose

∀(n, a) ∈ N× R+ un(a) = xn1[ 0 ;xn ](a)P(|X1| = xn)

Par transfert, on a E
(
|X1|1{|X1|⩾a}

)
=

+∞∑
n=0

un(a)

Or, on a pour tout n entier

0 ⩽ un(a) ⩽ xnP(|X1| = xn) et un(a) −−−−→
a→+∞

0

La série de fonction
∑

un converge normalement donc uniformément et par double limite

E
(
|X1|1{|X1|⩾a}

)
−−−−→
a→+∞

0

Ainsi, pour ε > 0, on choisit a assez grand pour avoir E
(
|X1|1{|X1|⩾a}

)
⩽ ε puis on choisit un

seuil N entier tel que
a

n
⩽ ε pour tout entier n ⩾ N. Par conséquent

∀n ⩾ N
1

n
E(Mn) ⩽ 2ε

On conclut
1

n
E
Å

Max
k∈[[ 1 ;n ]]

|Xk|
ã
−−−→
n→∞

0

Exercice 6 (***)

Soit (Xn)n⩾1 suite i.i.d. de variables aléatoires suivant la loi géométrique G (p) avec p ∈ ] 0 ; 1 [.
On note Mn = Max (X1, . . . ,Xn). Déterminer un équivalent simple de E(Mn) lorsque n → +∞.

Corrigé : On note q = 1− p. Soit k entier non nul. On a par indépendance des Xi

P(Mn ⩽ k)) = P

(
n⋂

i=1

{Xi ⩽ k}

)
=

n∏
i=1

P(Xi ⩽ k)

puis par égalité en loi

∀i ∈ [[ 1 ; n ]] P(Xi ⩽ k) = P

(
k⊔

ℓ=1

{Xi = ℓ}

)
=

k∑
ℓ=1

P(Xi = ℓ) =
k∑

ℓ=1

pqℓ−1 = p
1− qk

1− q
= 1− qk

et la formule vaut aussi pour k = 0. Ainsi, on a

∀k ∈ N P(Mn ⩽ k) = (1− qk)n et P(Mn > k) = 1− (1− qk)n

et par antirépartition, on a dans [ 0 ; +∞ ]
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E(Mn) =
+∞∑
k=0

P(Mn > k) =
+∞∑
k=0

[
1− (1− qk)n

]
On pose ∀t ⩾ 0 f(t) = 1− (1− qt)n

La fonction f est continue par morceaux sur R+, décroissante par composition. Par décroissance
de f , il vient

∀k ∈ N
∫ k+1

k

f(t) dt ⩽ f(k) et ∀k ∈ N∗ f(k) ⩽
∫ k

k−1

f(t) dt

et par sommation

∀N ∈ N
∫ N+1

0

f(t) dt ⩽
N∑

k=0

f(k) ⩽ f(0) +

∫ N

0

f(t) dt

On a f(t) =
t→+∞

1− (1− nqt + o(qt)) ∼
t→+∞

nqt = ne t ln(q)

On en déduit l'intégrabilité de f sur R+ et faisant tendre N → +∞ dans l'encadrement précé-
demment établi, il vient ∫ +∞

0

f(t) dt ⩽ E(Mn) ⩽ 1 +

∫ +∞

0

f(t) dt

On réalise le changement de variables u = 1 − qt qui équivaut à t ln(q) = ln(1 − u) d'où

dt = − du

(1− u) ln(q)
. La fonction u 7→ ln(1− u)

ln(q)
réalise une bijection de ] 0 ; 1 [ sur ] 0 ; +∞ [, de

classe C 1 et strictement croissante. Ainsi, les intégrales concernées sont de même nature donc
convergentes et par conséquent égales avec∫ +∞

0

[1− (1− qt)n] dt = − 1

ln(q)

∫ 1

0

1− un

1− u
du = − 1

ln(q)

∫ 1

0

n−1∑
ℓ=0

uℓ du = − 1

ln(q)

n−1∑
ℓ=0

1

ℓ+ 1

Ainsi
∫ +∞

0

[1− (1− qt)n] dt ∼
n→+∞

− ln(n)

ln(q)

On conclut E(Mn) ∼
n→+∞

− ln(n)

ln(q)

Remarque : Dans l'expression sommatoire

E(Mn) =
+∞∑
k=0

[
1− (1− qk)n

]
on peut aussi développer le binôme à l'intérieur puis permuter les sommes

E(Mn) =
+∞∑
k=1

n∑
ℓ=1

(
n
ℓ

)
(−1)ℓqkℓ =

n∑
ℓ=1

(
n
ℓ

)
(−1)ℓ

+∞∑
k=1

qkℓ =
n∑

ℓ=1

(
n
ℓ

)
(−1)ℓ

qℓ

1− qℓ

Exercice 7 (***)

On pose ∀n ∈ N∗ un =
+∞∑
k=1

ln(k)e−nn
k

k!

Soit (Ω,A ,P) un espace probabilisé et (Xk)k⩾1 une suite de variables aléatoires indépendantes

identiquement distribuées de loi de Poisson P(1). On note Sn =
n∑

k=1

Xk pour n entier non nul.
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On pose ∀x ∈ [ 0 ; 1 ] f(x) =

ln(x) si x > 0

0 sinon

1. Soit n entier non nul. Déterminer la fonction génératrice de Sn puis préciser sa loi.

2. Pour n entier non nul, justi�er que f

Å
Sn

n

ã
est d'espérance �nie puis en déduire que un

est bien dé�ni et déterminer une expression de E
Å
f

Å
Sn

n

ãã
en fonction de un.

3. Soit η > 0. Établir P
Å∣∣∣∣Sn

n
− 1

∣∣∣∣ ⩾ η

ã
=

n→+∞
O
Å
1

n

ã
4. Montrer ∀x > 1 ln(x)2 ⩽ 2x

5. Soit ε > 0 et n entier non nul. Montrer qu'il existe η > 0 tel que∣∣∣∣EÅf ÅSn

n

ãã
− f(1)

∣∣∣∣ ⩽ εP(Bn) + E
Å∣∣∣∣f ÅSn

n

ã∣∣∣∣1An

ã
avec An =

ß∣∣∣∣Sn

n
− 1

∣∣∣∣ ⩾ η

™
Bn =

ß∣∣∣∣Sn

n
− 1

∣∣∣∣ < η

™
6. En déduire un équivalent simple de un pour n → +∞.

Corrigé : 1. Soit t ∈ [ 0 ; 1 ]. Par indépendance des Xk, il vient pour n entier non nul

GSn(t) =
n∏

k=1

GXk
(t) = enλ(t−1)

Ainsi Sn∼P(n)

2. Soit n entier non nul. On a f
Å
Sn

n

ã
d'espérance �nie si et seulement si la série

∑
k⩾1

ln

Å
k

n

ã
e−nn

k

k!

converge absolument ce qui équivaut à la convergence de la série
∑
k⩾1

ln(k)
nk

k!
qui a lieu puisque

ln(k) =
k→+∞

o(k) et que la série
∑

k
nk

k!
converge. Par transfert, il vient

E
Å
f

Å
Sn

n

ãã
=

+∞∑
k=1

ln

Å
k

n

ã
e−nn

k

k!
=

+∞∑
k=1

ln(k)e−nn
k

k!
− ln(n)

Ainsi ∀n ∈ N∗ E
Å
f

Å
Sn

n

ãã
= un − ln(n)

3. Soit η > 0 et n entier non nul. D'après l'inégalité de Bienaymé-Tchebychev, il vient

P
Å∣∣∣∣Sn

n
− 1

∣∣∣∣ ⩾ η

ã
⩽

1

η2n2
V(Sn) avec V(Sn) = n

On conclut P
Å∣∣∣∣Sn

n
− 1

∣∣∣∣ ⩾ η

ã
=

n→+∞
O
Å
1

n

ã
4. On pose ∀x ⩾ 1 φ(x) = ln(x)2 − 2x
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La fonction φ est dérivable sur [ 1 ; +∞ [ et par dérivation

∀x ⩾ 1 φ′(x) = 2

Å
ln(x)

x
− 1

ã
Or, par concavité, il vient ∀x ⩾ 1 ln(x) ⩽ x− 1 ⩽ x

ce qui prouve φ′(x) ⩽ 0 pour x ⩾ 1 et comme φ(1) = −2 < 0 , on conclut

∀x ⩾ 1 ln(x)2 ⩽ 2x

5. Soit ε > 0. Par continuité de f en 1, on dispose de η > 0 tel que

∀x > 0 |x− 1| < η =⇒ |f(x)− f(1)| < ε

Soit n entier non nul. Il vient par inégalité triangulaire∣∣∣∣EÅf ÅSn

n

ã
− f(1)

ã∣∣∣∣ ⩽ E
Å∣∣∣∣f ÅSn

n

ã
− f(1)

∣∣∣∣ã
⩽ E
Å∣∣∣∣f ÅSn

n

ã
− f(1)

∣∣∣∣1An

ã
+ E
Å∣∣∣∣f ÅSn

n

ã
− f(1)

∣∣∣∣1Bn

ã
Ainsi

∣∣∣∣EÅf ÅSn

n

ãã
− f(1)

∣∣∣∣ ⩽ εP(Bn) + E
Å∣∣∣∣f ÅSn

n

ã∣∣∣∣1An

ã
6. Soit n entier non nul. On a ln(Sn)

2 ⩽ 2Sn

et comme Sn est d'espérance �nie puisque Sn∼P(n), on en déduit que ln

Å
Sn

n

ã2
également.

D'après l'inégalité de Cauchy-Schwarz, il vient

E
Å∣∣∣∣f ÅSn

n

ã∣∣∣∣1An

ã2
⩽ E
Ç
f

Å
Sn

n

ã2å
P(An)

et E
Ç
f

Å
Sn

n

ã2å
=

+∞∑
k=1

ln

Å
k

n

ã2

e−nn
k

k!

=
+∞∑
k=1

(ln(k)− ln(n))2 e−nn
k

k!

⩽
+∞∑
k=1

2 (ln(k)2 + ln(n)2) e−nn
k

k!

E
Ç
f

Å
Sn

n

ã2å
⩽ 4

+∞∑
k=1

ke−nn
k

k!
+ 2 ln(n)2 ⩽ 4n+ 2 ln(n)2

Ainsi E
Å∣∣∣∣f ÅSn

n

ã∣∣∣∣1An

ã
=

n→+∞
O(1)

d'où un − ln(n) =
n→+∞

O(1)

On conclut un ∼
n→+∞

ln(n)
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Exercice 8 (****)

Soit s > 1 et (N∗,P(N∗),P) espace probabilisé tel que

∀n ∈ N∗ P({n}) = λ

ns
avec λ réel

On pose ∀p ∈ N∗ Ap = {n ∈ N∗ | p divise n}

et on note P l'ensemble des nombres premiers.

1. Déterminer la valeur de λ.

2. Montrer que les événements (Ap)p∈P sont indépendants.

3. Établir l'égalité ζ(s) =
∏
p∈P

Å
1− 1

ps

ã−1

4. La famille
Å
1

p

ã
p∈P

est-elle sommable ?

Corrigé : 1. Par σ-additivité, on a
+∞∑
n=1

P({n}) = P(N∗) = 1 = λζ(s) avec ζ(s) =
+∞∑
n=1

1

ns

Avec λ =
1

ζ(s)
> 0, on a bien P({n}) ⩾ 0 pour n entier et

+∞∑
n=1

P({n}) = 1 ce qui prouve que P

dé�nit bien une probabilité sur (N∗,P(N∗)). Ainsi

λ =
1

ζ(s)

2. Soient p1, . . . , pn des nombres premiers distincts. On a
n⋂

i=1

Api = {n ∈ N∗ | ∀i ∈ [[ 1 ; n ]] pi divise n} =

{
n ∈ N∗ |

n∏
i=1

pi divise n

}
Puis, pour p entier non nul, on a

P(Ap) = P ({pk, k ∈ N∗}) =
+∞∑
k=1

λ

(pk)s
=

λζ(s)

ps
=

1

ps

Ainsi P

(
n⋂

i=1

Api

)
=

1Å
n∏

i=1

pi

ãs =
n∏

i=1

1

psi
=

n∏
i=1

P(Api)

Ce qui prouve Les événements (Ap)p∈P sont indépendants.

3. Le seul entier qui n'est divisible par aucun nombre premier est 1, autrement dit

{1} =
⋂
p∈P

Ap

Notons P = {pn, n ∈ N∗}. On sait que l'ensemble P est une partie in�nie de N donc dénombrable
ce qui justi�e la numérotation des nombres premiers. On a par continuité décroissante puis
indépendance des Ap
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P ({1}) = P

(
+∞⋂
n=1

Apn

)
= lim

N→+∞
P

(
N⋂

n=1

Apn

)
= lim

N→+∞

N∏
n=1

P
(
Apn

)
= lim

N→+∞

N∏
n=1

(1− P(Apn)) = lim
N→+∞

N∏
n=1

Å
1− 1

psn

ã
D'où P ({1}) = λ =

1

ζ(s)
=
∏
p∈P

Å
1− 1

ps

ã
Passant à l'inverse, on conclut ζ(s) =

∏
p∈P

Å
1− 1

ps

ã−1

4. On a
∏

p∈P,p⩽N

Å
1− 1

p

ã−1

=
∏

p∈P,p⩽N

+∞∑
k=0

1

pk
⩾

∏
p∈P,p⩽N

N∑
k=0

1

pk

Notant {p ∈ P , p ⩽ N} = {p1, . . . , pr}, il vient∏
p∈P,p⩽N

N∑
k=0

1

pk
=

r∏
i=1

N∑
ki=0

1

pkii
=

∑
0⩽k1,...,kr⩽N

1
r∏

i=1

pkii

En remarquant que tout entier de [[ 1 ; N ]] se décompose en produit de facteurs premiers inférieurs
à N, il vient ∑

0⩽k1,...,kr⩽N

1
r∏

i=1

pkii

⩾
N∑

n=1

1

n

D'où
∏

p∈P,p⩽N

Å
1− 1

p

ã−1

⩾
N∑

n=1

1

n

On a
N∑

n=1

1

n
−−−−→
N→+∞

+∞ d'où par comparaison

∏
p∈P,p⩽N

Å
1− 1

p

ã−1

−−−−→
N→+∞

+∞

Or, on a ln
∏

p∈P,p⩽N

Å
1− 1

p

ã−1

=
∑

p∈P,p⩽N

− ln

Å
1− 1

p

ã
Notant P = {pn, n ∈ N∗} avec (pn)n⩾1 strictement croissante, on a pn −−−→

n→∞
+∞ puis

− ln

Å
1− 1

pn

ã
∼

n→+∞

1

pn

ce qui prouve que les séries
∑
n⩾1

− ln

Å
1− 1

pn

ã
et
∑
n⩾1

1

pn
sont de même nature et avec

N∑
n=1

− ln

Å
1− 1

pn

ã
=

∑
p∈P,p⩽pN

− ln

Å
−1− 1

p

ã
−−−−→
N→+∞

+∞

on conclut que la série
∑
n⩾1

1

pn
diverge, autrement dit

La famille
Å
1

p

ã
p∈P

n'est pas sommable.
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