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Feuille d'exercices n°75

Exercice 1 (***)

Soit E = Rn[X]. Soit f ∈ C 1(R2,R). On dé�nit F : E → R par

∀P ∈ E F(P) =

∫ 1

0

f(t,P(t)) dt

Montrer que F est de classe C 1 et déterminer sa di�érentielle.

Corrigé : Soit P =
n∑

k=0

akX
k ∈ E. Montrons que pour tout j ∈ [[ 0 ; n ]], l'application aj 7→∫ 1

0

f

Å
t,

n∑
k=0

akt
k

ã
dt est de classe C 1. On �xe j ∈ [[ 0 ; n ]] et on pose

∀(t, aj) ∈ [ 0 ; 1 ]× R g(t, aj) = f

Å
t,

n∑
k=0

akt
k

ã
• Pour aj réel, on a t 7→ g(t, aj) continue et intégrale sur le segment [ 0 ; 1 ].

• Pour t ∈ [ 0 ; 1 ], on a aj 7→ g(t, aj) ∈ C 1(R,R) par composition. Par dérivation composée, on
trouve

∀(t, aj) ∈ [ 0 ; 1 ]× R
∂g

∂aj
(t, aj) = tj∂2f

Å
t,

n∑
k=0

akt
k

ã
• Pour aj réel, on a t 7→ ∂g

∂aj
(t, aj) continue sur [ 0 ; 1 ] par théorèmes généraux.

• Domination : Soit [ a ; b ] ⊂ R. L'application (t, aj) 7→ ∂g

∂aj
(t, aj) est continue par compo-

sition et continuité des dérivées partielles de f . Sur le compact [ 0 ; 1 ] × [ a ; b ], l'application

(t, aj) 7→
∂g

∂aj
(t, aj) est bornée donc dominée.

D'après le théorème de régularité C 1 sous l'intégrale, l'application aj 7→
∫ 1

0

g(t, aj) dt est de

classe C 1 sur tout segment de R et donc sur R tout entier. On a

∀P ∈ E ∀j ∈ [[ 0 ; n ]]
∂F

∂aj
(P) =

∫ 1

0

tj∂2f(t,P(t)) dt

Il reste à montrer la continuité des dérivées partielles sur E. Soit j ∈ [[ 0 ; n ]].

• Pour P ∈ E, l'application t 7→ tj∂2f(t,P(t)) est continue (par morceaux) sur [ 0 ; 1 ].

• Pour t ∈ [ 0 ; 1 ], l'application P 7→ tj∂2f(t,P(t)) est continue sur E puisque le morphisme
d'évaluation P 7→ P(t) est continu (linéaire en dimension �nie) composé avec y 7→ tj∂2f(t, y)
continue puisque f est de classe C 1.

• Domination : Soit K un compact de E. L'application (t,P) 7→ tj∂2f(t,P(t)) est continue car
composée de fonctions continues et est bornée donc dominée sur le compact [ 0 ; 1 ]×K (produit
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de compacts).

D'après le théorème de continuité sous l'intégrale, on a P 7→ ∂F

∂aj
(P) continue sur E pour tout

j ∈ [[ 0 ; n ]]. On en déduit le caractère C 1 de F puis

∀H =
n∑

j=0

hkX
j ∈ E dF(P) · H =

n∑
j=0

hj
∂F

∂aj
(P) =

n∑
j=0

hj

∫ 1

0

tj∂2f(t,P(t)) dt

Par linéarité de l'intégrale, on conclut

F ∈ C 1(E,R) avec ∀(P,H) ∈ E2 dF(P) · H =

∫ 1

0

H(t)∂2f(t,P(t)) dt

Exercice 2 (***)

On pose ∀(x, y) ∈ R2 f(x, y) =


x3y3

(x4 + y2)2
si (x, y) ̸= (0, 0)

0 sinon

Étudier la continuité puis le caractère C 1 de f .

Corrigé : La fonction f est de classe C 1 sur R2 ∖ {(0, 0)} en tant que fonction rationnelle bien
dé�nie sur ce domaine. Avec l'équivalence

∀(x, y) ∈ R2 (x2 − |y|)2 ⩾ 0 ⇐⇒ x4 + y2 ⩾ 2x2 |y|

il vient

∀(x, y) ∈ R2 ∖ {(0, 0)} |f(x, y)− f(0, 0)| = x2 |y|
x4 + y2︸ ︷︷ ︸

⩽1/2

|x| y2

x4 + y2
⩽

|x|
2

y2

x4 + y2
⩽

|x|
2

Il en résulte f(x, y) −−−−−−→
(x,y)→(0,0)

f(0, 0)

D'où la continuité de f .
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Figure 1 � Graphe de z = f(x, y)
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Puis, on a ∀x ∈ R∗ f(x, 0)− f(0, 0)

x− 0
= 0 −−→

x→0
0

Et après calcul, on complète avec

∀(x, y) ∈ R2 ∂f

∂x
(x, y) =


x2y3(3y2 − 5x4)

(x4 + y2)3
si (x, y) ̸= (0, 0)

0 sinon

En particulier ∀x ∈ R∗ ∂f

∂x
(x, x2) = −1

4
̸−−−−−−→

(x,y)→(0,0)
0 =

∂f

∂x
(0, 0)

On conclut f ∈ C (R2,R)∖ C 1(R2,R)
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Figure 2 � Graphe de z =
∂f

∂x
(x, y)

Exercice 3 (***)

On munit E = Mn(R) d'une norme véri�ant ∥In∥ = 1 et ∥AB∥ ⩽ ∥A∥∥B∥ pour (A,B) ∈ E2.

1. Montrer ∀(A,B) ∈ E2 eB − eA =

∫ 1

0

e tB(B− A)e (1−t)A dt

2. Soit R > 0. Montrer

∀(X,Y) ∈ Bf (0,R)
2 ∥eX − eY∥ ⩽ eR∥X− Y∥

3. En déduire que l'exponentielle est di�érentiable sur E avec

∀(A,H) ∈ E2 d exp(A) · H =

∫ 1

0

e tAHe (1−t)A dt

Corrigé : 1. Soit (A,B) ∈ E2. On observe

d

dt

[
e tBe (1−t)A

]
= e tBBe (1−t)A + e tB(−A)e (1−t)A = e tB(B− A)e (1−t)A

Ainsi ∀(A,B) ∈ E2 eB − eA =

∫ 1

0

e tB(B− A)e (1−t)A dt
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2. Soit (X,Y) ∈ Bf (0,R)
2. D'après l'égalité précédente, on a

eX − eY =

∫ 1

0

e tX(X− Y)e (1−t)Y dt

Puis, par inégalité triangulaire

∥eX − eY∥ ⩽
∫ 1

0

∥e tX(X− Y)e (1−t)Y∥ dt

D'après le caractère sous-multiplicatif de la norme, on a

∀t ∈ [ 0 ; 1 ] ∥e tX(X− Y)e (1−t)Y∥ ⩽ ∥e tX∥∥X− Y∥∥e (1−t)Y∥

Soit M ∈ E. On a ∥Mk∥ ⩽ ∥M∥k pour tout k entier par récurrence immédiate puis, par conver-

gence de
∑∥M∥k

k!
, on obtient la convergence absolue de

∑Mk

k!
et par inégalité triangulaire

∥eM∥ = ∥
+∞∑
k=0

Mk

k!
∥ ⩽

+∞∑
k=0

∥M∥k

k!
= e ∥M∥

Ainsi ∀t ∈ [ 0 ; 1 ] ∥e tX(X− Y)e (1−t)Y∥ ⩽ e tR∥X− Y∥e (1−t)R = eR∥X− Y∥

On conclut ∀(X,Y) ∈ Bf (0,R)
2 ∥eX − eY∥ ⩽ eR∥X− Y∥

3. Soit (A,H) ∈ E2. Par linéarité de l'intégrale, il vient

eA+H − eA −
∫ 1

0

e tAHe (1−t)A dt =

∫ 1

0

e t(A+H)He (1−t)A dt−
∫ 1

0

e tAHe (1−t)A dt

=

∫ 1

0

(
e t(A+H) − e tA

)
He (1−t)A dt

Par inégalité triangulaire, il vient

∥eA+H − eA −
∫ 1

0

e tAHe (1−t)A dt∥ ⩽
∫ 1

0

∥
(
e t(A+H) − e tA

)
He (1−t)A∥ dt

Avec le caractère sous-multiplicatif et l'inégalité établie à la question précédente, on obtient

∥eA+H − eA −
∫ 1

0

e tAHe (1−t)A dt∥ ⩽
∫ 1

0

∥e t(A+H) − e tA∥∥H∥∥e (1−t)A∥ dt

⩽ e ∥A∥+∥H∥∥H∥2e ∥A∥ = o(H)

En�n, l'application H 7→
∫ 1

0

e tAHe (1−t)A dt est linéaire par linéarité du produit à droite et à

gauche et de l'intégrale et on conclut

L'exponentielle est di�érentiable sur E et ∀(A,H) ∈ E2 d exp(A) · H =

∫ 1

0

e tAHe (1−t)A dt

Variantes : (a) On peut procéder di�éremment. Pour (A,H) ∈ E2, on a

eA+H =
+∞∑
k=0

(A + H)k

k!
=

+∞∑
k=0

1

k!

ï
Ak +

k−1∑
ℓ=0

AℓHAk−1−ℓ +Rk(A,H)

ò
La série

∑Ak

k!
converge absolument. Puis, on a avec la norme d'algèbre

∀k ∈ N∗ ∥ 1

k!

k−1∑
ℓ=0

AℓHAk−1−ℓ∥ ⩽
k

k!
∥A∥k−1∥H∥ =

∥A∥k−1

(k − 1)!
∥H∥
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d'où la convergence absolue de
∑ 1

k!

ï
k−1∑
ℓ=0

AℓHAk−1−ℓ

ò
. Par linéarité du symbole somme, on obtient

eA+H − eA −
+∞∑
k=0

1

k!

ï
k−1∑
ℓ=0

AℓHAk−1−ℓ

ò
=

+∞∑
k=0

Rk(A,H)

k!
avec Rk(A,H) =

k−1∑
ℓ=0

AℓHAk−1−ℓ

qui converge absolument. En utilisant à nouveau le caractère de norme d'algèbre, on trouve

∀k ∈ N ∥Rk(A,H)∥ ⩽ Rk(∥A∥, ∥H∥)

et ∀k ∈ N Rk(∥A∥, ∥H∥) = (∥A∥+ ∥H∥)k − ∥A∥k − k∥A∥k−1∥H∥

d'où
+∞∑
k=0

Rk(∥A∥, ∥H∥)
k!

= e ∥A∥+∥H∥ − e ∥A∥ − ∥H∥e ∥A∥ = o(H)

En�n, l'application H 7→
+∞∑
k=0

1

k!

ï
k−1∑
ℓ=0

AℓHAk−1−ℓ

ò
est linéaire et on obtient

La fonction exponentielle est di�érentiable sur E et

∀(A,H) ∈ E2 d exp(A) · H =
+∞∑
k=0

1

k!

ï
k−1∑
ℓ=0

AℓHAk−1−ℓ

ò
(b) Pour les questions 2 et 3, on peut encore faire autrement. On a établi pour (A,B) ∈ E2

eB − eA =

∫ 1

0

e tB(B− A)e (1−t)A dt

d'où eB − eA =

∫ 1

0

+∞∑
k=0

tkBk

k!
(B− A)

+∞∑
ℓ=0

(1− t)ℓAℓ

ℓ!
dt

On peut justi�er la permutation des symboles sommes et intégrale. On peut également généraliser
les résultats des familles sommables pour des familles à valeurs vectorielles (hors-programme !)
et invoquer le théorème de Fubini pour obtenir

eB − eA =
∑

(k,ℓ)∈N2

Bk(B− A)Aℓ 1

k!ℓ!

∫ 1

0

tk(1− t)ℓ dt

D'après un résultat d'intégration classique, on a

∀(k, ℓ) ∈ N2

∫ 1

0

tk(1− t)ℓ dt =
k!ℓ!

(k + ℓ+ 1)!

d'où eB − eA =
∑

(k,ℓ)∈N2

1

(k + ℓ+ 1)!
Bk(B− A)Aℓ

Avec de la sommation par paquets en posant p = k+ℓ puis p = k+ℓ+1, on retrouve les résultats
des questions 2 et 3.

Exercice 4 (***)

Soit f ∈ C 1(R,R). On pose

∀(x, y) ∈ R2 g(x, y) =


1

x

∫ xy

x

f(t) dt si (x, y) ∈ R ∗ ×R

f(0)(y − 1) sinon

Montrer que g est de classe C 1 sur R2.
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Corrigé : On pose φ(t) =


F(t)− F(0)

t− 0
si t ̸= 0

f(0) sinon

avec F(x) =

∫ x

0

f(t) dt pour x réel. On a

∀(x, y) ∈ R2 g(x, y) = yφ(xy)− φ(x)

Par construction, on a φ ∈ C (R,R)∩C 1(R∗,R). La fonction F est de classe C 2 comme primitive
de f fonction de classe C 1. D'après le théorème de Taylor-Young, on a

F(t) = F(0) + F′(0)t+ F′′(0)
t2

2
+ o(t2) = f(0)t+ f ′(0)

t2

2
+ o(t2)

Puis

∀t ∈ R∗ φ′(t) =
1

t2
[tf(t)− F(t)]

=
1

t2

ï
tf(0) + f ′(0)t2 − f(0)t− f ′(0)

t2

2
+ o(t2)

ò
=
f ′(0)

2
+ o(1)

Ainsi, d'après le théorème de classe C 1 par prolongement, on a φ ∈ C 1(R,R). Par composition,
on conclut

g ∈ C 1(R2,R)

Exercice 5 (****)

Soit f ∈ C 1(R2,R). On pose

∀x ∈ R g(x) =

∫ x

0

f(x, t) dt

Montrer que g ∈ C 1(R,R) et déterminer g′(x) pour x réel.

Corrigé : Soit x ∈ R∗. Avec le changement de variable t = xu de classe C 1, il vient

g(x) =

∫ 1

0

f(x, xu)x du = x

∫ 1

0

f(x, xu) du

La relation vaut aussi clairement pour x = 0. On note φ(x, u) = f(x, xu) pour (x, u) ∈ R2.
D'après la règle de la chaîne, on a φ ∈ C 1(R2,R) et

∀(x, u) ∈ R2 ∂φ

∂x
(x, u) =

∂f

∂x
(x, xu) + u

∂f

∂y
(x, xu)

Véri�ons les hypothèses du théorème de dérivation sous l'intégrale pour x 7→
∫ 1

0

φ(x, u) du.

• Pour x ∈ R, on a u 7→ φ(x, u) intégrable sur [ 0 ; 1 ] (fonction continue sur un segment).
• D'après ce qui précède, on a pour u ∈ [ 0 ; 1 ], x 7→ φ(x, u) de classe C 1 sur R.

• Pour x ∈ R, on a u 7→ ∂φ

∂x
(x, u) continue sur [ 0 ; 1 ].

• Domination : On s'oriente vers une domination locale puisque rien ne permet d'envisager

une domination globale. Pour (x, u) ∈ [ a ; b ]× [ 0 ; 1 ], la fonction (x, u) 7→ ∂φ

∂x
(x, u) est continue

sur le compact [ a ; b ]× [ 0 ; 1 ] donc borné sur cet ensemble ce qui prouve la domination.
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Ainsi, par théorème, on a Φ : x 7→
∫ 1

0

φ(x, u) du de classe C 1 sur tout segment [ a ; b ] donc sur

R et par dérivation sous l'intégrale

∀x ∈ R Φ′(x) =

∫ 1

0

∂φ

∂x
(x, u) du =

∫ 1

0

ï
∂f

∂x
(x, xu) + u

∂f

∂y
(x, xu)

ò
du

Par suite, on a g ∈ C 1(R,R) avec

∀x ∈ R g′(x) = x

∫ 1

0

∂f

∂x
(x, xu) du+

∫ 1

0

f(x, xu) du+ x

∫ 1

0

u
∂f

∂y
(x, xu) du

Avec le changement de variable t = xu (en distinguant x nul et non nul), on trouve

∀x ∈ R x

∫ 1

0

∂f

∂x
(x, xu) du =

∫ x

0

∂f

∂x
(x, t) dt

En intégrant par parties, on trouve∫ 1

0

f(x, xu) du = [uf(x, xu)]u=1
u=0 −

∫ 1

0

xu
∂f

∂y
(x, xu) du

D'où
∫ 1

0

f(x, xu) du+ x

∫ 1

0

u
∂f

∂y
(x, xu) du = f(x, x)

On conclut

g ∈ C 1(R,R) et ∀x ∈ R g′(x) = f(x, x) +

∫ x

0

∂f

∂x
(x, t) dt

Exercice 6 (****)

Soit n entier non nul et f : Mn(R) → Rn dé�nie par

∀M ∈ Mn(R) f(M) =
(
Tr (M) Tr (M2) . . . Tr (Mn)

)
1. Montrer que f est di�érentiable et déterminer df(M) pour M ∈ Mn(R).
2. Comparer le rang de df(M) et le degré du polynôme minimal πM.

3. Montrer que l'ensemble des matrices de Mn(R) dont le polynôme minimal est de degré n
est une partie ouverte de Mn(R).

Corrigé : 1. Notons φk : M → Tr (Mk) pour k ∈ [[ 1 ; n ]]. L'application φk est polynomiale en
les coe�cients de la matrice d'où φk ∈ C 1(Mn(R),R). Pour (M,H) ∈ Mn(R)2, on a

φk(M + H) = Tr (Mk +Mk−1H+Mk−2HM+ . . .+HMk−1 + o(H))

d'où ∀(M,H) ∈ Mn(R)2 d(φk)(M) · H = kTr (Mk−1H)

Par suite

∀(M,H) ∈ Mn(R)2 df(M) · H =
(
Tr (H) 2Tr (MH) . . . nTr (Mn−1H

)
Remarque : Pour le détail de (M+H)k avec k ∈ [[ 1 ; n ]], étant donné qu'il n'y a pas commutation
a priori, on peut établir par récurrence sur k la relation

(M + H)k =
k∑

j=0

∑
(i0,...,ij)∈Nj+1:

∑j
ℓ=0 iℓ=k−j

Mi0HMi1 . . .HMij

et on en déduit
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(M + H)k = Mk +Mk−1H+Mk−2HM+ . . .+HMk−1 + o(H)

2. On note C = (Ei,j)1⩽i,j⩽n la base canonique de Mn(R). Soit M ∈ Mn(R). Notons ψk : H 7→
(k + 1)Tr (MkH) pour k ∈ [[ 0 ; n− 1 ]]. On a

rg df(M) = rg df(M)(C ) = rg (ψ0(C ), . . . , ψn−1(C ))

= dimVect (ψ0(C ), . . . ψn−1(C )) = dimVect (ψ0, . . . ψn−1)

puisque ψk 7→ ψk(C ) est un isomorphisme. Notons m = deg πM. On a R[M] = Rm−1[M] d'où

Vect (ψ0, . . . , ψn−1) = Vect (ψ0, . . . , ψm−1)

Supposons (ψ0, . . . , ψm−1) liée. Soit (αi)i∈[[ 0 ;m−1 ]] ∈ Rm ∖ {0Rm} tel que
m−1∑
i=0

αiψi = 0. Il s'ensuit

∀H ∈ Mn(R) Tr

ÅÅ
m−1∑
i=0

(i+ 1)αiM
i

ã
H

ã
= 0

En particulier, en choisissant H =

Å
m−1∑
i=0

(i+ 1)αiM
i

ã⊤
, on obtient

m−1∑
i=0

(i + 1)αiM
i = 0 ce qui

contredit deg πM = m. Donc la famille est libre et on conclut

∀M ∈ Mn(R) rg df(M) = deg πM

3. Soit A ∈ Mn(R) telle que deg πA = n. D'après ce qui précède, on a rg df(A) = n. Notant
B1, B2 les bases canoniques de Mn(R) et Rn, il existe une matrice de GLn(R) extraite de
matB1,B2df(A). Notons I × J les plages d'indices de cette extraction et on considère Φ : M →
det (matB1,B2df(M))(i,j)∈I×J. L'ensemble U = Φ−1(R∗) est un ouvert comme image réciproque
d'un ouvert par une application continue avec A ∈ U et tout élément de U est de rang supérieur
ou égal à n et donc égal à n. On conclut

L'ensemble des matrices de Mn(R) dont le polynôme minimal est de degré n est un ouvert.
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