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Feuille d’exercices n°75

Exercice 1 (**%*)

Soit E = R, [X]. Soit f € €'(R? R). On définit F : E — R par

WPEE  F(P)=— /lf(t,P(t))dt

Montrer que F est de classe ¢! et déterminer sa différentielle.

Corrigé : Soit P = Y a;X* € E. Montrons que pour tout j € [0; n], 'application a;
k=0

1 n
/ f <t, Zaktk> dt est de classe €. On fixe j € [0; n] et on pose
0 k=0

W(t.a) € (051 < B glta) = 7 (1, Sautt)
k=0
e Pour a; réel, on a t — g¢(t,a;) continue et intégrale sur le segment [0;1].

e Pour t € [0;1], on a a; — g(t,a;) € €' (R,R) par composition. Par dérivation composée, on
trouve

V(t,a;) € [0;1] xR gg (t,a;) =t 0o f <t, iaktk>
k=0

da;
) 9g : - L
e Pour a; réel, on a t — a—(t, a;j) continue sur [0;1] par théorémes généraux.
a;
.. . e Jg .
e Domination : Soit [a;b] C R. L’application (¢,a;) — a—(t,aj) est continue par compo-
aj
sition et continuité des dérivées partielles de f. Sur le compact [0;1] X [a;b], I'application
0
(t,a;) — a—g(t, a;) est bornée donc dominée.
a;
1
D’apres le théoréme de régularité € sous l'intégrale, Papplication a; — / g(t,a;) dt est de
0
classe €' sur tout segment de R et donc sur R tout entier. On a

%(P) = /Oltjﬁzf(t,P(t)) dt

Il reste & montrer la continuité des dérivées partielles sur E. Soit j € [0; n].

VPEE  Vje[0;n]

e Pour P € E, I'application ¢ — 70, f (¢, P(t)) est continue (par morceaux) sur [0;1].
e Pour t € [0;1], I'application P +— 70, f (¢, P(t)) est continue sur E puisque le morphisme
d’évaluation P — P(t) est continu (linéaire en dimension finie) composé avec y > 705 f(t,y)

continue puisque f est de classe €.

e Domination : Soit K un compact de E. L’application (¢, P) — /0y f (¢, P(t)) est continue car
composée de fonctions continues et est bornée donc dominée sur le compact [0;1] x K (produit

1



de compacts).

F
D’aprés le théoréme de continuité sous l'intégrale, on a P — ——(P) continue sur E pour tout

aj

j €[0;n]. On en déduit le caractére €' de F puis

n n n 1
VH=Y X eE dF(P)-H= Zhj(%F(P) = Zhj/ 10y f (t,P(t)) dt
j j= j 7=0 0

j=0

Par linéarité de I'intégrale, on conclut

Fe%' (BR) avec V(P,H)€E> dF(P)-H= /1H(t)c92f(t,P(t)) dt

Exercice 2 (**%*)

3,3

%y i
On pose V(z,y) € R? flz,y) = (2 +_y2)2 si (z,y) # (0,0)

0 sinon

Etudier la continuité puis le caractére € de f.

Corrigé : La fonction f est de classe € sur R? \ {(0,0)} en tant que fonction rationnelle bien

définie sur ce domaine. Avec I’équivalence
V() R (22— [y])* 20 <= 2t 49> > 222y

il vient

V(z,y) e R2NA(0,0)}  [f(z,y) = f(0,0)] =

2

eyl lxly? lz] oy
< ——F—— <
:U4+y2x4—|—y2 21-4+y2 2
———
<1/2
Il en résulte flxz,y) —— f(0,0)
(z,y)—(0,0)

D’ou la continuité de f.

FIGURE 1 — Graphe de 2z = f(z,y)



f('rvo)_f(ovo)zo s 0

Puis, on a Ve € R*
z—0 xz—0

Et aprés calcul, on compléte avec
5 22y3(3y? — bat)
V(z,y) € R? a—i(af,y) = (@)

0 sinon

si (x,y) # (0,0)

En particulier

On conclut

FIGURE 2 — Graphe de z = %(w,y)

Exercice 3 (***)

On munit E = ., (R) d’une norme vérifiant ||I,|| = 1 et ||ABJ| < ||A||||B|| pour (A, B) € E2.

1
1. Montrer V(A,B) € E? eB —ef = / eB(B — A)e(-9A gy
0
2. Soit R > 0. Montrer
V(X,Y) € Bf(0,R)*  [le® —e¥|| <X -]

3. En déduire que I’exponentielle est différentiable sur E avec
1
V(A,H) € E? dexp(A)-H = / oA e (1-DA ¢
0

Corrigé : 1. Soit (A, B) € E2 On observe

% [etBe (1—t)A} _ etBBe (1-t)A + etB(_A)e(l—t)A — etB(B . A)e(l_t)A

1
Ainsi V(A,B) c E2 eB _ eA _ / etB(B _ A)e(l—t)A dt
0




2. Soit (X,Y) € B;(0,R)? D’aprés I'égalité précédente, on a
eX —eY = /1etX(X —Y)e(1=0Y dq¢
0
Puis, par inégalité triangulaire
JoX el < [ oS- vt at
0

D’apreés le caractére sous-multiplicatif de la norme, on a
vte[0;1]  [le®X = Y)e Y < fle™ X = Y[l 0

Soit M € E. On a ||[MF|| < |[M||* pour tout k entier par récurrence immédiate puis, par conver-

M||* Mk
gence de > | k;'H , on obtient la convergence absolue de Y —- o et par inégalité triangulaire
Mt
le™]l = HZ H < g =eM
=0 k!
Ainsi Vte[0;1] [ (X = Y)e DY < eBX - Y[e DR = B X — Y|
On conclut V(X,Y) € B;(0,R)? leX —eY| <eRX =Y

3. Soit (A, H) € E% Par linéarité de I'intégrale, il vient

1 1 1
eA-&-H _ eA _ / e1tAHe(1—1t)A dt = / et(A+H)He(1_t)A dt — / etAHe(l—t)A dt
0 0 0

= /1 (et(A+H) )He (1=DA q¢
0

Par inégalité triangulaire, il vient
1
HeA+H —eA _/ tAHe (1-t)A dtH / H ( (A+H) _ )He(l—t)AH dt
0
Avec le caractére sous-multiplicatif et 'inégalité établie a la question précédente, on obtient

1 1
o+t o = (e He 0N arl < [ et — ot o 0% de
0

0
< elAIHHI |2 M = o(H)
1
Enfin, lapplication H — / etAHe1=DA dt est linéaire par linéarité du produit a droite et a

0
gauche et de I'intégrale et on conclut

1
L’exponentielle est différentiable sur E et V(A,H) € E? dexp(A)-H = / etAHe (1704 dq¢
0

Variantes : (a) On peut procéder differemment. Pour (A, H) € E?, on a

+oo (A Hk +oo 1
eA+sz( _‘l;! ) Zk| Ak+ZA€HAk 1- e—i—Rk(A H)}

k=0 =0
k
La série Zﬁ converge absolument. Puis, on a avec la norme d’algébre

I

vEeN ZAZHA’“ < IIAH’“ HIH| = G _1)!HHI|




1 k=1
d’on la convergence absolue de > — o [Z ATHAk-1- e} Par linéarité du symbole somme, on obtient

+oo 1 [k=1 +oR,.(A. H k—1

AT _of %™ — [ZAEHA’C = e} = ZM avec Rp(A,H) = ST AHAkR 1
i=ok! =0 k! =0

qui converge absolument. En utilisant & nouveau le caractére de norme d’algébre, on trouve

VEeN  [[Rp(A H)|| < Ri([[A[], [H])

et vkeN  Re(JAlLIHD = (A + [HID® = [IAN* — kAN H]
d’on fw — eIAIFIHI _ g IAI _ |[H el Al = o(H)
k=0 .

Enfin, 'application H — Z [ZAZHA’C 1= e} est linéaire et on obtient

k“

La fonction exponentielle est différentiable sur E et

too k—1
V(A,H) € E*  dexp(A)-H= Z 1 {ZAKHAk—l—E}
. ZIO

(b) Pour les questions 2 et 3, on peut encore faire autrement. On a établi pour (A, B) € E?

1
eB—eA:/ BB —A)elDAdt

1+oo t’fB’f oo (1 —t)fA
d’ou B _ oA / B—A)z%dt
0 k=0 £=0 4

On peut justifier la permutation des symboles sommes et intégrale. On peut également généraliser
les résultats des familles sommables pour des familles a valeurs vectorielles (hors-programme!)
et invoquer le théoréme de Fubini pour obtenir

1
eP_eA Y BB - A)AKW,/tm—t)ﬂdt

(k,0)EN?

D’apres un résultat d’intégration classique, on a

V(k,0) € N? /ltk(l —t)fdt = __ ke
’ 0 C(k+ L+ 1)
1
d’oti eB —eh = ————BFB - A)A?

>
ez (B + €+ 1)!

Avec de la sommation par paquets en posant p = k+/ puis p = k+/£+1, on retrouve les résultats
des questions 2 et 3.

Exercice 4 (***)

Soit f € €' (R,R). On pose

1 [ .
V(z,y) €R?  g(z,y) = 5/36 fydt si(z,y) eR* xR

fO)(y—1) sinon

Montrer que g est de classe €' sur R2.



)
Corrigé : On pose o(t) = t—0
)

avec F(x) = / f(t) dt pour x réel. On a
0

V(z,y) e R*  g(z,y) = yo(zy) — o(x)

Par construction, on a p € €(R,R)N%* (R*, R). La fonction F est de classe € comme primitive
de f fonction de classe €*. D’aprés le théoréme de Taylor-Young, on a

F(t) = F(0) + F/(0)t + F”(O)g +o(t?) = f(0)t + f’(o)g + o(?)
Puis

ViER  g(1) = g [t/(H) — F()

— tlz t£(0) 4+ f(0)t* — f(O)t — f’(O)g +o(t?)| =

Ainsi, d’apres le théoréme de classe € par prolongement, on a ¢ € (R, R). Par composition,
on conclut

g € €' (R* R)

Exercice 5 (****)

Soit f € €' (R* R). On pose

Ve e R g(a:):/oxf(:c,t)dt

Montrer que g € ¢(R,R) et déterminer ¢'(z) pour z réel.

Corrigé : Soit z € R*. Avec le changement de variable t = zu de classe €, il vient

g(z) = /Olf(x,:vu)x du = m/olf(x,:vu) du

La relation vaut aussi clairement pour x = 0. On note p(x,u) = f(z,zu) pour (z,u) € R2
D’aprés la régle de la chaine, on a ¢ € €*(R?,R) et
of 0

v 2 _E" =L 9r
(z,u) €R . (x,u) x(m,xu) +u ” (x,zu)

1
Vérifions les hypothéses du théoréme de dérivation sous l'intégrale pour x > / o(z,u) du.
0

e Pour z € R, on a u — ¢(x,u) intégrable sur [0; 1] (fonction continue sur un segment).
e D’aprés ce qui précéde, on a pour u € [0;1], z +— p(x,u) de classe € sur R.
e Pour z € R, on a u a—go(x,u) continue sur [0;1].

x

e Domination : On s’oriente vers une domination locale puisque rien ne permet d’envisager

2 .
— (&, u) est continue
B (& W)

sur le compact [a;b] x [0;1] donc borné sur cet ensemble ce qui prouve la domination.

une domination globale. Pour (x,u) € [a;b] x [0;1], la fonction (x,u)



1
Ainsi, par théoréme, on a ® : z — [ (z,u) du de classe € sur tout segment [a;b] donc sur

R et par dérivation sous l'intégrale

1 1
VeeR  9'(z) = / g—i(x,u) du = /0 B—f(x7xu) + ug—‘;(x xu)} du

Par suite, on a g € ¢'(R,R) avec

Vr e R g (z —x/a X, xU du—l—/fxxu du—i—x/ 8 (x,zu)

Avec le changement de variable ¢ = zu (en distinguant = nul et non nul), on trouve
1
0
Ve e R x/ —f(x,xu)du:
o Ox

En intégrant par parties, on trouve

/Olf(x,xu) du = [uf (v, zu)] =) — /Olmug—]yc(x,xu) du

D’ou / f(z, zu du+x/ (z,zu) du = f(x, )
On conclut
geFC (R,R) et VeeR  ¢(z)=f(z,z)+ ai:(x t) dt
0

Exercice 6 (****)
Soit n entier non nul et f: .#Z,(R) — R™ définie par
VM € #,(R) SOM) = (Tr (M) Tr(M?) ... Tr(M"))
1. Montrer que f est différentiable et déterminer df(M) pour M € ., (R).

2. Comparer le rang de df(M) et le degré du polynéme minimal my;.

3. Montrer que 'ensemble des matrices de ., (R) dont le polynéme minimal est de degré n
est une partie ouverte de ., (R).

Corrigé : 1. Notons ¢, : M — Tr (M*) pour k € [1; n]. L’application ¢}, est polynomiale en
les coefficients de la matrice d’ou ¢, € €' (4, (R),R). Pour (M, H) € .#,(R)?, on a

oM+ H) = Tr (MF + MF1H + M*=2HM + ... + HM*~! + o(H))

dot VM, H) € 4, (R)?>  d(g)(M) - H = & Tt (MFH)

Par suite

V(M H) € .#,(R)>  df(M)-H= (Tr(H) 2Tr(MH) ... nTr(M"'H)

Remarque : Pour le détail de (M+H)* avec k € [ 1; n], étant donné qu’il n’y a pas commutation
a priori, on peut établir par récurrence sur k la relation

k
(M + H)F = S MioHM? ... HM?

T=0(ig,...,if ) ENIHLT _ ip=k—j

et on en déduit



(M + H)* = MF + MF1H + MF2HM + ... + HMF! + o(H)
2. On note ¢ = (Ey;),, ;., la base canonique de .#,(R). Soit M € .#,(R). Notons v, : H —
(k+1) Tr (M*H) pour k € [0; n—1]. On a
rg df(M) =rg df(M)(€) = rg (¢o(C), ..., ¥n-1(F))
= dim Vect (¢o(%€), ... ¥n-1(%)) = dim Vect (¢y, . .. ¥n_1)
puisque 1, — (%) est un isomorphisme. Notons m = degmy. On a R[M] = R,,,_1[M] d’oi
Vect (o, ..., ¥n_1) = Vect (¢o, . . ., m—1)

m—1

Supposons (¢, . . ., ¥m—1) liée. Soit (a;)icfo;m-1] € R™ N {Orm} tel que > a;1p; = 0. I s’ensuit
i=0
m—1
VH € 4, (R) Tr (( >+ 1)aiMi) H) =0
i=0
m—1 ) T m—1 )
En particulier, en choisissant H = <E (1 + 1)aiMZ> , on obtient > (i + 1)ay;M"* = 0 ce qui
i=0 i=0

contredit deg my = m. Donc la famille est libre et on conclut

VM e %H(R) rg df(M) = deg ™

3. Soit A € #,(R) telle que degma = n. D’aprés ce qui précéde, on a rg df(A) = n. Notant
By, Py les bases canoniques de ,(R) et R", il existe une matrice de GL,(R) extraite de
matz, 2,df(A). Notons I x J les plages d’indices de cette extraction et on considére ® : M —
det (mats, ,df(M)); jcr.y- L'ensemble U = ®~!(R*) est un ouvert comme image réciproque
d’un ouvert par une application continue avec A € U et tout élément de U est de rang supérieur
ou égal & n et donc égal & n. On conclut

L’ensemble des matrices de ., (R) dont le polynéme minimal est de degré n est un ouvert.




