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Feuille d'exercices n°67

Exercice 1 (*)

Déterminer toutes les fonctions f : R → R dérivables telles que

∀(x, y) ∈ R2 f(x+ y) = f(x)f(y)

Corrigé : On a f(0) = f(0)2 d'où f(0) ∈ {0, 1}. Si f(0) = 0, alors f(x) = f(x)f(0) = 0 pour
tout x réel. Supposons f(0) = 1. On �xe x réel et on dérive en y. On trouve

∀(x, y) ∈ R2 f ′(x+ y) = f ′(x)f(y)

Choisissant x = 0, il vient

∀y ∈ R f ′(y) = f ′(0)f(y)

d'où ∀y ∈ R f(y) = e f ′(0)y

Réciproquement, de telles fonctions sont solutions d'où

S = {x 7→ eαx, α ∈ R} ∪ {x 7→ 0}

Exercice 2 (**)

Trouver toutes les fonctions f : R → R deux fois dérivables telles que

∀x ∈ R f ′′(x) + f(−x) = x

On pourra considérer la partie paire et impaire de ces fonctions.

Corrigé : Soit f : R → R solution de

∀x ∈ R f ′′(x) + f(−x) = x (E)

Par analyse/synthèse, on montre que f se décompose de manière unique en la somme f = g+ h

avec g : x 7→ f(x) + f(−x)
2

et h : x 7→ f(x)− f(−x)
2

, respectivement partie paire et impaire de

la fonction f qui sont aussi deux fois dérivables. En substituant x par −x dans l'équation (E)
puis en faisant la somme et la di�érence des deux relations, on trouve

∀x ∈ R g′′(x) + g(x) = 0 et h′′(x)− h(x) = x

Sachant que g est paire et h impaire, il existe α, β réels tels que

∀x ∈ R g(x) = α cos(x) et h(x) = β sh (x)− x

Si f est solution, elle est donc de la forme f : x 7→ α cos(x) + β sh (x) − x avec α, β réels. La
réciproque est immédiate. On conclut

Les solutions sont les fonctions de la forme x 7→ α cos(x) + β sh (x)− x avec α, β réels.
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Exercice 3 (**)

Déterminer toutes les fonctions f : R → R continues telles que

∀x ∈ R f(x) = cos(x)−
∫ x

0

(x− t)f(t) dt

Corrigé : Soit f solution. On a

∀x ∈ R f(x) = cos(x)− x

∫ x

0

f(t) dt+

∫ x

0

tf(t) dt

Il s'ensuit que f est dérivable et par dérivation

∀x ∈ R f ′(x) = − sin(x)−
∫ x

0

f(t) dt− xf(x) + xf(x)

On pose F(x) =

∫ x

0

f(t) dt pour x réel. D'après le théorème fondamental d'analyse, on a F de

classe C 1 avec F′ = f et donc F deux fois dérivable. Ainsi

∀x ∈ R F′′(x) + F(x) = − sin(x)

D'où ∃(α, β) ∈ R2 | ∀x ∈ R F(x) =
x cos(x)− sin(x)

2
+ α sin(x) + β cos(x)

et après dérivation

∃(λ, µ) ∈ R2 | ∀x ∈ R f(x) = −x sin(x)
2

+ λ cos(x) + µ sin(x)

et ∀x ∈ R f ′(x) = −sin(x) + x cos(x)

2
− λ sin(x) + µ cos(x)

D'où

®
f(0) = 1

f ′(0) = 0
=⇒
®
λ = 1

µ = 0

Nécessairement ∀x ∈ R f(x) = cos(x)− x sin(x)

2

Réciproquement, on injecte cette expression de f dans l'équation (E) et le calcul montre que
l'égalité a lieu. Ainsi

L'équation (E) admet pour unique solution x 7→ cos(x)− x sin(x)

2
.

Exercice 4 (**)

Résoudre sur I = ] 0 ; +∞ [ l'équation di�érentielle

x′ +
2

t
x =

1√
x

(E)

Corrigé : Il ne s'agit pas d'une équation linéaire. Si x est solution, elle est nécessairement à
valeurs dans ] 0 ; +∞ [. On a

x′ +
2

t
x =

1√
x

⇐⇒ x′
√
x+

2

t
x

3
2 = 1

On pose u = x
3
2 . Par dérivation, il vient u′ =

3

2
x′
√
x d'où
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(E) ⇐⇒ 2

3
u′ +

2

t
u = 1

équation di�érentielle linéaire avec second membre. Après résolution, on trouve

(E) ⇐⇒ ∃α ∈ R | ∀t ∈ I u(t) =
3

8
t+

α

t3
=

3t4 + 8α

8t3

Si α ⩾ 0, alors u est à valeurs dans ] 0 ; +∞ [ sur I. Si α < 0, la fonction u prend des valeurs dans
] −∞ ; 0 [. On conclut

SE =

®
t ∈ I 7→

Å
3

8
t+

α

t3

ã 2
3

, α ⩾ 0

´
Remarque : Il s'agit d'une d'équation de Bernoulli.

Exercice 5 (**)

Chercher les solutions développables en série entière puis résoudre complètement les équations
di�érentielles linéaires suivantes :

1. (t2+t)x′′+(3t+1)x′+x = 0 sur ] 0 ; +∞ [ 2. tx′′ + 3x′ − 4t3x = 0 sur ] 0 ; +∞ [

Corrigé : 1. On note (H) l'équation di�érentielle homogène. Supposons qu'il existe une solution

de (H) développable en série entière x(t) =
+∞∑
n=0

ant
n pour t ∈ ]−R ;R [ avec R > 0. Par dérivation

d'une série entière, il vient

x(t) =
+∞∑
n=0

ant
n x′(t) =

+∞∑
n=1

nant
n−1 x′′(t) =

+∞∑
n=2

n(n− 1)ant
n−2

On injecte ces expressions dans (H) et on distribue les produits :
+∞∑
n=2

n(n− 1)ant
n +

+∞∑
n=2

n(n− 1)ant
n−1 + 3

+∞∑
n=1

nant
n +

+∞∑
n=1

nant
n−1 +

+∞∑
n=0

ant
n = 0

On procède au changement d'indice pour avoir des sommes en tn qui est majoritaire et on peut
faire démarrer toutes les sommes à n = 0 :

+∞∑
n=0

n(n− 1)ant
n +

+∞∑
n=0

(n+ 1)nan+1t
n +

+∞∑
n=0

3nant
n +

+∞∑
n=0

(n+ 1)an+1t
n +

+∞∑
n=0

ant
n = 0

Par linéarité du symbole somme car convergence, on obtient
+∞∑
n=1

(n+ 1)2 (an + an+1) t
n = 0

Par unicité du développement en série entière, on trouve

∀n ∈ N an+1 = −an
La suite (an)n est géométrique de raison −1 d'où an = (−1)na0 pour n entier et le rayon de
convergence de la série entière usuelle

∑
(−1)ntn est R = 1. Ainsi, l'ensemble des solutions

développables en séries entières de (H) est la droite vectorielle Vect (φ) avec

∀t ∈ ]−1 ; 1 [ φ(t) =
1

1 + t

On se place ensuite sur I = ] 0 ; +∞ [. On note abusivement φ : I → R, t 7→ 1

1 + t
et on véri�e

sans di�culté que φ est solution de (H) sur I. Sur l'intervalle I, l'équation peut se mettre sous
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forme résolue et l'ensemble des solutions est donc un plan vectoriel. Si ψ est solution de (H),
considérant le wronskien W, on a

φψ′ − φ′ψ = W (L)

On sait que le wronskien véri�e l'équation di�érentielleW′ = − 3t+ 1

t(t+ 1)
W. On a la décomposition

en éléments simples

∀t ∈ I
3t+ 1

t(t+ 1)
=

2t+ t+ 1

t(t+ 1)
=

2

t+ 1
+

1

t

d'où ∀t ∈ I W(t) =
α

t(t+ 1)2
avec α ∈ R

On considère désormais l'équation (L) comme une équation di�érentielle linéaire d'ordre 1 avec
second membre. La droite Vect (φ) est l'ensemble des solutions de l'équation homogène associée
et par variation de la constante, avec λ dérivable sur I et ψ = λφ, il vient pour tout t ∈ I

φ2(t)λ′(t) =
α

t(t+ 1)2
avec α ∈ R

d'où ∀t ∈ I λ′(t) =

∫
α

t
dt+ β = α ln(t) + β

avec α, β réels. On conclut

SH =

ß
t ∈ I 7→ α ln(t) + β

1 + t
, (α, β) ∈ R2

™
2. On note (H) l'équation di�érentielle homogène. Supposons qu'il existe une solution de (H)

développable en série entière x(t) =
+∞∑
n=0

ant
n pour t ∈ ]−R ;R [ avec R > 0. Par dérivation d'une

série entière, il vient

x(t) =
+∞∑
n=0

ant
n x′(t) =

+∞∑
n=1

nant
n−1 x′′(t) =

+∞∑
n=2

n(n− 1)ant
n−2

On injecte ces expressions dans (H) :
+∞∑
n=2

n(n− 1)ant
n−1 + 3

+∞∑
n=1

nant
n−1 − 4

+∞∑
n=0

ant
n+3 = 0

Dans la dernière somme, on procède au changement d'indice
+∞∑
n=0

ant
n+3 =

+∞∑
n=4

an−4t
n−1. Par

linéarité du symbole somme car convergence, on obtient

3a1 + 8a2t+ 15a3t
2 +

+∞∑
n=4

[n(n+ 2)an − 4an−4] t
n−1 = 0

Par unicité du développement en série entière, il vient a1 = a2 = a3 = 0 et

∀n ∈ N n(n+ 2)an − 4an−4 = 0 ⇐⇒ an =
4

(n+ 2)n
an−4

Par récurrence immédiate, on trouve a4n+1 = a4n+2 = a4n+3 = 0 pour n entier et si a0 ̸= 0, alors
a4n ̸= 0 pour n entier. Un produit téléscopique donne pour n entier

a4n = a0
n∏

k=1

Å
a4k

a4(k−1)

ã
= a0

n∏
k=1

4

(4k + 2)(4k)
= a0

n∏
k=1

1

(2k + 1)(2k)
=

a0
(2n+ 1)!
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Posons φ(t) =
+∞∑
n=0

t4n

(2n+ 1)!
. Pour r > 0, notant un =

r4n

(2n+ 1)!
, il vient

un+1

un
=

r4

(2n+ 3)(2n+ 2)
−−−→
n→∞

0

D'après le critère de d'Alembert, on en déduit R = +∞. Puis

∀t ∈ R t2φ(t) =
+∞∑
n=0

(t2)2n+1

(2n+ 1)!
= sh (t2)

Ainsi, l'ensemble des solutions développables en séries entières de (H) est la droite vectorielle
Vect (φ) avec

∀t ∈ R φ(t) =


sh (t2)

t2
si t ̸= 0

1 si t = 0

On se place ensuite sur I = ] 0 ; +∞ [. Sur l'intervalle I, l'équation peut se mettre sous forme résolue
et l'ensemble des solutions est donc un plan vectoriel. Si ψ est solution de (H), considérant le
wronskien W, on a

φψ′ − φ′ψ = W (L)

On sait que le wronskien véri�e l'équation di�érentielle W′ = −3

t
W autrement dit

∀t ∈ I W(t) =
α

t3
avec α ∈ R

On considère désormais l'équation (L) comme une équation di�érentielle linéaire d'ordre 1 en
ψ avec second membre. La droite Vect (φ) est l'ensemble des solutions de l'équation homogène
associée et par variation de la constante, avec λ dérivable sur I et ψ = λφ, il vient pour tout
t ∈ I

φ2(t)λ′(t) =
α

t3
avec α ∈ R

d'où ∀t ∈ I λ′(t) =

∫
αt

sh (t2)
dt+ β = −α

2

ch (t2)

sh (t2)
+ β

avec α, β réels. Notant λ = −α
2
, on conclut

SH =

ß
t ∈ I 7→ α

sh (t2)

t2
+ β

ch (t2)

t2
, (α, β) ∈ R2

™
Remarque : La forme de la deuxième dimension ressemble à la première. On aurait pu la
conjecturer, la véri�er et montrer la liberté de la famille des fonctions concernées.

Exercice 6 (**)

On pose ∀t ∈ R f(t) = sin
î
ln
Ä
t+

√
1 + t2

äó
1. Montrer que f est solution sur R de l'équation di�érentielle linéaire d'ordre 2

(1 + t2)x′′ + tx′ + x = 0

2. En déduire que f est développable en série entière en zéro et préciser son développement.
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Corrigé : 1. On a f ∈ C 2(R2,R) par théorèmes généraux. Par dérivation, il vient

∀t ∈ R
dt

dt

î
ln(t+

√
1 + t2)

ó
=

1√
1 + t2

puis ∀t ∈ R f ′(t) =
cos
î
ln(t+

√
1 + t2)

ó
√
1 + t2

f ′′(t) = −
t cos
î
ln(t+

√
1 + t2)

ó
(1 + t2)

√
1 + t2

−
sin
î
ln(1 +

√
1 + t2)

ó
1 + t2

Ainsi (1 + t2)f ′′ + tf ′ + f = 0

2. D'après le résultat de la question précédente, la fonction f est solution du problème de Cauchy®
(1 + t2)x′′ + tx′ + x = 0

(x(0), x′(0)) = (0, 1)

Cherchons une solution développable en série entière. On pose x(t) =
+∞∑
n=0

ant
n pour t ∈ ]−R ;R [

avec R > 0. Par dérivation de séries entières, on obtient

(1 + t2)
+∞∑
n=2

n(n− 1)ant
n−2 + t

+∞∑
n=1

nant
n−1 +

+∞∑
n=0

ant
n = 0

d'où
+∞∑
n=2

n(n− 1)ant
n−2 +

+∞∑
n=2

n(n− 1)ant
n +

+∞∑
n=1

nant
n +

+∞∑
n=0

ant
n = 0

Après changement d'indice et démarrage des sommes à n = 0, on trouve
+∞∑
n=0

(n+ 2)(n+ 1)an+2t
n +

+∞∑
n=0

n(n− 1)ant
n +

+∞∑
n=0

nant
n +

+∞∑
n=0

ant
n = 0

Par linéarité car convergence, il vient
+∞∑
n=0

[(n+ 2)(n+ 1)an+2 + (n2 + 1)an] t
n = 0

Par unicité du développement en série entière, on trouve

∀n ∈ N (n+ 2)(n+ 1)an+2 + (n2 + 1)an = 0

Les conditions initiales donnent a0 = 0 et a1 = 1. Par récurrence immédiate, on a a2n = 0 et
a2n+1 ̸= 0 pour tout n entier. Avec un produit téléscopique, on obtient

∀n ∈ N a2n+1 = a1
n∏

k=1

a2k+1

a2k−1

=
n∏

k=1

−(2k − 1)2 + 1

(2k + 1)(2k)
= (−1)n

n∏
k=1

[(2k − 1)2 + 1]

(2n+ 1)!

Ainsi ∀t ∈ ]−R ;R [ x(t) =
+∞∑
n=0

a2n+1t
2n+1 =

+∞∑
n=0

(−1)n

n∏
k=1

[(2k − 1)2 + 1]

(2n+ 1)!
t2n+1

En�n pour r > 0, on pose un = |a2n+1| r2n+1. On a

∀n ∈ N
un+1

un
=

(2n+ 1)2 + 1

(2n+ 3)(2n+ 2)
r2 ∼

n→+∞

4n2

4n2
r2 −−−→

n→∞
r2
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D'après le critère de d'Alembert, la série converge absolument pour r > 1 et diverge grossièrement
pour r < 1. On en déduit respectivement R ⩽ 1 et R ⩾ 1 d'où R = 1. D'après l'unicité du
théorème de Cauchy linéaire, on conclut

∀t ∈ ]−1 ; 1 [ sin
î
ln
Ä
t+

√
1 + t2

äó
=

+∞∑
n=0

(−1)n

n∏
k=1

[(2k − 1)2 + 1]

(2n+ 1)!
t2n+1

Exercice 7 (*)

Résoudre sur R l'équation di�érentielle linéaire

y′′ − 2y′ + y =
e t

1 + t2
(L)

Corrigé : Soit (L) l'équation avec second membre et (H) son équation homogène associée. On a

SH = Vect (φ, ψ) avec φ : t 7→ e t ψ : t 7→ te t

On procède ensuite par variation de la constante. Soient λ, µ : R → R dérivables telles que
y = λφ+ µψ et véri�ant pour tout t réel deλ

′(t)e t + µ′(t)te t = 0

λ′(t)e t + µ′(t)(1 + t)e t =
e t

1 + t2
⇐⇒

Å
λ′(t)
µ′(t)

ã
=

Å
1 + t −t
−1 1

ã( 0
1

1 + t2

)
Par suite, pour t réel

λ(t) = α− 1

2
ln(1 + t2) et µ(t) = β +Arctan t

avec α, β réels. Ainsi

SL =

ß
t 7→ −1

2
ln(1 + t2)e t + te t Arctan t+ (α + βt)e t, (α, β) ∈ R2

™
Exercice 8 (*)

Résoudre sur R l'équation di�érentielle linéaire

(t2 + 1)2x′′ + 2t(t2 + 1)x′ + x = eArctan (t) (L)

avec le changement de variable t = tan(u).

Corrigé : On pose y(u) = x(tan(u)) avec u ∈
]
−π
2
;
π

2

[
. Par dérivation, on trouve

y′(u) = (1 + tan(u)2)x′(tan(u))

et y′′(u) = (1 + tan(u)2)2x′′(tan(u)) + 2 tan(u)(1 + tan(u)2)x′(tan(u))

d'où x ∈ SL ⇐⇒ y′′ + y = eu ⇐⇒ y(u) = α cos(u) + β sin(u) +
eu

2

En observant

∀t ∈ R
sin (Arctan (t))

cos (Arctan (t))
= tan (Arctan (t)) = t et sin (Arctan (t))2 + cos (Arctan (t))2 = 1

et comme cos (Arctan (t)) ⩾ 0 puisque Arctan (t) ∈
]
−π
2
;
π

2

[
pour t réel, on obtient
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∀t ∈ R cos (Arctan (t)) =
1√

1 + t2
sin (Arctan (t)) =

t√
1 + t2

Ainsi SL =

®
t 7→ α√

1 + t2
+

βt√
1 + t2

+
eArctan (t)

2

´
Exercice 9 (*)

Résoudre sur ] 0 ; π [ l'équation di�érentielle linéaire

y′′ + y =
1

sin(t)
(L)

Corrigé : Sans di�culté, la famille (sin, cos) est un système fondamental de solutions. On
procède par variation de la constante. Soient φ, ψ : ] 0 ; π [ → R dérivables telles que y =
λ sin+µ cos et véri�ant pour tout t ∈ ] 0 ; π [λ

′(t) sin(t) + µ′(t) cos(t) = 0

λ′(t) cos(t)− µ′(t) sin(t) =
1

sin(t)

⇐⇒ R(−t)
Å
µ′(t)
λ′(t)

ã
=

Ñ
0
1

sin(t)

é
⇐⇒

Å
µ′(t)
λ′(t)

ã
= R(t)

Ñ
0
1

sin(t)

é
⇐⇒

µ
′(t) = −1

λ′(t) =
cos(t)

sin(t)

Ainsi ∀t ∈ ] 0 ; π [ λ(t) = α + ln (|sin(t)|) et µ(t) = β − t

L'ensemble des solutions est

{t ∈ ] 0 ; π [ 7→ α sin(t) + β cos(t) + sin(t) ln (sin(t))− t cos(t), (α, β) ∈ R2}

Exercice 10 (**)

Soit f : R → R deux fois dérivable telle que f ′′ + f ⩾ 0. Montrer

∀x ∈ R f(x) + f(x+ π) ⩾ 0

Corrigé : Considérons l'équation y′′ + y = g. On trouve après variation de la constante

∀t ∈ R y(t) = α sin(t) + β cos(t) +

∫ t

0

g(s) [sin(t) cos(s)− cos(t) sin(s)] ds

= α sin(t) + β cos(t) +

∫ t

0

g(s) sin(t− s) ds

avec α, β réels. Puis

∀t ∈ R y(t) + y(t+ π) =

∫ t

0

g(s) sin(t− s) ds+

∫ t+π

0

g(s) sin(t− s+ π) ds

=

∫ t

0

g(s) sin(t− s) ds−
∫ t+π

0

g(s) sin(t− s) ds

y(t) + y(t+ π) =

∫ t+π

t

g(s) sin(s− t)︸ ︷︷ ︸
⩾0

ds

Ainsi ∀x ∈ R f(x) + f(x+ π) ⩾ 0
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Exercice 11 (**)

Soit y solution de y′′+ a(t)y = 0 avec a ∈ C 0(R, ] 0 ; +∞ [). Montrer que y s'annule au moins une
fois.

Corrigé : Supposons que y ne s'annule pas. Comme y est continue, elle est de signe constant
d'après le théorème des valeurs intermédiaires. Supposons par exemple y > 0. On aurait alors
y′′ < 0 d'où y concave. Le graphe de y est situé sous ses tangentes. Or, comme y n'est pas
constante, son graphe admet des tangentes non horizontales et il s'ensuit que que y prend né-
cessairement des valeurs négatives ce qui est impossible par hypothèse. En e�et, considérons α
réel tel que y′(α) ̸= 0, par exemple y′(α) > 0. On a

∀t ∈ R y(t) ⩽ y′(α)(t− α) + y(α)

et faisant tendre t → −∞, on constate que y prend des valeurs négatives. On procède de même
si y′(α) < 0. On conclut

Une solution y s'annule au moins une fois.

Exercice 12 (**)

On considère l'équation di�érentielle

y′′ + q(t)y = 0 (H)

où q est une fonction continue intégrable sur R+.

1. Soit y une solution bornée de (H). Étudier le comportement de y′ en +∞.
2. Montrer que (H) admet des solutions non bornées.

Corrigé : 1. On a y′′ = O(q) d'où y′′ intégrable sur R+. Comme y′(t) = y′(0) +

∫ t

0

y′′(s) ds

pour t ⩾ 0, on en déduit que y′(t) admet une limite �nie ℓ pour t → +∞. Supposons ℓ ̸= 0 par
exemple ℓ > 0. On dispose de A ⩾ 0 tel que

∀t ⩾ A y′(t) ⩾
ℓ

2

Par suite ∀t ⩾ A y(t) = y(A) +

∫ t

A

y′(s) ds ⩾ y(A) +
ℓ

2
(t− A) −−−−→

t→+∞
+∞

ce qui contredit le caractère borné de y. Si ℓ < 0, on se ramène à la con�guration précédente en
considérant −y. On a donc établi

Si y est une solution bornée de (H), alors y′(t) −−−−→
t→+∞

0.

2. Soit (u, v) une base de solutions bornées de (H) sur R+ et notons W =

∣∣∣∣u v
u′ v′

∣∣∣∣ le wronskien
de ces solutions. Le wronskien est solution de l'équation di�érentielle linéaire d'ordre 1

W′ = 0×W = 0

Par suite, le wronskien est constant sur R+. Or, d'après le résultat de la première question, les
fonctions u′ et v′ sont de limite nulle en +∞ d'où

∀t ⩾ 0 W(t) = u(t)v′(t)− u′(t)v(t) = O(1)v′(t) +O(1)u′(t) −−−−→
t→+∞

0

Le wronskien étant constant, cela signi�erait qu'il est identiquement nul ce qui est absurde
puisque le wronskien d'un système fondamental de solutions ne s'annule pas. Ainsi

L'équation (H) admet des solutions non bornées.
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Exercice 13 (**)

Soit p ∈ C 0(R,R) et x solution non nulle de l'équation di�érentielle

x′′ − p(t)x = 0

On note I = {t ∈ [ 0 ; 1 ] | x(t) = 0}. Montrer que I est �ni.

Corrigé : Supposons que I soit in�ni. Il existe donc une suite (αn)n de réels deux à deux
distincts à valeurs dans I et donc dans [ 0 ; 1 ]. D'après le théorème de Bolzano-Weierstrass, il
existe une extractrice φ telle

αφ(n) −−−→
n→∞

α ∈ I

Quitte à extraire de nouveau, on peut supposer αφ(n) ̸= α pour tout n entier. Par continuité de
x, on a x(α) = 0 puis, par dérivabilité de x en α

x(αφ(n))− x(α)

αφ(n) − α
−−−→
n→∞

x′(α)

Or, on sait ∀n ∈ N
x(αφ(n))− x(α)

αφ(n) − α
= 0

Ainsi, la solution x véri�e le problème de Cauchy®
x′′ − p(t)x = 0

x(α) = x′(α) = 0

Or, la fonction nulle est solution et d'après l'unicité du théorème de Cauchy linéaire, on en déduit
la nullité de x ce qui est faux. On conclut

L'ensemble I est �ni.
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