ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°67

Exercice 1 (*)
Déterminer toutes les fonctions f : R — R dérivables telles que

V(z,y) € R fle4+y) = f(x)f(y)

Corrigé : On a f(0) = f(0)*> d’ou f(0) € {0,1}. Si f(0) = 0, alors f(z) = f(z)f(0) = 0 pour
tout z réel. Supposons f(0) = 1. On fixe x réel et on dérive en y. On trouve

V(z,y) eR*  flz+y) = f(z)f(y)

Choisissant x = 0, il vient

VyeR  fi(y) = f(0)f(y)
d’on Yy € R fly) = e f'(0)y
Réciproquement, de telles fonctions sont solutions d’ot

S={r—e* aecR}U{z— 0}

Exercice 2 (**)
Trouver toutes les fonctions f : R — R deux fois dérivables telles que
Ve e R (@) + f(—2) ==

On pourra considérer la partie paire et impaire de ces fonctions.

Corrigé : Soit f : R — R solution de

VeeR  f"(x)+ f(—z) ==z (E)

Par analyse/synthése, on montre que f se décompose de maniére unique en la somme f =g+ h
+ J(— — J(= . . . . .

avec g : x M et h:xw— M, respectivement partie paire et impaire de

la fonction f qui sont aussi deux fois dérivables. En substituant = par —z dans I’équation (E)
puis en faisant la somme et la différence des deux relations, on trouve

VeeR  ¢"(x)+g(x)=0 et Rh'(z)—h(zx)==x
Sachant que g est paire et h impaire, il existe «, [ réels tels que
VeeR  g(x)=acos(x) et h(x)=pFsh(z)—=z

Si f est solution, elle est donc de la forme f : x — «acos(x) + fsh(x) — x avec «, [ réels. La
réciproque est immédiate. On conclut

Les solutions sont les fonctions de la forme x +— acos(x) 4+ Ssh (x) — x avec «, [ réels.




Exercice 3 (**)

Déterminer toutes les fonctions f : R — R continues telles que

Ve e R f(z) = cos(x) — /Ox(x —t)f(t)dt

Corrigé : Soit f solution. On a
Ve R f(:z;):cos(x)—:t/ f(t)dt—i—/ tf(t)dt
0 0
Il s’ensuit que f est dérivable et par dérivation

Ve eR f’(:v):—sin(m)—/Oggf(t)dt—xf(m)—l—a:f(x)

T

On pose F(z) = / f(t) dt pour x réel. D’aprés le théoréme fondamental d’analyse, on a F de

0
classe €' avec /' = f et donc F deux fois dérivable. Ainsi

VeeR  F'(z)+F(z) = —sin(z)

_ xcos(x) — sin(z)

D’ou J(o,B8) €R* | VzeR F(x) = 5 + asin(z) + 5 cos(x)
et apres dérivation
A\ p) eR? | VzeR flz) = _x&n;l(x) + Acos(z) + psin(x)
et VeeR  f'(z)= _sin(z) +2x cos(x) _ Asin(z) 4+ pcos(z)
D’ou /(0 =1 — A=l
f'(0)=0 p=0

. : zsin(x)

Nécessairement, Ve e R f(z) = cos(z) — —

Réciproquement, on injecte cette expression de f dans I’équation (E) et le calcul montre que
Iégalité a lieu. Ainsi

L’équation (E) admet pour unique solution x — cos(x) — 3381;1(95).
Exercice 4 (**)
Résoudre sur I =]0;+00 [ 'équation différentielle
2 1
¥+ -r=— (E)

t NI
Corrigé : Il ne s’agit pas d’une équation linéaire. Si x est solution, elle est nécessairement &
valeurs dans |0;+00[. On a
2 1 2
x’—i—;:v:— <~ x’\/i—i-gx%:l

NZ

3 e e 3 .
On pose u = x2. Par dérivation, il vient v’ = 53:’\/5 d’oul

2



2 2

équation différentielle linéaire avec second membre. Aprés résolution, on trouve
3 a 3tt48a
E) < daeR Vtel wt) = St — =
(E) | (t) 8 3 8t3

Si v > 0, alors u est & valeurs dans | 0; +o00 [ sur 1. Si o < 0, la fonction u prend des valeurs dans

| -00;0[. On conclut
3 a
Sg = {tGI'—) <§t+t_3> ,(120}

Remarque : Il s’agit d’une d’équation de Bernoulli.

Wl

Exercice 5 (**)

Chercher les solutions développables en série entiére puis résoudre complétement les équations
différentielles linéaires suivantes :

1. (2 +t)x"+ (3t+1)2'+x = 0sur ] 0;+00 2. tz" + 32’ —4t3r =0 sur ] 0; +00 |

Corrigé : 1. On note (H) I’équation différentielle homogéne. Supposons qu’il existe une solution

+0o0o
de (H) développable en série entiére z(t) = > a,t" pour t € | =R ;R [avec R > 0. Par dérivation

n=0
d’une série entiére, il vient
+00 +00 +00
z(t) = D ant" 2'(t) = S na,t"t 2"(t) = Yon(n — 1)a,t" 2
n=0 n=1 n=2
On injecte ces expressions dans (H) et on distribue les produits :
+00 +00 +00 +00 +00
Stn(n = 1Dat™ + d.nn — 1)at™t + 3> nat™ + > nat" 1 + > a, " =0
n=2 n=2 n=1 n=1 n=0

On procéde au changement d’indice pour avoir des sommes en " qui est majoritaire et on peut
faire démarrer toutes les sommes a n =0 :

+00 +oo +0o0 +o0o +0o0o
dYon(n — Dagt” 4+ > (n+ Dnapt" + > 3na,t"” + > (n+ Dapt" + > at" =0
n=0 n=0 n=0 n=0 n=0

Par linéarité du symbole somme car convergence, on obtient

+00

> (n+1)%(an + ana)t" =0

n=1
Par unicité du développement en série entiére, on trouve
Vn € N Apt1 = —Gy

La suite (a,), est géométrique de raison —1 d’ou a, = (—1)"ag pour n entier et le rayon de
convergence de la série entiére usuelle Y (—1)"t" est R = 1. Ainsi, I’ensemble des solutions
développables en séries entiéres de (H) est la droite vectorielle Vect () avec

1
vie]-1;1 )= —
-G ) =1
On se place ensuite sur I = ]0;+00[. On note abusivement ¢ : I — Rt et on vérifie

sans difficulté que @ est solution de (H) sur I. Sur Uintervalle I, I’équation peut se mettre sous



forme résolue et 1’ensemble des solutions est donc un plan vectoriel. Si ¥ est solution de (H),
considérant le wronskien W, on a

ey — 'h =W (L)

3t+1
On sait que le wronskien vérifie ’équation différentielle W' = —ﬁw. On a la décomposition
en éléments simples
Jt+1  2t+it+1 2 1

Vtel = - -
tt+1) tt+1) t+1+t

a
d’ou vVt el W({t) = ———5 avec a€R
(®) t(t+1)2
On considére désormais 1'équation (L) comme une équation différentielle linéaire d’ordre 1 avec
second membre. La droite Vect (¢) est 'ensemble des solutions de ’équation homogéne associée

et par variation de la constante, avec A dérivable sur I et ¢ = Ay, il vient pour tout ¢t € 1

«
(p2<t))\,(t> = m avec o €R
d’ou Vtel )\’(t):/%dt+ﬁ:aln(t)+5
avec a, [ réels. On conclut
aln(t) + }
= [ —= R?
SH {te = 1+¢ ) <a76>€

2. On note (H) 'équation différentielle homogéne. Supposons qu’il existe une solution de (H)

+00
développable en série entiére z(t) = > a,t" pour t € | —R;R [ avec R > 0. Par dérivation d’une

n=0
série entiére, il vient
+00 +0o0 +00
z(t) = D apt" ' (t) = Y na,t" ! 2'(t) = Y n(n — 1)a,t"?
n=0 n=1 n=2
On injecte ces expressions dans (H) :
+00 +oo +0o0
Stn(n — 1Dat™ P+ 33 na "t — 4> a,t"3 =0
n=2 n=1 n=0
+oo +00
Dans la derniére somme, on procéde au changement d’indice Y a,t"™ = > a, 4" '. Par
n=0 n=4

linéarit¢ du symbole somme car convergence, on obtient
+00
3a; + 8agt + 15a3t> + > [n(n + 2)a, — 4an 4] t" 1 =0
n=4
Par unicité du développement en série entiére, il vient a; = ay = a3 = 0 et
4
—a
(n+2)n
Par récurrence immédiate, on trouve dy, 1 = G4ni2 = a4n3 = 0 pour n entier et si ag # 0, alors
a4, # 0 pour n entier. Un produit téléscopique donne pour n entier

Vn e N n(n+2)a, —4a,—4 =0 < a, = A

1 Qo

1 (2E+1)(2k)  (2n+1)!

=

n Ak ) 4
Ay = @ =a ——=ua
! ’ kl;ll <a4(k—1) ’ kl;ll (4k + 2)(4k) "k



400 t4n 4n

Posons ¢(t) = > . Pour r > 0, notant u,, = , il vient

a=o(2n + 1)! (2n+1)!
Un+41 _ T4 0
Up, (2n 4+ 3)(2n + 2) n—oo
D’aprés le critére de d’Alembert, on en déduit R = +o00. Puis
2 oo ()t 2
vVieR t2o(t) = >, = sh (t*)

Ainsi, Pensemble des solutions développables en séries entiéres de (H) est la droite vectorielle
Vect () avec

sh(t?) .

WeR o) =d g SF0

1 sit=0

On se place ensuite sur I =] 0; +00 [. Sur I'intervalle I, I’équation peut se mettre sous forme résolue
et I'ensemble des solutions est donc un plan vectoriel. Si ¢ est solution de (H), considérant le
wronskien W, on a

ey — ' =W (L)

3
On sait que le wronskien vérifie ’équation différentielle W' = —;W autrement dit
!
Viel W()=— avec a€lR
t3

On considére désormais 1’équation (L) comme une équation différentielle linéaire d’ordre 1 en
Y avec second membre. La droite Vect (¢) est ’ensemble des solutions de I’équation homogéne
associée et par variation de la constante, avec \ dérivable sur I et ¢ = Ay, il vient pour tout
tel

PN (t) = 7% avec «a €R

at « ch (%)

d’ot Vtel N(t) = dt =——
ou € ®) /;ha% =g me
avec «, (3 réels. Notant \ = —%, on conclut
sh (¢? ch (¢
SH:{tGIHa t(2)+ﬁ tg),(aﬁ)eRQ}

Remarque : La forme de la deuxiéme dimension ressemble & la premiére. On aurait pu la
conjecturer, la vérifier et montrer la liberté de la famille des fonctions concernées.

Exercice 6 (**)

On pose VteR f(t) =sin [ln (t +v1+ tz)}
1. Montrer que f est solution sur R de I’équation différentielle linéaire d’ordre 2
(1+t)z" +ta' +2 =0

2. En déduire que f est développable en série entiére en zéro et préciser son développement.



Corrigé : 1. On a f € €*(R?* R) par théorémes généraux. Par dérivation, il vient

vt e R % In(t +vVI+)] =

1
N
cos [ln(t +v1+ tQ)}

puis VieR f'(t) = —
. t cos [ln(t +V1+ tQ)} sin [ln(l + m)}
f(t)__ (1—|—t2) /1 + ¢2 - 112
Ainsi (1+t2)f”+tf/—|—f:0

2. D’aprés le résultat de la question précédente, la fonction f est solution du probléme de Cauchy
{(1 + )"+t + =0

((0),2'(0)) = (0, 1)

+00
Cherchons une solution développable en série entiére. On pose z(t) = > a,t" pour t € | —R;R |

n=0
avec R > 0. Par dérivation de séries entiéres, on obtient
+00 +00 +00
1+t > nn—1)a,t" 2 +t> na,t" '+ > a,t" =0
n=2 n=1 n=0
+00 +00 +00 +00
d’oun Son(n — 1Dat™ 2+ S-n(n — Dat™ + > na,t™ + > a,t" =0
n=2 n=2 n=1 n=0

Aprés changement d’indice et démarrage des sommes a4 n = 0, on trouve

+00 too oo =
ST(n+2)(n+ Dayot™ + don(n — 1)at" + > nat™ + > a,t" =0
n=0 n=0 n=0 n=0

Par linéarité car convergence, il vient

+Zoo [(n+2)(n + 1anys + (n® + 1)a,]t" =0

n=0

Par unicité du développement en série entiére, on trouve
VneN  (n+2)(n+ Dapra+ (n*+1)a, =0

Les conditions initiales donnent ag = 0 et a; = 1. Par récurrence immeédiate, on a as, = 0 et
aont1 7 0 pour tout n entier. Avec un produit téléscopique, on obtient

n

no(2k—1)241 IT[(2k —1)> +1]

L (2k+1)(2k) (1= (2n +1)!

n

A2k+1
Vn € N Aon+1 = Q1 H =
k=1 A2k—1 k

T 12k — 1)2 + 1]

+00o +00
Ainsi Vvt e]-R:R z(t) = S agp 2t = S (—1)n A= g2n+1
SRR o) = S = 5 -y
Enfin pour 7 > 0, on pose u, = |az, 11| "™ On a
Vn € N Unpr (204141 ~ 4_n2r2—>7‘2

Up (2n + 3)(2n + Z)T n—+oo 4n?  n—oo



D’aprés le critére de d’Alembert, la série converge absolument pour r > 1 et diverge grossiérement,
pour » < 1. On en déduit respectivement R < 1 et R > 1 d’out R = 1. D’aprés I'unicité du
théoréme de Cauchy linéaire, on conclut

o IlIek-12+1
Vte]-1;1] sin [ln (t—i—m)} =3 (1)t 2n+l

Exercice 7 (*)

Résoudre sur R I’équation différentielle linéaire

t
— L
1+4¢2 (L)

Corrigé : Soit (L) I'équation avec second membre et (H) son équation homogéne associée. On a

y' =2y +y=

Sy = Vect (p,) avec p:t—el Pt tel

On procéde ensuite par variation de la constante. Soient A\, : R — R dérivables telles que
Yy = Ap + up et vérifiant pour tout ¢ réel de

N(t)e + p/(t)tet =0

t N\ (14t —t 0
N(t)e! + /(1) (1 + t)e! = 1it2 = <u’(t)> a < -1 1> <1+1t2>

Par suite, pour t réel
1
At) =a— 3 In(1+¢*) et p(t) =L+ Arctan ¢

avec «, [ réels. Ainsi

1
SL = {t = =3 In(1 + t?)e! + te’ Arctan t + (a + St)el, (o, B) € RQ}

Exercice 8 (*)

Résoudre sur R I’équation différentielle linéaire
(2 +1)%2" + 2t(t? + 1)2’ + oz = eAretan(®) (L)
avec le changement de variable t = tan(u).

Corrigé : On pose y(u) = x(tan(u)) avec u € } —g ; g [ Par dérivation, on trouve

/() = (1 + tan(u)?)o’(tan(u))

et Y’ (u) = (1 + tan(u)?)*z” (tan(u)) + 2 tan(u)(1 + tan(u)?)2’(tan(u))

d’ou reS, <= yY' +y=e" < y(u) = acos(u) + Bsin(u) + %

En observant

VteR z:; Eiﬁiijxi ((g)) — tan (Arctan (t)) =t et sin (Arctan (t))” + cos (Arctan (t))* = 1

et comme cos (Arctan (¢)) > 0 puisque Arctan (t) € ] —g ; g [ pour t réel, on obtient



1 t

Vte R cos (Arctan (t)) = sin (Arctan (t)) =
(rean®) = g st = Fmm
o 5t eArctan(t)
Ainsi Sp, = qt— + +
- { Vit Vit 2
Exercice 9 (*)
Résoudre sur | 0; 7 [ I'équation différentielle linéaire
1
/"
= L
YT S )

Corrigé : Sans difficulté, la famille (sin,cos) est un systéme fondamental de solutions. On
procéde par variation de la constante. Soient ,v : |0;7[ — R dérivables telles que y =
Asin 4y cos et vérifiant pour tout ¢ € |07 |

N (t)sin(t) + 1/ (t) cos(t) =0 R(_D) (M’(t) (1)
/ / : — - / =
N (t) cos(t) — p/(t) sin(t) = (D) N (t) sin ()
W@y _ (1) ' (t) = C—Ols
= G- gig) = -2
Ainsi Vte|0;m]| At) =a+1In(sin(t)]) et wult)=p0-t

L’ensemble des solutions est

{t €]0;7 [+~ asin(t) + Bcos(t) + sin(t) In (sin(t)) — t cos(t), (o, B) € R?*}

Exercice 10 (**)
Soit f : R — R deux fois dérivable telle que  f” + f > 0. Montrer
VeeR  f(z)+ flz+m) >0

Corrigé : Considérons I'équation y” + y = g. On trouve aprés variation de la constante

Vte R y(t) = asin(t) + S cos(t) + /0 g(s) [sin(t) cos(s) — cos(t) sin(s)] ds

= asin(t) + B cos(t) + /0 g(s)sin(t — s) ds

avec «, 3 réels. Puis
t t+m
VieR  y(t)+yt+mn) = / g(s)sin(t — s) ds + / g(s)sin(t — s+ m) ds
Ot Ot+7r
= / g(s)sin(t — s) ds — / g(s)sin(t — s) ds
0 0

o
y(t) +yt+m) = /t g(s)sin(s —t) ds

Ainsi Ve eR fle)+ flz+m) >0




Exercice 11 (**)

Soit y solution de y” +a(t)y = 0 avec a € €°(R,]0; +00[). Montrer que y s’annule au moins une
fois.

Corrigé : Supposons que y ne s’annule pas. Comme y est continue, elle est de signe constant
d’aprés le théoréme des valeurs intermédiaires. Supposons par exemple y > 0. On aurait alors
y” < 0 d’ou y concave. Le graphe de y est situé sous ses tangentes. Or, comme y n’est pas
constante, son graphe admet des tangentes non horizontales et il s’ensuit que que y prend né-
cessairement des valeurs négatives ce qui est impossible par hypothése. En effet, considérons «a
réel tel que ¢/ («) # 0, par exemple y'(a) > 0. On a

VieR  yt) <y(a)t—a)+y(o)
et faisant tendre ¢t — -00, on constate que y prend des valeurs négatives. On procéde de méme
si y'(a) < 0. On conclut

’Une solution y s’annule au moins une fois.‘

Exercice 12 (**)

On considére ’équation différentielle
Y +q(t)y =0 (H)
ol q est une fonction continue intégrable sur R, .

1. Soit y une solution bornée de (H). Etudier le comportement de ' en +oo.

2. Montrer que (H) admet des solutions non bornées.
t

Corrigé : 1. On a " = O(q) d’ou y” intégrable sur R,. Comme ¢/(t) = ¢'(0) + / y"(s) ds

0
pour t > 0, on en déduit que y/'(t) admet une limite finie ¢ pour ¢ — +oco. Supposons ¢ # 0 par
exemple ¢ > 0. On dispose de A > 0 tel que

Vi A ) >

N

t

Par suite Vi A yt)=y(A)+ / y'(s)ds = y(A) + g(t —A) —— 1@

A 2 t—+o00

ce qui contredit le caractére borné de y. Si £ < 0, on se raméne a la configuration précédente en
considérant —y. On a donc établi

Si y est une solution bornée de (H), alors /() = 0.
—+00

u v
/

2. Soit (u,v) une base de solutions bornées de (H) sur R, et notons W = ‘u’ le wronskien

de ces solutions. Le wronskien est solution de ’équation différentielle linéaire d’ordre 1
W=0xW=0

Par suite, le wronskien est constant sur R,. Or, d’apres le résultat de la premiére question, les
fonctions u' et v' sont de limite nulle en +oo d’ou

VEZ0 W) =u(®(t) — w(tu(t) = OV (t) + O (1) —— 0

Le wronskien étant constant, cela signifierait qu’il est identiquement nul ce qui est absurde
puisque le wronskien d’un systéme fondamental de solutions ne s’annule pas. Ainsi

[’équation (H) admet des solutions non bornées.




Exercice 13 (**)

Soit p € €°(R,R) et z solution non nulle de 'équation différentielle
" —p(t)xr =0
Onnote Z = {t € [0;1] | z(t) = 0}. Montrer que Z est fini.

Corrigé : Supposons que Z soit infini. Il existe donc une suite (o), de réels deux a deux
distincts a valeurs dans Z et donc dans [0;1]. D’aprés le théoréme de Bolzano-Weierstrass, il
existe une extractrice ¢ telle

Qp(n) — & el

n—oo

Quitte & extraire de nouveau, on peut supposer au,) 7 & pour tout n entier. Par continuité de
z, on a x(a) = 0 puis, par dérivabilité de x en «

r(0pm)) — (o) (a)
Qpn) =@ m7e

(@) — z(a)

Or, on sait Vn e N =0

p(n) — &

Ainsi, la solution x vérifie le probléme de Cauchy

" —p(t)xr =0

z(a) =2(a) =0
Or, la fonction nulle est solution et d’aprés I'unicité du théoréme de Cauchy linéaire, on en déduit
la nullité de x ce qui est faux. On conclut

| L’ensemble Z est fini. |

10



