ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°68

Exercice 1 (**)

Soit f : R — C de classe €' et un complexe a avec Re (o) > 0 tel que
f'@) +af(z) ——0
T—+00

Montrer flx) ——0
T—+00

Corrigé : Par variation de la constante, on a pour ¢, réel

VieR  f(t)=e™™ [eatof(to) + /teasg(s) ds}

to

avec g = f'+ af. Pour € > 0, on peut trouver tq réel tel que
Vs >ty lg(s)] < e
Il s’ensuit

vt >ty ()] < [ef(ty)] e e 4 e Re )

Ainsi f(t) ——0

Variante : On choisit to = 0. On a

t +00
Vit >0 / e~ t=3)g(s) ds = / e gt —u)ljp;(u) du
0 0

et on conclut par convergence dominée.

Exercice 2 (**)

Soit f :]0;+00[ — R dérivable telles que

Vi>0  fl(t)=f (—) (E)

Montrer que f est solution d'une équation différentielle linéaire d’ordre 2, utiliser le changement
de variables ¢t = e* puis déterminer ’ensemble des solutions de (E).

Corrigé : Si f est solution, alors f’ est dérivable comme composée de telles fonctions et par
dérivation on trouve

VS0 () = —t% (%)

En substituant ¢ par 1/t pour ¢t > 0 dans I’équation (E), on trouve que f est solution sur | 0; +oo |
de

22" +x =0
Avec le changement de variables ¢t = e“ pour u réel, posant y(u) = xz(e*), on a par dérivation

VueR o (u) =e"2'(e%) y'(u) = e?"z"(e™) + e"a’(e)



d’ou 2" +r=0<= ¢y —y+y=0

1
L’équation caractéristique 72 —r + 1 = 0 admet pour solutions les complexes conjugués 3 *i

| %

et par conséquent
u 3 3
Yu € R y(u) =ez ()\ cos (%) + psin (%)) avec A\, u réels

On remplace u par Int puis on injecte la forme obtenue dans (E) et il vient A = /3. On conclut

V3Int 77) col
- = avec « rée
2 6

vt > 0 flt) =« tcos(

Exercice 3 (***)

Soit ¢ : [0;+00[ — ]0;+00 [ de classe € telle que ¢'(z) > 0 pour tout x > 0. Montrer que toute
solution de 3" + ¢(x)y = 0 est bornée sur R,.

y/2

Corrigé : On pose z = y? + “—. La fonction z est dérivable sur R, avec
q
2y/y//q _ y/2q/ B 2y’(y” + qy) _ ylzq/ B y/2q/
¢ ¢ ¢
Ainsi, la fonction z est positive, décroissante sur R, donc bornée et il en résulte que y aussi.

<0

Z/ — 2yy/ +

Ainsi Toute solution de y” + ¢(x)y = 0 est bornée.

Remarque : Comment penser a introduire une telle fonction auxiliaire? Considérons le cas
simple d’un oscillateur harmonique y” + w?y = 0 avec w > 0. On a

VeeR  y(x)=Acos(wz+¢) avec (A, )€ R?

Ainsi VeeR  y?(z)+

= A? [cos?(wz + ¢) + sin®(wz 4 )] = A?

2
L’amplitude de la fonction est donc déterminée par y> + y_2 On adapte alors cette idée au cas
w

général.

Variante : En multipliant I’équation par 2y/, il vient 2y'y” = —2qyy’ et aprés intégration

V0 y() - y2(0) = - / bt (1) dt

En intégrant par parties, on trouve pour x > 0

d’ou

4@y (x) = Ay (@) + / C (R0 dt < At / '

0

q(t)
q(t)

Par application du lemme de Gronwall appliqué avec x — ¢(x)y?(x), on obtient

Ve> 0 q(e)y’(z) < Aexp (/O%t)) dt) B A%

q()y*(t)dt  avec A =q(0)y*(0)+y"(0)



A y*(0)
d’out Vo >0 2(2) < — = 2(0) +

On en déduit que y? est bornée et donc y également. Le majorant obtenu est exactement la
valeur de la fonction auxiliaire de la méthode initiale évaluée en 0.

Exercice 4 (***)
Soient p, ¢ dans €°(I,R) avec I intervalle non vide de R et
y' +pt)y +aq(t)y =0 (H)
1. Montrer qu’une solution non nulle de (H) admet un nombre fini de zéros sur tout segment
de L.
2. Soit (f,g) une base de solutions de (H) et o < 8 deux zéros consécutifs de f. Montrer
que g admet un un unique zéro dans | o ; 3.

Corrigé : 1. Soit y solution non nulle de (H) et [a;b] C I. Supposons qu’il existe une suite

(avn)n d’éléments deux a deux distincts de [a; b] qui soient des zéros de y. D’aprés le théoréme de

Bolzano-Weierstrass, il existe une extractrice ¢ telle que o,y —— o € [a;b]. Par continuité,
n—oo

on a

0 =y(apm) — y(a) =0
n—o0
uitte a ré-extraire, on suppose «.(,) # « pour n entier. Par dérivabilité en «, il vient
©(n)

y(acp(n)) - y(&) y/<Oé)
Qo) =@ moe

0=

La fonction y est donc solution du probléme de Cauchy

{y” +a(t)y +b(t)y =0
y(a) =y'(a) =0

Comme la fonction nulle en est solution, il s’ensuit que y est nulle d’aprés 'unicité du théoréme
de Cauchy linéaire, ce qui est contradictoire. On conclut

Une solution non nulle de (H) admet un nombre fini de zéros sur tout segment de L.

[ gt
) g0
du systéme (f, g). Comme il s’agit d’un systéme fondamental de solutions, on sait que le wrons-
kien ne s’annule pas sur I. Supposons que ¢ ne s’annule pas sur | «; §[. Le wronskien ne s’annule
pas en particulier en « et [ ce qui prouve que g ne s’annule pas sur le segment J = [a; 5]
Considérons la fonction ¢ définie sur J par ¢ = f/g. Par dérivation, on trouve ¢ = —W/g? et
comme (o) = p(f) = 0, le théoréme de Rolle garantit 'annulation de ¢’ et donc de W sur
Ja; B ce qui est exclu.

Par conséquent, la fonction g s’annule sur |« ; 8 [. En supposant que celle-ci admet au moins
deux zéros sur cet intervalle, on pourrait alors établir par le méme raisonnement que ci-avant

que la fonction f s’annule entre les zéros de g ce qui contredirait le caractére consécutif de a et
B. Ainsi

2. Soient o < (8 deux zéros consécutifs de f. Notons W(t) = pour t € I le wronskien

’Entre deux zéros consécutifs de f existe un unique zéro de g.

Remarque : Ce résultat est intitulé théoréme d’entrelacement de Sturm.



Variantes : On peut éviter d’introduire la fonction auxiliaire ¢. La fonction f est continue et ne
s’annule pas sur |« ; B[ donc est de signe constant sur cet intervalle et de méme pour la fonction
g par hypothése. Supposons par exemple f(t) > 0 pour t € |a; [ Faisant tendre ¢ — « et
t — [ dans les inégalités

VtE]a;ﬁ[ W>O et %ﬁ(ﬁ)go
H Vient f/<Oé)>0 et f/(6)<0

Si f'(a) = 0, alors f est solution du probléme de Cauchy formée de (H) et de y(a) = ¢'(a) =0
dont la fonction nulle est solution. D’aprés 'unicité du théoréme de Cauchy linéaire, on aurait

f nulle ce qui contredirait que (f,g) est une systéme fondamental de solutions de (H). On en
déduit f'(«) > 0 et de méme f'(8) < 0. On observe

W(@)W(B) = f(a)f'(B)g(a)g(B) <O

D’apreés le théoréme des valeurs intermédiaires appliqué a la fonction continue W, celle-ci s’annule
sur [a; B] ce qui est exclu. On en déduit que g s’annule sur |« ; 5.

Exercice 5 (***)

Soient f, g continues sur R, avec g positive et vérifiant

Ve >0 flz) <A +/ f(t)g(t)dt avec A réel
0

Montrer Ve >0 f(z) < Aexp </ g(t) dt)
0

xT

Corrigé : Soit U: R, - R,z — A —i—/ f(t)g(t) dt. Comme fg est continue sur R,, on a U

0
de classe € sur R, avec U'(x) = f(z)g(z) pour tout z > 0. Multipliant I'inégalité d’origine par
g(x) = 0 pour z > 0, il vient

Ve>0  Ufz) <g(x)U(x) <= h(z) <0 avec U —g(z)U=nh
La fonction h vérifie une inégalité simple. La stratégie consiste alors a expliciter U en fonction de
h afin d’exploiter au mieux cette inégalité. Par variation de la constante, notant G(z) = / g(t)dt
0

pour z = 0, on trouve

V230  Uz) = eC® [A+ / h(t)e -G dt}
0

Par conséquent Ve >0 U(r) < AeC@)

On conclut Ve >0 f(z) < Aexp (/ g(t) dt)
0

Remarque : Ce résultat s’intitule lemme de Gronwall.



Exercice 6 (***)

Soit z solution de z” — a(t)z = 0 avec a € €°(R,]0;+00[). Montrer que z = 0 ou bien que 2
s’annule au plus une fois sur R.

Corrigé : Soit z une solution non nulle et soit a une racine de z. On a z'(a) # 0 sans quoi la
solution serait nulle, par unicité du théoréme de Cauchy linéaire. On suppose z’'(«) > 0. Ainsi,
la fonction z croit strictement sur un voisinage de « et par conséquent, il existe ¢ > 0 tel que
z(t) > 0 pour tout € |a;a+ €[. Supposons que z admette une racine sur | o ;+00[. D’aprés ce
qui précéde, celle-ci sera dans [« + ¢;+00 [. Ainsi, on peut choisir

f=TInf{te]a;+0] | 2(t) =0}

qui est bien défini comme borne inférieure d’une partie de R non vide, minorée et qui vérifie
a < a+ ¢ < . Par caractérisation séquentielle de la borne inférieure et continuité de z, on a
z(B) = 0. Par choix de 3, la fonction z ne s’annule pas sur |a; 5[ et prend donc des valeurs
strictement positives (théoréme des valeurs intermédiaires). On en déduit que z” = a(t)z prend
des valeurs positives ce qui prouve la convexité de z sur [« ;4]. Ainsi, le graphe de z est situé
sous sa corde entre a et § ce qui impose z(t) < 0 pour ¢t € |« ; 5], ce qui est faux. On en
déduit que z n’admet d’autre racines sur | o ;+00[. Le raisonnement est identique sur | -co; o |.
On conclut

’Une solution non nulle s’annule au plus une fois. ‘

Variante : On peut astucieusement considérer z2. On a
(22)" =2(27 + 22") =2(z* 4+ a(t)z?) 2 0

d’oil la convexité de z2. Si z admet deux racines o < 3, 2% également et par convexité, on a
22(t) <O pourt € [a; 3] d’ou 2(t) = 0 pour t € [a; 3] et par conséquent z'(a) = 0 et 2(a) =0
ce qui entraine z nulle.

Exercice 7 (***)

Soient f,g:[a;b] — R continues avec f positive. On s’intéresse au probléme aux limites (P) :
Fﬂ=f®y+ﬂﬂ (L)
yla) =y(b) =0 (B)

1. Soit y € Sy avec (H) homogéne associée a (L). Montrer que y? est convexe.
Y g que y

SH — R?
2. On pose b

y +— (y(a),y(b))
Montrer que ® est un isomorphisme.

3. Conclure que le probléme aux limites (P) admet une unique solution.

Corrigé : 1. Soit y € Sy. Par dérivation, on trouve

(") =20y +vy") = 2(y* + fy*) 2 0

Ainsi La fonction y? est convexe.

2. L’application ® est clairement linéaire. Soit y € Ker ®. D’aprés le résultat de la question
précédente, on a y* convexe avec y*(a) = y*(b) = 0. Par convexité, le graphe de y? est situé sous



sa corde entre a et b ce qui signifie y?(x) < 0 pour x € [a;b]. Ainsi, 'application linéaire ® est
injective du plan vectoriel Sy vers R?, deux espaces de méme dimension finie. On conclut

’L’application ® est un automorphisme.‘

b
Variante : On peut aussi raisonner sur / f(t)y*(t) dt puisque en intégrant par partie
a

2

Par séparation de I'intégrale, on en déduit la nullité de ' et on retrouve le résultat précédent.

o< [t ar= [yiouoa= ool - [ a<o

3. On sait, quitte a choisir des conditions initiales et invoquer le théoréme de Cauchy linéaire,
que l'ensemble Sy, est non vide. Soit u € Sy. On choisit v € Sy tel que ®(v) = (u(a),u(b)),
choix possible puisque ® est un automorphisme. Alors, on vérifie sans difficulté que u — v est
solution du probléme aux limites (P). Puis, si on considére y et z solutions de (P). Alors, on a
y — z € Ker ® d’ou 'unicité. On conclut

Le probléme aux limites (P) admet une unique solution.

Remarque : On peut facilement généraliser cette situation en considérant le probléme
%ﬂzf@y+ﬁ® (L)
y(a) = a, y(b) =4 (B)

avec «, f3 réels. 1l suffit de considérer v € Sy tel que ®(v) = (u(a) — a,u(b) — B) dans ce qui
précéde.

Exercice 8 (***)
Soit o € C et b € €°(R, C) fonction T-périodique avec T > 0. On considére I’équation
y' + oy =b(z) (L)
1. Montrer que si f est solution de (L), alors fr: x +— f(z + T) est aussi solution de (L).
2. En déduire que f solution de (L) est T-périodique si et seulement si f(0) = f(T).

3. Montrer que, sauf pour certaines valeurs de a, I’équation (L) admet une unique solution
T-périodique.

Corrigé : 1. Soit f € Sp. On a
Ve e R f(x) + af(z) = b(x)

d’otl Vr e R fla+T)+af(x+T)=0x+T) =b(z)

Ainsi Si f est solution de (L), alors fr l'est également.

2. Le sens direct est immédiat. Supposons f(0) = f(T). Alors, la fonction f — fr est solution du
probléme de Cauchy

{M+ay=0
y(0)=0

et comme la fonction nulle est solution, on en déduit la nullité de f — fr d’aprés I'unicité du
théoréme de Cauchy linéaire. Ainsi



Une solution f de (L) est T-périodique si et seulement si f(0) = f(T).

3. Soit f € Sp. Par variation de la constante, on trouve

VeeR  f(z)=e <f(0)+/

0

x

e®b(t) dt)

Ainsi, on obtient f(0)=f(T) = /Teo‘tb(t) dt = (et —1) f(0)
0

Ainsi, si et # 1, on peut déterminer f(0) et donc I'unique solution au probléme de Cauchy
vérifiant (L) et y(0) = f(0), solution qui sera T-périodique puisque la condition obtenue a la
question précédente est satisfaite. En revanche, si e®™ = 1, la condition de T-périodicité porte
uniquement sur « et b et si cette condition est remplie, toute solution de (L) sera T-périodique.
Enfin, on a

T =1 = TRe(@eiTm(@) — 1 «= Re(a)=0 et TIm(a)€ 27Z

On conclut

im
Pour a ¢ ?Z, I'équation (L) admet une unique solution T-périodique.

Exercice 9 (****)
Soit E = € (R,,R), b réel et a > 0.
1. Montrer que pour tout f € E, il existe une unique fonction g € €*(R,,R) vérifiant

g +ag= f(z)
(©): {9(0) =b

2. Montrer que si f est intégrable sur R, alors g ’est également et déterminer une relation
+00

+oo
entre | f(t)dt et / o(t) dt.
0 0

Corrigé : 1. Soit f € E. D’aprés le théoréme de Cauchy linéaire, il existe une unique solution au
probléme de Cauchy (C) et on a g de classe €' en tant que solution d’une équation différentielle
linéaire d’ordre 1 résolue. Ainsi

Pour tout f € E, il existe une unique solution g € ¢*(R,,R) au probléeme (C).

Remarque : On trouve
t
VieR, g(t)=e ™ (b + / e’ f(s) ds)
0

t
2. Soit x > 0. Les fonctions t — e~ et ¢ — / e |f(s)| ds sont de classe €. Par intégration
0

par parties (sur le segment [0;x]), on trouve

/Oz (e_“t/ote‘”]f(s)] ds> dt {—%e_“t/ote“ﬂf(s)\ dsK+%/ome—ateat|f<t)y dt
d’ou /OI <eat/0tea5|f(s)] ds) dt<§/0z|f(s)| ds



t
/eaS |f(s)| ds et celle de g s’ensuit,

at

L’intégrabilité de f implique l'intégrabilité de t +— e~

0
puisque t — e~ est clairement intégrable. En procédant a I'identique mais en remplagant |f|

par f, on obtient

/Ol’ <e_“t/0teasf(8) dS) dt = {—ée—at/oteasf(s) ds]z T é/oxe_ate“tf(t) at
a 1

Or, on a pour tous s et x positifs
e fs)lycy —— 0 et [T f(s)1oca| <|f(s)]
T—+00

Ainsi, par convergence dominée

+0o0
/ e f(8) 1<y ds — 0
0

r—r+00

+00 1
Enfin, avec / e % dt = —, on conclut
0 a

+0o0 1 +00
La fonction g est intégrable avec / g(t)dt = . <b + f(t) dt).
0 0




