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Feuille d'exercices n°68

Exercice 1 (**)

Soit f : R → C de classe C 1 et un complexe α avec Re (α) > 0 tel que

f ′(x) + αf(x) −−−−→
x→+∞

0

Montrer f(x) −−−−→
x→+∞

0

Corrigé : Par variation de la constante, on a pour t0 réel

∀t ∈ R f(t) = e−αt

ï
eαt0f(t0) +

∫ t

t0

eαsg(s) ds

ò
avec g = f ′ + αf . Pour ε > 0, on peut trouver t0 réel tel que

∀s ⩾ t0 |g(s)| ⩽ ε

Il s'ensuit

∀t ⩾ t0 |f(t)| ⩽ |eαt0f(t0)| e−Re (α)t + e−Re (α)t ε

Re (α)

[
eRe (α)s

]t
t0
⩽ o(1) +

ε

Re (α)

Ainsi f(t) −−−−→
t→+∞

0

Variante : On choisit t0 = 0. On a

∀t ⩾ 0

∫ t

0

e−α(t−s)g(s) ds =

∫ +∞

0

e−αug(t− u)1[ 0 ;t ](u) du

et on conclut par convergence dominée.

Exercice 2 (**)

Soit f : ] 0 ; +∞ [ → R dérivable telles que

∀t > 0 f ′(t) = f

Å
1

t

ã
(E)

Montrer que f est solution d'une équation di�érentielle linéaire d'ordre 2, utiliser le changement
de variables t = eu puis déterminer l'ensemble des solutions de (E).

Corrigé : Si f est solution, alors f ′ est dérivable comme composée de telles fonctions et par
dérivation on trouve

∀t > 0 f ′′(t) = − 1

t2
f ′
Å
1

t

ã
En substituant t par 1/t pour t > 0 dans l'équation (E), on trouve que f est solution sur ] 0 ; +∞ [
de

t2x′′ + x = 0

Avec le changement de variables t = eu pour u réel, posant y(u) = x(eu), on a par dérivation

∀u ∈ R y′(u) = eux′(eu) y′′(u) = e 2ux′′(eu) + eux′(eu)
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d'où t2x′′ + x = 0 ⇐⇒ y′′ − y′ + y = 0

L'équation caractéristique r2 − r+1 = 0 admet pour solutions les complexes conjugués
1

2
+− i

√
3

2
et par conséquent

∀u ∈ R y(u) = e
u
2

Ç
λ cos

Ç√
3u

2

å
+ µ sin

Ç√
3u

2

åå
avec λ, µ réels

On remplace u par ln t puis on injecte la forme obtenue dans (E) et il vient λ = µ
√
3. On conclut

∀t > 0 f(t) = α
√
t cos

Ç√
3 ln t

2
− π

6

å
avec α réel

Exercice 3 (***)

Soit q : [ 0 ; +∞ [ → ] 0 ; +∞ [ de classe C 1 telle que q′(x) ⩾ 0 pour tout x ⩾ 0. Montrer que toute
solution de y′′ + q(x)y = 0 est bornée sur R+.

Corrigé : On pose z = y2 +
y′2

q
. La fonction z est dérivable sur R+ avec

z′ = 2yy′ +
2y′y′′q − y′2q′

q2
=

2y′(y′′ + qy)− y′2q′

q2
= −y′2q′

q2
⩽ 0

Ainsi, la fonction z est positive, décroissante sur R+ donc bornée et il en résulte que y aussi.

Ainsi Toute solution de y′′ + q(x)y = 0 est bornée.

Remarque : Comment penser à introduire une telle fonction auxiliaire ? Considérons le cas
simple d'un oscillateur harmonique y′′ + ω2y = 0 avec ω > 0. On a

∀x ∈ R y(x) = A cos (ωx+ φ) avec (A, φ) ∈ R2

Ainsi ∀x ∈ R y2(x) +
y′2(x)

ω2
= A2

[
cos2(ωx+ φ) + sin2(ωx+ φ)

]
= A2

L'amplitude de la fonction est donc déterminée par y2 +
y′2

ω2
. On adapte alors cette idée au cas

général.

Variante : En multipliant l'équation par 2y′, il vient 2y′y′′ = −2qyy′ et après intégration

∀x ⩾ 0 y′2(x)− y′2(0) = −
∫ x

0

q(t)y(t)y′(t) dt

En intégrant par parties, on trouve pour x ⩾ 0

y′2(x)− y′2(0) = [−q(t)y2(t)]
x
0 +

∫ x

0

q′(t)y2(t) dt

d'où

q(x)y2(x) = A−y′2(x)+

∫ x

0

q′(t)y2(t)dt ⩽ A+

∫ x

0

q′(t)

q(t)
q(t)y2(t)dt avec A = q(0)y2(0)+y′2(0)

Par application du lemme de Gronwall appliqué avec x 7→ q(x)y2(x), on obtient

∀x ⩾ 0 q(x)y2(x) ⩽ Aexp

Å∫ x

0

q′(t)

q(t)
dt

ã
= A

q(x)

q(0)
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d'où ∀x ⩾ 0 y2(x) ⩽
A

q(0)
= y2(0) +

y′2(0)

q(0)

On en déduit que y2 est bornée et donc y également. Le majorant obtenu est exactement la
valeur de la fonction auxiliaire de la méthode initiale évaluée en 0.

Exercice 4 (***)

Soient p, q dans C 0(I,R) avec I intervalle non vide de R et

y′′ + p(t)y′ + q(t)y = 0 (H)

1. Montrer qu'une solution non nulle de (H) admet un nombre �ni de zéros sur tout segment
de I.

2. Soit (f, g) une base de solutions de (H) et α < β deux zéros consécutifs de f . Montrer
que g admet un un unique zéro dans ]α ; β [.

Corrigé : 1. Soit y solution non nulle de (H) et [ a ; b ] ⊂ I. Supposons qu'il existe une suite
(αn)n d'éléments deux à deux distincts de [ a ; b ] qui soient des zéros de y. D'après le théorème de
Bolzano-Weierstrass, il existe une extractrice φ telle que αφ(n) −−−→

n→∞
α ∈ [ a ; b ]. Par continuité,

on a

0 = y(αφ(n)) −−−→
n→∞

y(α) = 0

Quitte à ré-extraire, on suppose αφ(n) ̸= α pour n entier. Par dérivabilité en α, il vient

0 =
y(αφ(n))− y(α)

αφ(n) − α
−−−→
n→∞

y′(α)

La fonction y est donc solution du problème de Cauchy®
y′′ + a(t)y′ + b(t)y = 0

y(α) = y′(α) = 0

Comme la fonction nulle en est solution, il s'ensuit que y est nulle d'après l'unicité du théorème
de Cauchy linéaire, ce qui est contradictoire. On conclut

Une solution non nulle de (H) admet un nombre �ni de zéros sur tout segment de I.

2. Soient α < β deux zéros consécutifs de f . Notons W(t) =

∣∣∣∣f(t) g(t)
f ′(t) g′(t)

∣∣∣∣ pour t ∈ I le wronskien

du système (f, g). Comme il s'agit d'un système fondamental de solutions, on sait que le wrons-
kien ne s'annule pas sur I. Supposons que g ne s'annule pas sur ]α ; β [. Le wronskien ne s'annule
pas en particulier en α et β ce qui prouve que g ne s'annule pas sur le segment J = [α ; β ].
Considérons la fonction φ dé�nie sur J par φ = f/g. Par dérivation, on trouve φ′ = −W/g2 et
comme φ(α) = φ(β) = 0, le théorème de Rolle garantit l'annulation de φ′ et donc de W sur
]α ; β [ ce qui est exclu.
Par conséquent, la fonction g s'annule sur ]α ; β [. En supposant que celle-ci admet au moins
deux zéros sur cet intervalle, on pourrait alors établir par le même raisonnement que ci-avant
que la fonction f s'annule entre les zéros de g ce qui contredirait le caractère consécutif de α et
β. Ainsi

Entre deux zéros consécutifs de f existe un unique zéro de g.

Remarque : Ce résultat est intitulé théorème d'entrelacement de Sturm.
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Variantes : On peut éviter d'introduire la fonction auxiliaire φ. La fonction f est continue et ne
s'annule pas sur ]α ; β [ donc est de signe constant sur cet intervalle et de même pour la fonction
g par hypothèse. Supposons par exemple f(t) > 0 pour t ∈ ]α ; β [. Faisant tendre t → α et
t → β dans les inégalités

∀t ∈ ]α ; β [
f(t)− f(α)

t− α
⩾ 0 et

f(t)− f(β)

t− β
⩽ 0

Il vient f ′(α) ⩾ 0 et f ′(β) ⩽ 0

Si f ′(α) = 0, alors f est solution du problème de Cauchy formée de (H) et de y(α) = y′(α) = 0
dont la fonction nulle est solution. D'après l'unicité du théorème de Cauchy linéaire, on aurait
f nulle ce qui contredirait que (f, g) est une système fondamental de solutions de (H). On en
déduit f ′(α) > 0 et de même f ′(β) < 0. On observe

W(α)W(β) = f ′(α)f ′(β)g(α)g(β) ⩽ 0

D'après le théorème des valeurs intermédiaires appliqué à la fonction continueW, celle-ci s'annule
sur [α ; β ] ce qui est exclu. On en déduit que g s'annule sur ]α ; β [.

Exercice 5 (***)

Soient f, g continues sur R+ avec g positive et véri�ant

∀x ⩾ 0 f(x) ⩽ A+

∫ x

0

f(t)g(t) dt avec A réel

Montrer ∀x ⩾ 0 f(x) ⩽ Aexp

Å∫ x

0

g(t) dt

ã
Corrigé : Soit U : R+ → R, x 7→ A +

∫ x

0

f(t)g(t) dt. Comme fg est continue sur R+, on a U

de classe C 1 sur R+ avec U′(x) = f(x)g(x) pour tout x ⩾ 0. Multipliant l'inégalité d'origine par
g(x) ⩾ 0 pour x ⩾ 0, il vient

∀x ⩾ 0 U′(x) ⩽ g(x)U(x) ⇐⇒ h(x) ⩽ 0 avec U′ − g(x)U = h

La fonction h véri�e une inégalité simple. La stratégie consiste alors à expliciter U en fonction de

h a�n d'exploiter au mieux cette inégalité. Par variation de la constante, notant G(x) =

∫ x

0

g(t)dt

pour x ⩾ 0, on trouve

∀x ⩾ 0 U(x) = eG(x)

ï
A+

∫ x

0

h(t)e−G(t) dt

ò
Par conséquent ∀x ⩾ 0 U(x) ⩽ AeG(x)

On conclut ∀x ⩾ 0 f(x) ⩽ Aexp

Å∫ x

0

g(t) dt

ã
Remarque : Ce résultat s'intitule lemme de Gronwall.
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Exercice 6 (***)

Soit z solution de z′′ − a(t)z = 0 avec a ∈ C 0(R, ] 0 ; +∞ [). Montrer que z = 0 ou bien que z
s'annule au plus une fois sur R.

Corrigé : Soit z une solution non nulle et soit α une racine de z. On a z′(α) ̸= 0 sans quoi la
solution serait nulle, par unicité du théorème de Cauchy linéaire. On suppose z′(α) > 0. Ainsi,
la fonction z croît strictement sur un voisinage de α et par conséquent, il existe ε > 0 tel que
z(t) > 0 pour tout ∈ ]α ;α + ε [. Supposons que z admette une racine sur ]α ; +∞ [. D'après ce
qui précède, celle-ci sera dans [α + ε ; +∞ [. Ainsi, on peut choisir

β = Inf {t ∈ ]α ; +∞ [ | z(t) = 0}

qui est bien dé�ni comme borne inférieure d'une partie de R non vide, minorée et qui véri�e
α < α + ε ⩽ β. Par caractérisation séquentielle de la borne inférieure et continuité de z, on a
z(β) = 0. Par choix de β, la fonction z ne s'annule pas sur ]α ; β [ et prend donc des valeurs
strictement positives (théorème des valeurs intermédiaires). On en déduit que z′′ = a(t)z prend
des valeurs positives ce qui prouve la convexité de z sur [α ; β ]. Ainsi, le graphe de z est situé
sous sa corde entre α et β ce qui impose z(t) ⩽ 0 pour t ∈ ]α ; β [, ce qui est faux. On en
déduit que z n'admet d'autre racines sur ]α ; +∞ [. Le raisonnement est identique sur ] −∞ ;α [.
On conclut

Une solution non nulle s'annule au plus une fois.

Variante : On peut astucieusement considérer z2. On a

(z2)′′ = 2(z′2 + zz′′) = 2(z′2 + a(t)z2) ⩾ 0

d'où la convexité de z2. Si z admet deux racines α < β, z2 également et par convexité, on a
z2(t) ⩽ 0 pour t ∈ [α ; β ] d'où z(t) = 0 pour t ∈ [α ; β ] et par conséquent z′(α) = 0 et z(α) = 0
ce qui entraine z nulle.

Exercice 7 (***)

Soient f, g : [ a ; b ] → R continues avec f positive. On s'intéresse au problème aux limites (P) :®
y′′ = f(t)y + g(t) (L)

y(a) = y(b) = 0 (B)

1. Soit y ∈ SH avec (H) homogène associée à (L). Montrer que y2 est convexe.

2. On pose Φ:

®
SH −→ R2

y 7−→ (y(a), y(b))

Montrer que Φ est un isomorphisme.

3. Conclure que le problème aux limites (P) admet une unique solution.

Corrigé : 1. Soit y ∈ SH. Par dérivation, on trouve

(y2)′′ = 2(y′2 + yy′′) = 2(y′2 + fy2) ⩾ 0

Ainsi La fonction y2 est convexe.

2. L'application Φ est clairement linéaire. Soit y ∈ Ker Φ. D'après le résultat de la question
précédente, on a y2 convexe avec y2(a) = y2(b) = 0. Par convexité, le graphe de y2 est situé sous
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sa corde entre a et b ce qui signi�e y2(x) ⩽ 0 pour x ∈ [ a ; b ]. Ainsi, l'application linéaire Φ est
injective du plan vectoriel SH vers R2, deux espaces de même dimension �nie. On conclut

L'application Φ est un automorphisme.

Variante : On peut aussi raisonner sur

∫ b

a

f(t)y2(t) dt puisque en intégrant par partie

0 ⩽
∫ b

a

f(t)y2(t) dt =

∫ b

a

y′′(t)y(t) dt = [y′(t)y(t)]ba −
∫ b

a

y′(t)2

2
dt ⩽ 0

Par séparation de l'intégrale, on en déduit la nullité de y′ et on retrouve le résultat précédent.

3. On sait, quitte à choisir des conditions initiales et invoquer le théorème de Cauchy linéaire,
que l'ensemble SL est non vide. Soit u ∈ SL. On choisit v ∈ SH tel que Φ(v) = (u(a), u(b)),
choix possible puisque Φ est un automorphisme. Alors, on véri�e sans di�culté que u − v est
solution du problème aux limites (P). Puis, si on considère y et z solutions de (P). Alors, on a
y − z ∈ Ker Φ d'où l'unicité. On conclut

Le problème aux limites (P) admet une unique solution.

Remarque : On peut facilement généraliser cette situation en considérant le problème®
y′′ = f(t)y + g(t) (L)

y(a) = α, y(b) = β (B)

avec α, β réels. Il su�t de considérer v ∈ SH tel que Φ(v) = (u(a) − α, u(b) − β) dans ce qui
précède.

Exercice 8 (***)

Soit α ∈ C et b ∈ C 0(R,C) fonction T-périodique avec T > 0. On considère l'équation

y′ + αy = b(x) (L)

1. Montrer que si f est solution de (L), alors fT : x 7→ f(x+ T) est aussi solution de (L).

2. En déduire que f solution de (L) est T-périodique si et seulement si f(0) = f(T).

3. Montrer que, sauf pour certaines valeurs de α, l'équation (L) admet une unique solution
T-périodique.

Corrigé : 1. Soit f ∈ SL. On a

∀x ∈ R f ′(x) + αf(x) = b(x)

d'où ∀x ∈ R f ′(x+ T) + αf(x+ T) = b(x+ T) = b(x)

Ainsi Si f est solution de (L), alors fT l'est également.

2. Le sens direct est immédiat. Supposons f(0) = f(T). Alors, la fonction f − fT est solution du
problème de Cauchy ®

y′ + αy = 0

y(0) = 0

et comme la fonction nulle est solution, on en déduit la nullité de f − fT d'après l'unicité du
théorème de Cauchy linéaire. Ainsi
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Une solution f de (L) est T-périodique si et seulement si f(0) = f(T).

3. Soit f ∈ SL. Par variation de la constante, on trouve

∀x ∈ R f(x) = e−αx

Å
f(0) +

∫ x

0

eαtb(t) dt

ã
Ainsi, on obtient f(0) = f(T) ⇐⇒

∫ T

0

eαtb(t) dt =
(
eαT − 1

)
f(0)

Ainsi, si eαT ̸= 1, on peut déterminer f(0) et donc l'unique solution au problème de Cauchy
véri�ant (L) et y(0) = f(0), solution qui sera T-périodique puisque la condition obtenue à la
question précédente est satisfaite. En revanche, si eαT = 1, la condition de T-périodicité porte
uniquement sur α et b et si cette condition est remplie, toute solution de (L) sera T-périodique.
En�n, on a

eαT = 1 ⇐⇒ eTRe (α)e iT Im (α) = 1 ⇐⇒ Re (α) = 0 et T Im (α) ∈ 2πZ

On conclut

Pour α /∈ 2iπ

T
Z, l'équation (L) admet une unique solution T-périodique.

Exercice 9 (****)

Soit E = C (R+,R), b réel et a > 0.

1. Montrer que pour tout f ∈ E, il existe une unique fonction g ∈ C 1(R+,R) véri�ant

(C) :

®
g′ + ag = f(x)

g(0) = b

2. Montrer que si f est intégrable sur R+, alors g l'est également et déterminer une relation

entre

∫ +∞

0

f(t) dt et

∫ +∞

0

g(t) dt.

Corrigé : 1. Soit f ∈ E. D'après le théorème de Cauchy linéaire, il existe une unique solution au
problème de Cauchy (C) et on a g de classe C 1 en tant que solution d'une équation di�érentielle
linéaire d'ordre 1 résolue. Ainsi

Pour tout f ∈ E, il existe une unique solution g ∈ C 1(R+,R) au problème (C).

Remarque : On trouve

∀t ∈ R+ g(t) = e−at

Å
b+

∫ t

0

e asf(s) ds

ã
2. Soit x ⩾ 0. Les fonctions t 7→ e−at et t 7→

∫ t

0

e as |f(s)| ds sont de classe C 1. Par intégration

par parties (sur le segment [ 0 ; x ]), on trouve∫ x

0

Å
e−at

∫ t

0

e as |f(s)| ds
ã

dt =

ï
−1

a
e−at

∫ t

0

e as |f(s)| ds
òx
0

+
1

a

∫ x

0

e−ate at |f(t)| dt

d'où

∫ x

0

Å
e−at

∫ t

0

e as |f(s)| ds
ã

dt ⩽
2

a

∫ x

0

|f(s)| ds
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L'intégrabilité de f implique l'intégrabilité de t 7→ e−at

∫ t

0

e as |f(s)| ds et celle de g s'ensuit

puisque t 7→ e−at est clairement intégrable. En procédant à l'identique mais en remplaçant |f |
par f , on obtient∫ x

0

Å
e−at

∫ t

0

e asf(s) ds

ã
dt =

ï
−1

a
e−at

∫ t

0

e asf(s) ds

òx
0

+
1

a

∫ x

0

e−ate atf(t) dt

= −1

a

∫ +∞

0

e a(s−x)f(s)1s⩽x ds+
1

a

∫ x

0

e−ate atf(t) dt

Or, on a pour tous s et x positifs

e a(s−x)f(s)1s⩽x −−−−→
x→+∞

0 et
∣∣e a(s−x)f(s)1s⩽x

∣∣ ⩽ |f(s)|

Ainsi, par convergence dominée∫ +∞

0

e a(s−x)f(s)1s⩽x ds −−−−→
x→+∞

0

En�n, avec

∫ +∞

0

e−at dt =
1

a
, on conclut

La fonction g est intégrable avec

∫ +∞

0

g(t) dt =
1

a

Å
b+

∫ +∞

0

f(t) dt

ã
.
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