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Feuille d’exercices n°78
Exercice 1 (**)

On pose Ve = (xq1,...,2,) € R" flx)=>z; et g(x)= > 2?
i=1

=1

Etudier les extremums de f sous la contrainte g(x) < 1.

Corrigé : Les fonctions f et g sont polynomiales donc de classe € sur R™. On a ’équivalence
pour x € R"
g(x) <1 < z € By(0,1)

La fonction continue f admet un minimum et maximum sur la boule unité fermée B¢(0,1) qui
est un compact de R"™ en tant que fermé borné d’un espace de dimension finie. Les extremums
sur B(0, 1) sont atteints soit dans I'intérieur de B;(0, 1), soit sur sa frontiére. Sans difficulté, on
établit B¢(0,1)° = B(0, 1). Par dérivation, on trouve

VreB(0,1)  Vf(z)=(1,...,1)

Sur Pouvert B(0,1), un extremum de f est nécessairement point critique. On en déduit que
les extremums de f sur By(0,1) sont atteints sur la frontiere 0B;(0,1), autrement dit sous la
contrainte g(z) = 1 ou encore g(x) — 1 = 0. Par dérivation, on trouve

Ve € R" Vg(r) =2(z1,...,2,)

Ainsi Ve € R Vg(x) =O0gn <= z = Ogn

Or, on a g(0) = 0 # 1 donc les extremums de f sous la contrainte g(z) = 1 sont des points
ot Vg(x) # Ogn. Par conséquent, d’aprés le théoréme d’optimisation sous contrainte, ces points
sont solutions de

INeR : Vf(x)=AVg(x) et g(z)=1

c’est-a-dire INER : (1,...,1)=2\(z1,...,2,) et da?=1
i=1
On en déduit notamment que A\ n’est pas nul puis
1 L
=...=x,=— et — =1
o =gyt L
1 1
Ontrouve)\:i\/—ﬁpuis x:ir(—,...,—)
2 NLD vn

On remarque f(%,...,%):\/ﬁ>—\/_:f<—%,...,—%)

On a donc trouvé les deux candidats pour les points extremums sur 0B;(0,1) et on conclut

Sous la contrainte g(x) < 1, la fonction f admet un maximum

1 1 1 1
en <%,,%> et un minimum en <—%, . .,—%)




Exercice 2 (***)

Soit (x;,¥:)ic[1;n] une suite de points (n > 2) dont les abscisses ne sont pas toutes égales. On
pose

V(a,b) €R:  fa,b) =3 (azs +b—1,)°

=1
1. Justifier que f € €' (R?* R).
2. Montrer fla,b) ——— +o0
[l (a,b)[|—++00

3. Etablir que f admet un minimum global sur R? et préciser 1a oil il est atteint.

Corrigé : 1. La fonction f est polynomiale donc

f e ¢YR%R)

a b
2. Pour (a,b) € R~ {(0,0)}, on note & = ——— et 3 = —. Il vient
(0.0) € B {(0.0)) R em

fla,b) = > (az; +b)* — 23 y;(ax; +b) + > y?
=1 =1 =1

= (a®> 4+ 1*)g(a, B) — 2v/a2 + b2h(a, B) + iyf
=1

n

avec V(,8) €R2  gla, ) = > (ami+B)? et h(a,B) = ﬁ;yi(axi +8)

i=1
Les fonctions g et h sont continues et atteignent donc leurs bornes sur la sphére unité compacte
S(0,1). On pose

A= Min a, = Max h(a, :nf
(067/3)65(071)9( p) a (e,B)€S(0,1) (@,5) 7 ;y

Comme les abscisses x; ne sont pas toutes égales, on a A > 0. Par suite

V(a,b) € R? < {(0,0)} fla,b) = (a®> + V)N — 2uv/a® + b2+~

Par comparaison, il vient fla,b) ———— +00
ll(a,b) || =400

3. Il existe R > 0 tel que f(a,b) > f(0,0) pour |(a,b)]] > R. Et comme on a f(0,0) >
Inf  f(a,b), il s’ensuit
(a,b)€Bf(0,R)

Inf a,b Inf a,b
(a,b)CR2 fla,b) = (a,b)€B 4 (0,R) f(a.b)
Comme l'espace R? est de dimension finie, la boule fermée B;(0, R) est un compact et la fonction
continue f y admet donc un minimum. Par conséquent, la fonction f admet un minimum global
sur R?2. L’ensemble R? est ouvert donc la fonction f atteint son minimum en un point critique.
Par dérivation, on a pour (a,b) € R?

of

5 —(a,b) = 22 i(ax; +b—y;)
of

op@0) = ;(a$i+b—yz‘)

Pour la suite, on note



1. n 1.

Tr=-) % y = — i ol= - a?—-1° Ogy = — D Tili — XY

n; y n;y p n; v 2T Ty

Il vient alors

a(c2+7?)+bx — 0,y — Ty =0 y=azT+b
b ao2 — 0., =0

V(a,b) = (0,0) < {

On conclut

o
La fonction f atteint un minimum global en (a*,b*) avec a* = % et b* =y — a*T.
xX

Ya Remarque : Il s’agit bien évidemment de la
droite des moindres carrés. 1l s’agit d’un mini-

y = a*x +b* mum global strict puisque la fonction f admet
un unique point critique.

> X

F1GURE 1 — Droite des moindres carrés

Exercice 3 (****)
Soit f € €*°(R,R). On note A = {(x, ), v € R*} et on définit

f@) = fy)

V(z,y) ER*NA  F(z,y) = p—

Montrer que F se prolonge en fonction de classe € sur R2.

1
Corrigé : Ona  V(zr,y) e R\ A F(z,y) = / ftr+ (1 —t)y) dt
0

Posons V(z,y) € R? G(z,y) = /lf’ (tz+ (1 —t)y) dt
0

Pour k entier, on note (k) la propriété suivante :

V(it,...,ix) € [1;2]F 9, ...0;,G existe et est continue sur R?
1
et V(r,y) eR? 0, ...0;,G(z,y) = / ok (1 — )Pk fEHD (1 4+ (1 — t)y) dt
0

k
avec ap = »_ 1gy(75) et By =k — ay.
j=1

L’initialisation pour k = 0 consiste en la continuité de G :

e Pour (z,y) € R*  onatw f (tx+ (1 —t)y) € €m([0;1],R).

e Pourt € [0;1], on a (z,y) — f'(tx + (1 — t)y) continue sur R?.

e Domination locale : Soit K compact de R?. L’application (z,y,t) — f'(tz + (1 — t)y) est
continue donc bornée sur le compact K x [0;1] et la domination s’ensuit. On en déduit la
continuité de G sur tout compact de R? et par conséquent



G € ¢°(R%, R)

On suppose la propriété vraie pour k entier et i;; = 1. On fixe y réel et on pose
V(z,t) € R x [0;1] ge(z,t) =t (1 — )% fEFD 1z + (1 — t)y)
e Pour z réel, la fonction gi(z, ) est continue sur [0; 1] donc bornée et par conséquent intégrable

sur [0;1].
e Pour ¢ réel, la fonction g (-, ) est de classe € sur R et par dérivation

V(@,t) ER X [051]  Ougu(w,t) = t¥+1 (1 — )Pt fED) (k4 (1 — )y)

e Pour x réel, la fonction 9,gx(z, ) est continue par morceaux sur [0;1].

e Domination locale : Soit J segment de R. L’application (x,t) — 0.gx(x,t) est continue
donc bornée sur le compact J x [0;1] et la domination s’ensuit. On en déduit que pour y fixé,
application z + 8;, ...0;,G(x,y) est de classe €' sur tout segment de R donc sur R et par
dérivation sous l'intégrale

1
V(z,y) eR® 0Oy, ... 0;,G(z,y) = / ter (1 — )M fD (t + (1 - t)y) dt
0

On montre comme on I'a fait pour la fonction G la continuité de 9;, ,, ... 0; G sur R2. La preuve
est similaire pour ix1 = 2 et ceci clot la récurrence. On conclut que la fonction G admet des
dérivées partielles & tout ordre et que celles-ci sont continues sur R? et par conséquent

La fonction G de classe € sur R? prolonge la fonction F.

Exercice 4 (***%¥)

On pose V(r,y) eR*  f(z,y) = 2" +y* —2(z — y)?

Etudier les extremums de f sur R2.

Corrigé : On a f € €?(R?, R) car f est polynomiale. L’ensemble R? est ouvert donc les éventuels
extremums de f sont points critiques. On obtient pour (z,y) € R?

o 0
e = —de-y) P =w ey
' B 2+ =0 r="Y
puis Vi(z,y) =(0,0) < {x3 —(z—y)=0 — {x(azQ -2)=0

Les points critiques de f sont (0,0), <\/_, —\/§> et (—\/5, \/§>

Par dérivation, on trouve

2
V(z,y) € R? %(x, y) = 1222 — 4
T

’f
Oy?

0 f
0xdy

(z,y) =12y* — 4 (z,y) =4

—4 ) . .

4 4> a un déterminant nul. Les conditions du deuxiéme
ordre ne permettent pas de conclure. On a f(0,0) = 0. Puis, en considérant des directions
particuliéres, on trouve f(x,r) = 22* > 0 pour z # 0 et f(z,0) = =222 + 2% ~ —22% < 0

z—0
pour x # 0. Ainsi, au voisinage du point (0,0), la fonction f prend des valeurs supérieures et

inférieures & f(0,0) donc

e En (0,0), la matrice hessienne (



Le point (0,0) n’est pas un extremum local.

Pour raison de symétrie, on se contente de traiter un des deux points critiques restants.

e En (\/_, —\/§>, la matrice hessienne (240 240> est de déterminant égal & 202 — 42 > 0 et de

trace égale & 40 > 0 ce qui prouve que le point considéré est un minimum local strict. Dans
I'écriture de f(z,y) — f <\/§, —\/5), on décompose 8 = 22 + 22 pour faire apparaitre les carrés

(22 — 2)? et (y* — 2)? qui s’annulent en le point <\/_, —\/5) Ce faisant, on obtient
V(5E7y)€R2 f(x,y)—f(f,—ﬂ):x4+y4—2(x—y)2+8
= (2 =2+ (1P -2+ 2 +y)?* >0

Le point (\/_, —\/5) est donc un minimum global, strict d’aprés 'étude locale précédente. Par
symétrie, on conclut

Les points (\/_, —\/§) et (—\/5, \/5) sont des minimums globaux stricts de f.

Variante : Considérons R? muni de la norme euclidienne canonique ||(z,y)]]* = 2 + y* pour

tout (z,y) € R% On a les inégalités suivantes :

1
Yoy €R athyt> (@ 197 et 0<(z -y <27 +y?)

2
Do fley) 2 5+ + 0l + ) = 32+ (14 - —00)
ou ny)z 5" +y ey =5y 22 1 o2
Par comparaison flz,y) —— +00

[[(@,y)[|=+o0

Ainsi, il existe R > 0 tel que f(z,y) > 1 pour tout ||(z,y)| > R. Sur le compact B;((0,0),R), la
fonction continue f atteint ses bornes donc en particulier un minimum. Comme f(0,0) =0 < 1,
alors le minimum atteint sur B;((0,0), R) est un minimum global sur R?. Or, I'ensemble R? est
un ouvert donc le minimum global est un point critique. Pour raison de symétrie, les points

(\/_, —\/§> et <—\/§, \/§> sont de méme nature et on en déduit

Les points (\/_, —\/5) et (—\/5, \/5) sont minimums globaux de f.

100 |

FIGURE 2 — Graphe de z = f(z,v)



Exercice 5 (***%*)

2 2
Soit C la courbe d’équation — + 3;_2 = 1et A: (a,0). Déterminer les points M et N de C tels
a

que l'aire du triangle AMN soit maximale.

Corrigé : On paramétre M et N par M : (acos(t), bsin(t)), N : (acos(u), bsin(u)) avec (t,u) € A
ou

A = {(x,y)e [0;27)° |t<u}

L’aire A du triangle AMN est donnée par
1 — —
Alt.w) = 5 ‘det(AM, AN)(

—
aveclet(AM, AN) =

acos(t) —a acos(u) —a

bsin(t) bsin(u) | ab [(cos(t) — 1) sin(u) — (cos(u) — 1) sin(t)]

— —
La famille (AM, AN) est orientée en sens direct donc son déterminant est positif. Ce n’est pas

flagrant a priori dans I'expression. Avec les formules trigonométriques 1 — cos z = 2 cos? <§> et

sinx = 2sin (5) coS <§> pour x réel, on obtient

7 Lt L oquN . (u—t
det(AM, AN) = 2sin <§> sin (5) sin < 5 )

Tous les angles concernés sont alors dans [0; 7] et donc de sinus positif. Ainsi, on a

A(t,u) = %b [(cos(t) — 1) sin(u) — (cos(u) — 1) sin(t)]

L’ensemble A est compact car fermé borné en dimension finie. La fonction A est continue comme
composée de telles fonctions et atteint son maximum sur le compact A. Celui-ci est localisé sur

OA ou dans A.
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FIGURE 3 — Domaines A, A et A

On a Vit € [0;27] A0, ) =0  A(t,2mr)=0  A(t,u) =0
Et avec 'expression sous forme de produit de sinus, on peut détailler sur A et on obtient
V(t,u) € A  A(t,u)=0 et V(t,u)eA  Altu) >0

La fonction A est de classe €' sur A comme composée de telles fonctions et elle atteint son
maximum sur A dans 'ouvert A et donc en un point critique. On a



0A ab ab

5 —(t,u) = 5 [—sin(¢) sin(u) — (cos(u) — 1) cos(t)] = 5 [cos(t) — cos(t — u)]
0A ab , , ab
%(t, u) = b [(cos(t) — 1) cos(u) + sin(u) sin(t)] = b [cos(t — u) — cos(u)]

cos(t) — cos(t —u) =0

(t —u) —cos(u) =0

os(t) = cos(u) u=2m—t

<~ <~

cos(t) — cos(t —u) =0 cos(t) — cos(2t) =0
et avec la relation cos(2t) = 2cos*t — 1 pour ¢ réel, on obtient aprés factorisation

u=2m—1 2w Am
VAW = (0,0) <= {(2 cos(t) + 1)(cos(t) —1) =0 = by = <_ _)

COS

Ainsi VA(t,u) = (0,0) <= {

(@]

On conclut

b bv'3
L’aire du triangle est maximale pour les points M : (—%, —) et N : (—E —i_)

Exercice 6 (****)

Soit Y a,z" une série entiére de rayon de convergence R > 0. On définit
+00
Yr.y) €BO.R)  fay) = Saya+i)"

1. Montrer que f est de classe ¢? sur B(0,R). On pourra montrer le caractére € puis
généraliser le procédé employé.

2. Déterminer Af.
Corrigé : 1. Soit y € | —R;R [ et I —} —R?2—y?; /R2 — 2 [ On pose

V(n,z) e NxT  u,(z) = a,(z + iy)”
Pour n entier, on a u,, de classe €' sur I car polynomiale. Par dérivation, on trouve

Vin,z) e N* x 1  u(x) = na,(z + iy)" !

n

Les séries entiéres > a,2" et > na,z""! convergent normalement sur tout compact de D(0,R).
n=>1

On en déduit que la série de fonctions de classe ' > u, converge simplement sur I et la série de

fonctions > u/, converge normalement donc uniformément sur tout segment [ —r;r | C I puisque
n=1

le compact [—r ;7] x {y} est inclus dans D(0, R). Ainsi, la fonction x — f(z,y) est de classe €

sur I avec

af(x,y) = +f:onan(yc + iy)" !

V(I’,y) S B(07R> 8_23 ~

Par ailleurs, la fonction (x,y) — 8—(:10, y) est continue sur B(0, R) puisque c’est la composée de
x
+00

(x,y) — (x + iy) linéaire avec la fonction z — > na,z""! somme de série entiére donc continue

n=1

0
sur D(0,R). Ainsi, on existence de la dérivée partielle 2 et sa continuité sur D(0,R). On

ox



procéde a l'identique pour la dérivée partielle en y. Puis, on applique ce résultat sur les fonctions
dérivées partielles premiéres et on prouve 'existence et la continuité des dérivées partielles de f
d’ordre 2 sur B(0,R). On conclut

f € ¢*B(0,R),C)

2. En appliquant les résultats établis a la premiére question, on a

Y(x,y) € B(0,R) %(m, y) = :Zojnan(x +iy)" ! g—i(:p, y) = :ijinan(:v +iy)" !
. 0 f o0 9
puis V(z,y) € B(0,R) @(37, y) = ZZn(n — Day(z +iy)™
t L) = S 0nn = Dante + i) = =5 Sy

On conclut

Remarque : La fonction f est dite harmonique.



