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Feuille d'exercices n°78

Exercice 1 (**)

On pose ∀x = (x1, . . . , xn) ∈ Rn f(x) =
n∑

i=1

xi et g(x) =
n∑

i=1

x2
i

Étudier les extremums de f sous la contrainte g(x) ⩽ 1.

Corrigé : Les fonctions f et g sont polynomiales donc de classe C 1 sur Rn. On a l'équivalence
pour x ∈ Rn

g(x) ⩽ 1 ⇐⇒ x ∈ Bf (0, 1)

La fonction continue f admet un minimum et maximum sur la boule unité fermée Bf (0, 1) qui
est un compact de Rn en tant que fermé borné d'un espace de dimension �nie. Les extremums
sur Bf (0, 1) sont atteints soit dans l'intérieur de Bf (0, 1), soit sur sa frontière. Sans di�culté, on
établit Bf (0, 1)

◦ = B(0, 1). Par dérivation, on trouve

∀x ∈ B(0, 1) ∇f(x) = (1, . . . , 1)

Sur l'ouvert B(0, 1), un extremum de f est nécessairement point critique. On en déduit que
les extremums de f sur Bf (0, 1) sont atteints sur la frontière ∂Bf (0, 1), autrement dit sous la
contrainte g(x) = 1 ou encore g(x)− 1 = 0. Par dérivation, on trouve

∀x ∈ Rn ∇g(x) = 2(x1, . . . , xn)

Ainsi ∀x ∈ Rn ∇g(x) = 0Rn ⇐⇒ x = 0Rn

Or, on a g(0) = 0 ̸= 1 donc les extremums de f sous la contrainte g(x) = 1 sont des points
où ∇g(x) ̸= 0Rn . Par conséquent, d'après le théorème d'optimisation sous contrainte, ces points
sont solutions de

∃λ ∈ R : ∇f(x) = λ∇g(x) et g(x) = 1

c'est-à-dire ∃λ ∈ R : (1, . . . , 1) = 2λ(x1, . . . , xn) et
n∑

i=1

x2 = 1

On en déduit notamment que λ n'est pas nul puis

x1 = . . . = xn =
1

2λ
et

n∑
i=1

1

4λ2
= 1

On trouve λ = +−

√
n

2
puis x = +−

Å
1√
n
, . . . ,

1√
n

ã
On remarque f

Å
1√
n
, . . . ,

1√
n

ã
=

√
n > −

√
n = f

Å
− 1√

n
, . . . ,− 1√

n

ã
On a donc trouvé les deux candidats pour les points extremums sur ∂Bf (0, 1) et on conclut

Sous la contrainte g(x) ⩽ 1, la fonction f admet un maximum

en
Å

1√
n
, . . . ,

1√
n

ã
et un minimum en

Å
− 1√

n
, . . . ,− 1√

n

ã
.
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Exercice 2 (***)

Soit (xi, yi)i∈[[ 1 ;n ]] une suite de points (n ⩾ 2) dont les abscisses ne sont pas toutes égales. On
pose

∀(a, b) ∈ R2 f(a, b) =
n∑

i=1

(axi + b− yi)
2

1. Justi�er que f ∈ C 1(R2,R).

2. Montrer f(a, b) −−−−−−−→
∥(a,b)∥→+∞

+∞

3. Établir que f admet un minimum global sur R2 et préciser là où il est atteint.

Corrigé : 1. La fonction f est polynomiale donc

f ∈ C 1(R2,R)

2. Pour (a, b) ∈ R2 ∖ {(0, 0)}, on note α =
a√

a2 + b2
et β =

b√
a2 + b2

. Il vient

f(a, b) =
n∑

i=1

(axi + b)2 − 2
n∑

i=1

yi(axi + b) +
n∑

i=1

y2i

= (a2 + b2)g(α, β)− 2
√
a2 + b2h(α, β) +

n∑
i=1

y2i

avec ∀(α, β) ∈ R2 g(α, β) =
n∑

i=1

(αxi + β)2 et h(α, β) =
n∑

i=1

yi(αxi + β)

Les fonctions g et h sont continues et atteignent donc leurs bornes sur la sphère unité compacte
S(0, 1). On pose

λ = Min
(α,β)∈S(0,1)

g(α, β) µ = Max
(α,β)∈S(0,1)

h(α, β) γ =
n∑

i=1

y2i

Comme les abscisses xi ne sont pas toutes égales, on a λ > 0. Par suite

∀(a, b) ∈ R2 ∖ {(0, 0)} f(a, b) ⩾ (a2 + b2)λ− 2µ
√
a2 + b2 + γ

Par comparaison, il vient f(a, b) −−−−−−−→
∥(a,b)∥→+∞

+∞

3. Il existe R > 0 tel que f(a, b) ⩾ f(0, 0) pour ∥(a, b)∥ > R. Et comme on a f(0, 0) ⩾
Inf

(a,b)∈Bf (0,R)
f(a, b), il s'ensuit

Inf
(a,b)∈R2

f(a, b) = Inf
(a,b)∈Bf (0,R)

f(a, b)

Comme l'espace R2 est de dimension �nie, la boule fermée Bf (0,R) est un compact et la fonction
continue f y admet donc un minimum. Par conséquent, la fonction f admet un minimum global
sur R2. L'ensemble R2 est ouvert donc la fonction f atteint son minimum en un point critique.
Par dérivation, on a pour (a, b) ∈ R2

∂f

∂a
(a, b) = 2

n∑
i=1

xi(axi + b− yi)

∂f

∂b
(a, b) = 2

n∑
i=1

(axi + b− yi)

Pour la suite, on note
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x̄ =
1

n

n∑
i=1

xi ȳ =
1

n

n∑
i=1

yi σ2
x =

1

n

n∑
i=1

x2
i − x̄2 σx,y =

1

n

n∑
i=1

xiyi − x̄ȳ

Il vient alors

∇f(a, b) = (0, 0) ⇐⇒
®
a(σ2

x + x̄2) + bx̄− σx,y − x̄ȳ = 0

ax̄+ b− ȳ = 0
⇐⇒

®
ȳ = ax̄+ b

aσ2
x − σx,y = 0

On conclut

La fonction f atteint un minimum global en (a∗, b∗) avec a∗ =
σx,y

σ2
x

et b∗ = ȳ − a∗x̄.

x

y

y = a∗x+ b∗

• • •
• •

•

Figure 1 � Droite des moindres carrés

Remarque : Il s'agit bien évidemment de la
droite des moindres carrés. Il s'agit d'un mini-
mum global strict puisque la fonction f admet
un unique point critique.

Exercice 3 (****)

Soit f ∈ C ∞(R,R). On note ∆ = {(x, x), x ∈ R2} et on dé�nit

∀(x, y) ∈ R2 ∖∆ F(x, y) =
f(x)− f(y)

x− y

Montrer que F se prolonge en fonction de classe C ∞ sur R2.

Corrigé : On a ∀(x, y) ∈ R2 ∖∆ F(x, y) =

∫ 1

0

f ′ (tx+ (1− t)y) dt

Posons ∀(x, y) ∈ R2 G(x, y) =

∫ 1

0

f ′ (tx+ (1− t)y) dt

Pour k entier, on note P(k) la propriété suivante :

∀(i1, . . . , ik) ∈ [[ 1 ; 2 ]]k ∂ik . . . ∂i1G existe et est continue sur R2

et ∀(x, y) ∈ R2 ∂ik . . . ∂i1G(x, y) =

∫ 1

0

tαk(1− t)βkf (k+1)(tx+ (1− t)y) dt

avec αk =
k∑

j=1

1{1}(ij) et βk = k − αk.

L'initialisation pour k = 0 consiste en la continuité de G :
• Pour (x, y) ∈ R2, on a t 7→ f ′ (tx+ (1− t)y) ∈ Cpm([ 0 ; 1 ] ,R).
• Pour t ∈ [ 0 ; 1 ], on a (x, y) 7→ f ′ (tx+ (1− t)y) continue sur R2.
• Domination locale : Soit K compact de R2. L'application (x, y, t) 7→ f ′(tx + (1 − t)y) est
continue donc bornée sur le compact K × [ 0 ; 1 ] et la domination s'ensuit. On en déduit la
continuité de G sur tout compact de R2 et par conséquent
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G ∈ C 0(R2,R)

On suppose la propriété vraie pour k entier et ik+1 = 1. On �xe y réel et on pose

∀(x, t) ∈ R× [ 0 ; 1 ] gk(x, t) = tαk(1− t)βkf (k+1)(tx+ (1− t)y)

• Pour x réel, la fonction gk(x, ·) est continue sur [ 0 ; 1 ] donc bornée et par conséquent intégrable
sur [ 0 ; 1 ].
• Pour t réel, la fonction gk(·, t) est de classe C 1 sur R et par dérivation

∀(x, t) ∈ R× [ 0 ; 1 ] ∂xgk(x, t) = tαk+1(1− t)βk+1f (k+2))(tx+ (1− t)y)

• Pour x réel, la fonction ∂xgk(x, ·) est continue par morceaux sur [ 0 ; 1 ].
• Domination locale : Soit J segment de R. L'application (x, t) 7→ ∂xgk(x, t) est continue
donc bornée sur le compact J× [ 0 ; 1 ] et la domination s'ensuit. On en déduit que pour y �xé,
l'application x 7→ ∂ik . . . ∂i1G(x, y) est de classe C 1 sur tout segment de R donc sur R et par
dérivation sous l'intégrale

∀(x, y) ∈ R2 ∂ik+1
. . . ∂i1G(x, y) =

∫ 1

0

tαk+1(1− t)βk+1f (k+2)(tx+ (1− t)y) dt

On montre comme on l'a fait pour la fonction G la continuité de ∂ik+1
. . . ∂i1G sur R2. La preuve

est similaire pour ik+1 = 2 et ceci clôt la récurrence. On conclut que la fonction G admet des
dérivées partielles à tout ordre et que celles-ci sont continues sur R2 et par conséquent

La fonction G de classe C ∞ sur R2 prolonge la fonction F.

Exercice 4 (****)

On pose ∀(x, y) ∈ R2 f(x, y) = x4 + y4 − 2(x− y)2

Étudier les extremums de f sur R2.

Corrigé : On a f ∈ C 2(R2,R) car f est polynomiale. L'ensemble R2 est ouvert donc les éventuels
extremums de f sont points critiques. On obtient pour (x, y) ∈ R2

∂f

∂x
(x, y) = 4x3 − 4(x− y)

∂f

∂y
(x, y) = 4y3 + 4(x− y)

puis ∇f(x, y) = (0, 0) ⇐⇒
®
x3 + y3 = 0

x3 − (x− y) = 0
⇐⇒

®
x = −y

x(x2 − 2) = 0

Les points critiques de f sont (0, 0),
Ä√

2,−
√
2
ä
et
Ä
−
√
2,
√
2
ä
.

Par dérivation, on trouve

∀(x, y) ∈ R2 ∂2f

∂x2
(x, y) = 12x2 − 4

∂2f

∂y2
(x, y) = 12y2 − 4

∂2f

∂x∂y
(x, y) = 4

• En (0, 0), la matrice hessienne
Å
−4 4
−4 4

ã
a un déterminant nul. Les conditions du deuxième

ordre ne permettent pas de conclure. On a f(0, 0) = 0. Puis, en considérant des directions
particulières, on trouve f(x, x) = 2x4 > 0 pour x ̸= 0 et f(x, 0) = −2x2 + x4 ∼

x→0
−2x2 < 0

pour x ̸= 0. Ainsi, au voisinage du point (0, 0), la fonction f prend des valeurs supérieures et
inférieures à f(0, 0) donc
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Le point (0, 0) n'est pas un extremum local.

Pour raison de symétrie, on se contente de traiter un des deux points critiques restants.

• En
Ä√

2,−
√
2
ä
, la matrice hessienne

Å
20 4
4 20

ã
est de déterminant égal à 202 − 42 > 0 et de

trace égale à 40 > 0 ce qui prouve que le point considéré est un minimum local strict. Dans
l'écriture de f(x, y) − f

Ä√
2,−

√
2
ä
, on décompose 8 = 22 + 22 pour faire apparaître les carrés

(x2 − 2)2 et (y2 − 2)2 qui s'annulent en le point
Ä√

2,−
√
2
ä
. Ce faisant, on obtient

∀(x, y) ∈ R2 f(x, y)− f
Ä√

2,−
√
2
ä
= x4 + y4 − 2(x− y)2 + 8

= (x2 − 2)2 + (y2 − 2)2 + 2(x+ y)2 ⩾ 0

Le point
Ä√

2,−
√
2
ä
est donc un minimum global, strict d'après l'étude locale précédente. Par

symétrie, on conclut

Les points
Ä√

2,−
√
2
ä
et
Ä
−
√
2,
√
2
ä
sont des minimums globaux stricts de f .

Variante : Considérons R2 muni de la norme euclidienne canonique ∥(x, y)∥2 = x2 + y2 pour
tout (x, y) ∈ R2. On a les inégalités suivantes :

∀(x, y) ∈ R2 x4 + y4 ⩾
1

2
(x2 + y2)2 et 0 ⩽ (x− y)2 ⩽ 2(x2 + y2)

D'où f(x, y) ⩾
1

2
(x2 + y2)2 +O(x2 + y2) =

1

2
(x2 + y2)

Å
1 +

1

x2 + y2
O(1)

ã
Par comparaison f(x, y) −−−−−−−→

∥(x,y)∥→+∞
+∞

Ainsi, il existe R > 0 tel que f(x, y) ⩾ 1 pour tout ∥(x, y)∥ > R. Sur le compact Bf ((0, 0),R), la
fonction continue f atteint ses bornes donc en particulier un minimum. Comme f(0, 0) = 0 ⩽ 1,
alors le minimum atteint sur Bf ((0, 0),R) est un minimum global sur R2. Or, l'ensemble R2 est
un ouvert donc le minimum global est un point critique. Pour raison de symétrie, les pointsÄ√

2,−
√
2
ä
et
Ä
−
√
2,
√
2
ä
sont de même nature et on en déduit

Les points
Ä√

2,−
√
2
ä
et
Ä
−
√
2,
√
2
ä
sont minimums globaux de f .

−2
0

2 −2

0

20

100

Figure 2 � Graphe de z = f(x, y)
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Exercice 5 (****)

Soit C la courbe d'équation
x2

a2
+

y2

b2
= 1 et A : (a, 0). Déterminer les points M et N de C tels

que l'aire du triangle AMN soit maximale.

Corrigé : On paramètre M et N par M : (a cos(t), b sin(t)), N : (a cos(u), b sin(u)) avec (t, u) ∈ ∆
où

∆ =
¶
(x, y) ∈ [ 0 ; 2π ]2 | t ⩽ u

©
L'aire A du triangle AMN est donnée par

A(t, u) =
1

2

∣∣∣det(−−→AM,
−→
AN)

∣∣∣
avecdet(

−−→
AM,

−→
AN) =

∣∣∣∣a cos(t)− a a cos(u)− a
b sin(t) b sin(u)

∣∣∣∣ = ab [(cos(t)− 1) sin(u)− (cos(u)− 1) sin(t)]

La famille (
−−→
AM,

−→
AN) est orientée en sens direct donc son déterminant est positif. Ce n'est pas

�agrant a priori dans l'expression. Avec les formules trigonométriques 1− cosx = 2 cos2
(x
2

)
et

sinx = 2 sin
(x
2

)
cos

(x
2

)
pour x réel, on obtient

det(
−−→
AM,

−→
AN) = 2 sin

Å
t

2

ã
sin

(u
2

)
sin

Å
u− t

2

ã
Tous les angles concernés sont alors dans [ 0 ; π ] et donc de sinus positif. Ainsi, on a

A(t, u) =
ab

2
[(cos(t)− 1) sin(u)− (cos(u)− 1) sin(t)]

L'ensemble ∆ est compact car fermé borné en dimension �nie. La fonction A est continue comme
composée de telles fonctions et atteint son maximum sur le compact ∆. Celui-ci est localisé sur
∂∆ ou dans ∆̊.

t

u

t

u

t

u

Figure 3 � Domaines ∆, ∆̊ et ∂∆

On a ∀t ∈ [ 0 ; 2π ] A(0, t) = 0 A(t, 2π) = 0 A(t, u) = 0

Et avec l'expression sous forme de produit de sinus, on peut détailler sur ∆̊ et on obtient

∀(t, u) ∈ ∂∆ A(t, u) = 0 et ∀(t, u) ∈ ∆̊ A(t, u) > 0

La fonction A est de classe C 1 sur A comme composée de telles fonctions et elle atteint son
maximum sur ∆ dans l'ouvert ∆̊ et donc en un point critique. On a
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
∂A
∂t

(t, u) =
ab

2
[− sin(t) sin(u)− (cos(u)− 1) cos(t)] =

ab

2
[cos(t)− cos(t− u)]

∂A
∂u

(t, u) =
ab

2
[(cos(t)− 1) cos(u) + sin(u) sin(t)] =

ab

2
[cos(t− u)− cos(u)]

Ainsi ∇A(t, u) = (0, 0) ⇐⇒
®
cos(t)− cos(t− u) = 0

cos(t− u)− cos(u) = 0

⇐⇒
®
cos(t) = cos(u)

cos(t)− cos(t− u) = 0
⇐⇒

®
u = 2π − t

cos(t)− cos(2t) = 0

et avec la relation cos(2t) = 2 cos2 t− 1 pour t réel, on obtient après factorisation

∇A(t, u) = (0, 0) ⇐⇒
®
u = 2π − t

(2 cos(t) + 1)(cos(t)− 1) = 0
⇐⇒ (t, u) =

Å
2π

3
,
4π

3

ã
On conclut

L'aire du triangle est maximale pour les points M :

Ç
−a

2
,
b
√
3

2

å
et N :

Ç
−a

2
,−b

√
3

2

å
.

Exercice 6 (****)

Soit
∑

anz
n une série entière de rayon de convergence R > 0. On dé�nit

∀(x, y) ∈ B(0,R) f(x, y) =
+∞∑
n=0

an(x+ iy)n

1. Montrer que f est de classe C 2 sur B(0,R). On pourra montrer le caractère C 1 puis
généraliser le procédé employé.

2. Déterminer ∆f .

Corrigé : 1. Soit y ∈ ]−R ;R [ et I =
ó
−
√

R2 − y2 ;
√

R2 − y2
î
. On pose

∀(n, x) ∈ N× I un(x) = an(x+ iy)n

Pour n entier, on a un de classe C 1 sur I car polynomiale. Par dérivation, on trouve

∀(n, x) ∈ N∗ × I u′
n(x) = nan(x+ iy)n−1

Les séries entières
∑

anz
n et

∑
n⩾1

nanz
n−1 convergent normalement sur tout compact de D(0,R).

On en déduit que la série de fonctions de classe C 1
∑

un converge simplement sur I et la série de
fonctions

∑
n⩾1

u′
n converge normalement donc uniformément sur tout segment [−r ; r ] ⊂ I puisque

le compact [−r ; r ]×{y} est inclus dans D(0,R). Ainsi, la fonction x 7→ f(x, y) est de classe C 1

sur I avec

∀(x, y) ∈ B(0,R)
∂f

∂x
(x, y) =

+∞∑
n=1

nan(x+ iy)n−1

Par ailleurs, la fonction (x, y) 7→ ∂f

∂x
(x, y) est continue sur B(0,R) puisque c'est la composée de

(x, y) 7→ (x+ iy) linéaire avec la fonction z 7→
+∞∑
n=1

nanz
n−1 somme de série entière donc continue

sur D(0,R). Ainsi, on l'existence de la dérivée partielle
∂f

∂x
et sa continuité sur D(0,R). On
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procède à l'identique pour la dérivée partielle en y. Puis, on applique ce résultat sur les fonctions
dérivées partielles premières et on prouve l'existence et la continuité des dérivées partielles de f
d'ordre 2 sur B(0,R). On conclut

f ∈ C 2(B(0,R),C)

2. En appliquant les résultats établis à la première question, on a

∀(x, y) ∈ B(0,R)
∂f

∂x
(x, y) =

+∞∑
n=1

nan(x+ iy)n−1 ∂f

∂y
(x, y) =

+∞∑
n=1

inan(x+ iy)n−1

puis ∀(x, y) ∈ B(0,R)
∂2f

∂x2
(x, y) =

+∞∑
n=2

n(n− 1)an(x+ iy)n−2

et
∂2f

∂y2
(x, y) =

+∞∑
n=2

(i)2n(n− 1)an(x+ iy)n−2 = −∂2f

∂x2
(x, y)

On conclut ∆f = 0

Remarque : La fonction f est dite harmonique.
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