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Dans tout ce qui suit, l'ensemble I désigne un intervalle ouvert non vide de R et les ensembles
E, F, G, H des R-ev normés de dimensions �nies.

Notations : Soit g : U → R avec U ⊂ E et a ∈ U. Pour f : U → F, on note f(x) =
x→a

o(g(x)) si,

pour x au voisinage de a, on a f(x) = g(x)ε(x) avec ε(x) −−→
x→a

0F. La notation o(1) pour x→ a

désigne une fonction de limite nulle dans F en a. Dans ce qui suit, on notera abusivement o(h)
pour o(∥h∥) ou ∥h∥o(1) lorsque h→ 0E.

I Di�érentielle

1 Dé�nitions

Dé�nition 1. Soit U ouvert de E, a ∈ U et f : U → F. On dit que f di�érentiable en a s'il
existe ℓ ∈ L (E,F) telle que

f(a+ h) =
h→0

f(a) + ℓ(h) + o(h)

On dit que ℓ est une application linéaire tangente à f en a.

Dé�nition 2. Soit U ouvert de E, a ∈ U et f : U → F. On appelle développement limité de f
à l'ordre 1 en a une égalité de la forme

f(a+ h) = f(a) + ℓ(h) + o(h) avec ℓ ∈ L (E,F)

Proposition 1. Soit U ouvert de E, a ∈ U. Si f admet un développement limité en a à l'ordre
1, alors celui-ci est unique.

Démonstration. Soit a ∈ U et x ∈ E. On a clairement tx −−→
t
>→0

0E. Considérons deux dévelop-

pements limités de f en a et montrons qu'ils coïncident. On note

f(a+ h) =
h→0

f(a) + ℓ1(h) + o(h) et f(a+ h) =
h→0

f(a) + ℓ2(h) + o(h)

avec ℓ1, ℓ2 ∈ L (E,F). Il s'ensuit, en considérant une asymptotique pour t
>→ 0

(ℓ1 − ℓ2)(tx) =
t
>→0

o(tx) = t∥x∥o(1)

d'où (ℓ1 − ℓ2)(x) =
t
>→0

∥x∥o(1) −−→
t
>→0

0

ce qui prouve ℓ1 = ℓ2.

Dé�nition 3. Soit U ouvert de E, a ∈ U et f : U → F di�érentiable en a. L'application linéaire
tangente à f en a est appelée di�érentielle de f en a et notée df(a) ∈ L (E,F) avec

df(a) :

®
E −→ F

h 7−→ df(a) · h

Remarque : On peut parler de l'application linéaire tangente (et non d'une application) par
unicité de celle-ci.

Dé�nition 4. Soit U ouvert de E et f : U → F. On dit que f est di�érentiable sur U si f est
di�érentiable en tout point de U et on note df l'application di�érentielle dé�nie par

df :

®
U −→ L (E,F)

a 7−→ df(a)
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2 Propriétés

Proposition 2. Soit U ouvert de E, a ∈ U et f : U → F di�érentiable en a. Alors, la fonction
f admet le développement limité à l'ordre 1 en a

f(a+ h) =
h→0

f(a) + df(a) · h+ o(h)

Démonstration. Immédiate.

Proposition 3. Soit U ouvert de E, a ∈ U, L = (ε1, . . . , εm) une base de F et f =
m∑
j=1

fjεj :

U → F avec les fj fonctions coordonnées. On a

f di�érentiable en a ⇐⇒ fj di�érentiable en a pour j ∈ [[ 1 ; m ]]

et dans ce cas df(a) =
m∑
j=1

dfj(a)εj

Démonstration. On note
(
ε∗j
)
1⩽j⩽m

la base duale de (εj)1⩽j⩽m qui véri�e ε∗j(εi) = δi,j pour tout

(i, j) ∈ [[ 1 ; m ]]2. Supposons f di�érentiable en a, on a

f(a+ h) = f(a) + df(a) · h+ o(h)

Pour j ∈ [[ 1 ; m ]], en composant par ε∗j , il vient par continuité et donc caractère lipschitzien en
zéro de ε∗j :

fj(a+ h) = fj(a) +
(
ε∗j ◦ df(a)

)
· h+ o(h)

d'où la di�érentiabilité des fonctions coordonnées. Réciproquement, si pour tout j ∈ [[ 1 ; m ]],
on a

fj(a+ h) = fj(a) + dfj(a) · h+ o(h)

alors f(a+ h) =
m∑
i=1

fj(a)εj +

Ç
m∑
j=1

dfj(a)εj

å
· h+ o(h)

d'où le résultat.

Proposition 4. Les applications constantes de E dans F sont di�érentiables en tout point de
di�érentielle nulle.

Démonstration. Immédiate.

Proposition 5. Soit f ∈ L (E,F). L'application f est di�érentiable en tout point a ∈ E avec
df(a) = f .

Démonstration. On a f(a + h) = f(a) + f(h) d'où f di�érentiable en tout point a ∈ E avec
df(a) = f .

Exemple : Soit E = Mn(R) et f : E → E dé�nie par f(M) = M2 pour M ∈ E. Pour A ∈ E,
on a

∀H ∈ E f(A + H) = A2 +AH+ HA+H2 = f(A) + AH + HA+H2

En munissant E d'une norme sous-multiplicative, on a

∀H ∈ E ∥H2∥ ⩽ ∥H∥2 = o(∥H∥)

d'où ∀H ∈ E f(A + H) = f(A) + ℓ(H) + o(H) avec ℓ(H) = AH + HA

On conclut que f est di�érentiable en A avec df(A) : E → E,H 7→ AH+HA.
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Proposition 6. Soit f : I → F et a ∈ I. On a

f dérivable en a ⇐⇒ f di�érentiable en a

et dans ce cas ∀h ∈ R df(a) · h = f ′(a)h

! Avertissement : Cette équivalence a lieu pour f dé�nie sur un intervalle.

Démonstration. Supposons f dérivable en a. On a

f(a+ h) = f(a) + f ′(a)h+ o(h)

d'où f di�érentiable en a et ∀h ∈ R df(a) · h = f ′(a)h

Réciproquement, supposons f di�érentiable en a. On a

f(a+ h) = f(a) + df(a) · h+ o(h)

d'où, pour h ̸= 0
f(a+ h)− f(a)

h
= df(a) · 1 + o(1) −−→

h→0
df(a) · 1

Ainsi, la fonction f est dérivable avec f ′(a) = df(a) · 1.

Proposition 7. Soit U ouvert de E, a ∈ U et f : U → F. Si f est di�érentiable en a, alors f
est continue en a.

Démonstration. Immédiat par continuité de df(a) comme application linéaire sur un espace de
dimension �nie.

3 Opérations

Proposition 8. Soit U ouvert de E, a ∈ U, f, g : U → F et λ réel. Si f et g et sont di�éren-
tiables en a, alors l'application f + λg est di�érentiable en a avec

d(f + λg)(a) = df(a) + λdg(a)

Démonstration. On a

(f + λg)(a+ h) = (f + λg)(a) + (df(a) + λdg(a)) · h+ o(h)

avec df(a) + λdg(a) ∈ L (E,F). Ainsi, l'application f + λg est di�érentiable en a avec d(f +
λg)(a) = df(a) + λdg(a).

Théorème 1. Soit U ouvert de E. L'ensemble des fonctions di�érentiables de U dans F est un
sev de F (U,F).

Démonstration. L'application nulle est di�érentiable et on a la stabilité par combinaison li-
néaire.

Théorème 2. Soit U ouvert de E, f : U → F, g : U → G et B : F × G → H une application
bilinéaire. Si f et g sont di�érentiables sur U, alors l'application B(f, g) est di�érentiable sur
U avec

dB(f, g) = B(df, g) + B(f, dg)
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Démonstration. Soit a ∈ U. Par linéarité sur la première variable puis sur la seconde variable
en ne détaillant que les termes d'ordre au plus 1, on trouve

B(f, g)(a+ h) = B(f(a+ h), g(a+ h))

= B(f(a) + df(a) · h+ o(h), g(a) + dg(a) · h+ o(h))

B(f, g)(a+ h) = B(f(a), g(a)) + B(df(a) · h, g(a)) + B(f(a), dg(a) · h)+

B(f(a), o(h)) + B(df(a) · h, dg(a) · h+ o(h)︸ ︷︷ ︸
=o(1)

) + B(o(h), g(a+ h))

On a B(df(a), g(a))+B(f(a), dg(a)) : h 7→ B(df(a) ·h, g(a))+B(f(a), dg(a) ·h) ∈ L (E,H). Il
reste à véri�er que les termes qui suivent forment un o(h). Comme df(a) est linéaire sur E de
dimension �nie et comme B est bilinéaire sur E2 produit d'espaces de dimension �nie, il existe
C1 et C2 positives telles que

∀(x, y, z) ∈ E× F×G ∥df(a) · x∥ ⩽ C1∥x∥ ∥B(y, z)∥ ⩽ C2∥y∥∥z∥

On en déduit que l'expression restant du développement précédent est majorée en norme par

C2∥f(a)∥∥h∥o(1) + C2C1∥h∥o(1) + C2∥h∥o(1)∥g(a+ h)∥ = ∥h∥o(1)

Autrement dit, on a

B(f, g)(a+ h) = B(f(a), g(a)) + B(df(a) · h, g(a)) + B(f(a), dg(a) · h) + o(h)

Corollaire 1. Soit U ouvert de E, f, g : U → F avec F une algèbre. Si f et g sont di�érentiables
sur U, alors l'application fg l'est avec

d(fg) = (df)g + f(dg)

Démonstration. On considère B : F2 → F, (x, y) 7→ xy.

Théorème 3. Soit U ouvert de E, F1, . . . ,Fp des R-ev normés de dimensions �nies, fi : U →

Fi di�érentiable sur U et M :
p∏

i=1

Fi → G application p-linéaire avec p ⩾ 2. L'application

M(f1, . . . , fp) : U → G, x 7→ M(f1(x), . . . , fp(x)) est di�érentiable sur U avec

dM(f1, . . . , fp) = M(df1, f2, . . . , fp) + M(f1, df2, . . . , fp) + . . .+M(f1, . . . , fp−1, dfp)

Démonstration. On procède par récurrence sur p. On a

M(f1(a+ h), . . . , fp+1(a+ h)) =

M(f1(a+ h), . . . , fp(a+ h), fp+1(a)) + M(f1(a+ h), . . . , fp(a+ h), dfp+1(a) · h)+
M(f1(a+ h), . . . , fp(a+ h), o(h))

Puis ∥M(f1(a+ h), . . . , fp(a+ h), o(h))∥ ⩽ C∥h∥o(1)
p∏

i=1

∥fi(a+ h)∥ = o(h)

Par hypothèse de récurrence, il vient

M(f1(a+ h), . . . , fp(a+ h), fp+1(a)) =

M(f1, . . . , fp+1)(a) + M(df1, f2, . . . , fp+1)(a) · h+ . . .+M(f1, . . . , dfp, fp+1)(a) · h+ o(h)
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Puis, on décompose dans B = (e1, . . . , en) base de E avec h =
n∑

i=1

hiei avec les hi réels

M(f1(a+ h), . . . , fp(a+ h), dfp+1(a) · h) =
n∑

i=1

hi M(f1(a+ h), . . . , fp(a+ h), dfp+1(a) · ei)︸ ︷︷ ︸
=M(f1(a),...,fp(a),dfp+1(a)·ei)+o(1)

= M(f1(a), . . . , fp(a), dfp+1(a) · h) + o(h)

Le résultat suit.

Théorème 4. Soit U ouvert de E, a ∈ U, V ouvert de F, f : U → F et g : V → G avec
f(U) ⊂ V. Si f et g sont di�érentiables respectivement en a et f(a), alors g◦f est di�érentiable
en a avec

d(g ◦ f)(a) = dg(f(a)) ◦ df(a)

Démonstration. On a

g ◦ f(a+ h) = g (f(a) + df(a) · h+ o(h))

= g ◦ f(a) + dg(f(a)) · (df(a) · h+ o(h)) + o (df(a) · h+ o(h))

= g ◦ f(a) + [dg(f(a)) ◦ df(a)] · h+ dg(f(a)) · o(h) + o(df(a) · h+ o(h))

Les applications df(a) et dg(f(a)) sont lipschitziennes de constantes respectives C1,C2 ⩾ 0
d'où

∥dg(f(a)) · o(h)∥ ⩽ C2∥h∥o(1)

et ∥o(df(a) · h+ o(h))∥ = ∥df(a) · h+ o(h)∥o(1) ⩽ (C1∥h∥+ ∥h∥o(1)) o(1) = ∥h∥o(1)

Ainsi g ◦ f(a+ h) = g ◦ f(a) + [dg(f(a)) ◦ df(a)] · h+ o(h)

d'où le résultat.

Corollaire 2. Soit U ouvert de E, a ∈ U, φ : I → R et f : U → R telle que f(U) ⊂ I. Si f est
di�érentiable en a et φ dérivable en f(a), alors φ ◦ f est di�érentiable en a avec

d(φ ◦ f)(a) = φ′ ◦ f(a)df(a)

Démonstration. D'après la proposition 6, on a φ di�érentiable en f(a) puis, d'après le théorème
4, il vient pour h ∈ E

d(φ ◦ f)(a) · h = dφ(f(a)) ◦ df(a) · h = φ′ ◦ f(a)df(a) · h
d'où le résultat.

Remarque : L'ensemble I est un intervalle d'où l'usage licite de la dérivabilité.

Applications : On en déduit d(fn) = nfn−1df , d
Å
1

f

ã
= − 1

f 2
df si f ne s'annule pas , etc.

. . .
Les applications coordonnées sur Rn sont clairement di�érentiables puisque linéaires. Par pro-
duit et combinaison linéaire, il s'ensuit que les applications polynomiales le sont aussi et par
composition et produit, les fonctions rationnelles le sont sur leur ensemble de dé�nition (néces-
sairement ouvert . . .)

Remarque : Dans la notation
∫ b

a

f(x)dx avec f ∈ C 0([ a ; b ] ,R), il est d'usage de voir le terme

dx comme un élément in�nitésimal. Cette notation est compatible avec le point de vue d'une
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di�érentielle lors d'un changement de variables : si on pose x = φ(t) avec φ ∈ C 1(J, I) où I, J
sont des intervalles de R avec (a, b) ∈ (Im φ)2, en considérant t = id , il vient

dx = d(φ ◦ t) = φ′ ◦ t dt = φ′(t) dt

Corollaire 3 (Dérivée le long d'un arc). Soit U ouvert de E, f : U → F et γ : I → E avec
γ(I) ⊂ U. Si γ est dérivable en t ∈ I et si f est di�érentiable en γ(t), alors f ◦ γ est dérivable
en t et

(f ◦ γ)′(t) = df(γ(t)) · γ′(t)

Démonstration. On γ di�érentiable en t avec dγ(t) = h 7→ γ′(t)h. D'après le théorème précé-
dent, on a f ◦ γ di�érentiable en t avec

d(f ◦ γ)(t) = df(γ(t)) ◦ dγ(t) = df(γ(t)) ◦ (h 7→ γ′(t)h)

On conclut avec (f ◦ γ)′(t) = d(f ◦ γ)(t) · 1.

Remarque : En particulier, pour γ : t 7→ x+ th, on a

d

dt
f(x+ th) = df(x+ th) · h

II Dérivée selon un vecteur, dérivée partielle

1 Dérivée selon un vecteur

Dé�nition 5. Soit U ouvert de E, a ∈ U, v ∈ E et f : U → F. On dit que f est dérivable en a
selon le vecteur v si la fonction t 7→ f(a+ tv) est dérivable en zéro. On note alors

Dvf(a) = lim
t→0

f(a+ tv)− f(a)

t

qu'on appelle vecteur dérivée de f en a selon le vecteur v.

Remarque : Pour v ∈ E, la fonction t 7→ f(a + tv) est dé�nie sur un intervalle ouvert centré
en zéro. C'est immédiat si v = 0E et sinon, comme a ∈ U avec U ouvert, il existe r > 0 tel que
B(a, r) ⊂ U et

a+ tv ∈ B(a, r) ⇐⇒ t ∈
ò
− r

∥v∥
;
r

∥v∥

ï
Dé�nition 6. Soit U ouvert de E, v ∈ E et f : U → F. On dit que f est dérivable sur U selon
le vecteur v si f dérivable en tout point de U selon le vecteur v et on note Dvf l'application
dérivée selon v dé�nie par

Dvf :

®
U −→ F

a 7−→ Dvf(a)

Théorème 5. Soit U ouvert de E, a ∈ U et f : U → F. Si f est di�érentiable en a, alors
l'application f est dérivable en a selon tout vecteur v ∈ E et on a

Dvf(a) = df(a) · v
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Démonstration. Soit v ∈ E. Comme tv −−→
t→0

0E, on a

f(a+ tv) =
t→0

f(a) + df(a) · tv + |t| ∥v∥o(1)

Comme |t| /t est bornée pour t ̸= 0, il vient

f(a+ tv)− f(a)

t
= df(a) · v + o(1)

Remarque : La réciproque est fausse. Considérons la fonction f dé�nie sur R2 par

∀(x, y) ∈ R2 f(x, y) =


x3

y
si y ̸= 0

0 sinon

−1

0

1

−1 −0.5 0 0.5 1

−10

0

10

Figure 1 � Tracé de la surface d'équation z = f(x, y)

Soit y ̸= 0. On a
f(tx, ty)− f(0, 0)

t
= t

x3

y
−−→
t→0

0

et pour y = 0
f(tx, ty)− f(0, 0)

t
= 0

Donc f est dérivable selon tout vecteur en (0, 0). Cependant, on a

(x, x3) −−→
x→0

(0, 0) et ∀x ̸= 0 f(x, x3) = 1 −̸−→
t→0

f(0, 0)

ce qui prouve que f n'est pas continue en (0, 0) et ne peut donc être di�érentiable en (0, 0). Cet
exemple illustre également le fait qu'une fonction peut être dérivable selon tout vecteur en un
point sans y être continue.

2 Dérivée partielle, gradient

Dans ce qui suit, on suppose que B = (e1, . . . , en) est une base de E et L = (ε1, . . . , εm)

une base de F. Pour x ∈ E, on note x =
n∑

i=1

xiei sa décomposition dans B. Les xi sont les

coordonnées de x dans B. Pour f : U → F avec U ⊂ E, on s'autorise à confondre les écritures
f(x) et f(x1, . . . , xn).
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Dé�nition 7. Soit U ouvert de E, a ∈ U, f : U → F et i ∈ [[ 1 ; n ]]. On dit que f admet une
i-ème dérivée partielle en a dans la base B si f est dérivable en a selon ei, i.e. t 7→ f(a+ tei)

dérivable en zéro. On note cette i-ème dérivée partielle ∂if(a) ou encore
∂f

∂xi
(a), c'est-à-dire

∂if(a) =
∂f

∂xi
(a) = Deif(a)

Rermarque : La notation
∂f

∂xi
(a) est malheureuse puisqu'il n'y a aucune raison a priori que xi

désigne la i-ème coordonnée selon ei. Mais l'usage s'est répandu d'où la nécessité de connaître
et manipuler cette notation.

Dé�nition 8. Soit U ouvert de E, f : U → F et i ∈ [[ 1 ; n ]]. On dit que f admet une i-ème
dérivée partielle sur U dans la base B si f est dérivable en tout point de U selon ei. On note

cette i-ème dérivée partielle ∂if ou encore
∂f

∂xi
, c'est-à-dire

∂if =
∂f

∂xi
:

®
U −→ F

a 7−→ Deif(a)

Proposition 9. Soit U ouvert de E, a ∈ U et f =
m∑
j=1

fjεj : U → F avec les fj fonctions

coordonnées. Pour i ∈ [[ 1 ; n ]], on a

f admet une i-ème dérivée partielle en a ⇐⇒ fj admet une i-ème dérivée partielle en a pour
tout j ∈ [[ 1 ; m ]]

et dans ce cas ∂if(a) =
m∑
j=1

∂ifj(a)εj

Démonstration. Conséquence des théorèmes sur les fonctions vectorielles.

Théorème 6. Soit U ouvert de E, a ∈ U et f : U → F. Si f est di�érentiable en a, alors ses
dérivées partielles en a dans la base B existent et on a

∀i ∈ [[ 1 ; n ]] ∂if(a) = df(a) · ei

et ∀h =
n∑

i=1

hiei ∈ E df(a) · h = Dhf(a) =
n∑

i=1

hi∂if(a)

Démonstration. L'existence des dérivées partielles et leur expression fonction de df est une
conséquence du théorème 5. La dernière égalité vient par linéarité de df(a) pour a ∈ U :

df(a) · h = df(a) ·
Å

n∑
i=1

hiei

ã
=

n∑
i=1

hidf(a) · ei =
n∑

i=1

hi∂if(a)

Remarques : (1) On peut aussi écrire df(a) =
n∑

i=1

∂if(a)e
∗
i avec (e∗i )1⩽i⩽n base duale de B

(également couramment noté df(a) =
n∑

i=1

∂if(a)dxi avec (dxi)1⩽i⩽n base duale de B).

(2) Comme pour le théorème 5, la réciproque est fausse. Il su�t de considérer le contre-exemple
correspondant.
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Corollaire 4. Soit U ouvert de E, a ∈ U et f : U → F. Si f est di�érentiable en a, on a le
développement limité à l'ordre 1

f(a+ h) = f(a) +
n∑

i=1

hi∂if(a) + o(h)

Démonstration. Immédiate.

Proposition 10. Soit U ouvert de E, a ∈ U, f : U → F et i ∈ [[ 1 ; n ]]. Si f admet une i-ème
dérivée partielle en a, alors on a

∂if(a) =
∂f

∂xi
(a) =

d

dxi
[f(a1, . . . , xi, . . . , an)] |xi=ai

Plus généralement, si f admet une i-ème dérivée partielle sur U, on a

∀x ∈ U ∂if(x) =
∂f

∂xi
(x) =

d

dxi
[f(x1, . . . , xi, . . . , xn)]

Démonstration. Conséquence de la dé�nition de la dérivée de f en a selon ei :

1

t
[f(a1, . . . , ai + t, . . . , an)− f(a)] −−→

t→0

d

dxi
[f(a1, . . . , xi, . . . , an)] |xi=ai

Commentaire : En pratique, pour calculer la i-ème dérivée partielle d'une fonction (si elle
existe), on �ge toutes les autres variables et on dérive en xi.

Exemple : Soit f dé�nie sur R2 par

∀(x, y) ∈ R2 f(x, y) =


x3

x2 + y2
si (x, y) ̸= (0, 0)

0 sinon

L'application est di�érentiable sur R2 ∖ {(0, 0)} (fonction rationnelle). Par exemple, pour cal-

culer
∂f

∂x
(x, y), on dérive f en la variable x en considérant y constante. On trouve

∀(x, y) ∈ R2 ∖ {(0, 0)} ∂f

∂x
(x, y) =

3x2(x2 + y2)− 2x4

(x2 + y2)2
=
x2(x2 + 3y2)

(x2 + y2)2

Pour savoir si f admet en (0, 0) des dérivées partielles selon x et selon y, on étudie les limites
des taux d'accroissements suivants :

f(x, 0)− f(0, 0)

x− 0
= 1 −−→

x→0
1 =⇒ ∂f

∂x
(0, 0) existe et

∂f

∂x
(0, 0) = 1

f(0, y)− f(0, 0)

y − 0
= 0 −−→

y→0
0 =⇒ ∂f

∂y
(0, 0) existe et

∂f

∂y
(0, 0) = 0

Théorème 7. Soit U ouvert de E euclidien, B = (e1, . . . , en) base orthonormée de E, a ∈ U
et f : U → R. Si f est di�érentiable en a, il existe un unique vecteur de E noté ∇f(a) tel que

∀h ∈ E df(a) · h = ⟨∇f(a), h⟩

et ∇f(a) =
n∑

i=1

∂if(a)ei
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Démonstration. On a df(a) ∈ L (E,R) donc l'existence et unicité de∇f(a) est une conséquence
immédiate du théorème de représentation de Riesz. Par ailleurs, on a

∇f(a) =
n∑

i=1

⟨∇f(a), ei⟩ ei =
n∑

i=1

(df(a) · ei) ei =
n∑

i=1

∂if(a)ei

Dé�nition 9. Soit U ouvert de E euclidien, a ∈ U et f : U → R di�érentiable en a. Le vecteur
∇f(a) est appelé gradient de l'application f en a.

Exemple : Soit f dé�nie sur R2 par f : (x, y) 7→ x2 + 3xy. On a

∀(x, y) ∈ R2 ∇f(x, y) = (2x+ 3y, 3x)

Corollaire 5. Soit U ouvert de E euclidien, a ∈ U et f : U → R. Si f est di�érentiable en a,
on a le développement limité à l'ordre 1

f(a+ h) = f(a) + ⟨∇f(a), h⟩+ o(h)

Démonstration. Immédiate.

Proposition 11. Soit U ouvert de E euclidien, a ∈ U et f : U → R di�érentiable en a.
Si ∇f(a) ̸= 0E, alors le vecteur unitaire selon lequel la dérivée de f en a est maximale est
positivement colinéaire au gradient.

Démonstration. Soit h ∈ E normé. D'après l'inégalité de Cauchy-Schwarz, on a

Dhf(a) = df(a) · h = ⟨∇f(a), h⟩ ⩽ ∥∇f(a)∥

et la dérivée de f en a selon h est donc maximale si l'inégalité est une égalité donc si h est
positivement colinéaire à ∇f(a).

Remarque : Cette propriété justi�e l'intérêt de la méthode du gradient.

3 Matrice jacobienne

Dans ce qui suit, on suppose que B = (e1, . . . , en) est une base de E et L = (ε1, . . . , εm) une
base de F. Les dérivées partielles sont relatives à la base B. Pour f : U → F avec U ouvert de

E, on note f =
m∑
i=1

fiεi avec les fi applications coordonnées de f dans L .

! Avertissement : On choisit les indices pour la cohérence avec ce qui suit.

Proposition 12. Soit U ouvert de E, a ∈ U et f : U → F. Si f est di�érentiable en a, la
matrice de df(a) dans les bases B et L est donnée par

matB,L df(a) =
(
∂jfi(a)

)
(i,j)∈[[ 1 ;m ]]×[[ 1 ;n ]]

Démonstration. Conséquence du théorème 6 et de la proposition 3

∀h ∈ E df(a) · h =
n∑

j=1

∂fj(a)hj =
m∑
i=1

Ç
n∑

j=1

∂jfi(a)hj

å
εi
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Dé�nition 10. Soit U ouvert de Rn, a ∈ U et f = (f1, . . . , fm) : U → Rm. Si f est di�érentiable
en a, on dé�nit la matrice jacobienne de f en a notée Jf (a) comme matrice de df(a) dans les
bases canoniques de Rn et Rm, c'est-à-dire

Jf (a) =
(
∂jfi(a)

)
(i,j)∈[[ 1 ;m ]]×[[ 1 ;n ]]

=

Å
∂fi
∂xj

(a)

ã
(i,j)∈[[ 1 ;m ]]×[[ 1 ;n ]]

Exemples : 1. Soit f(x, y) = (x + y, xy, x2 + y2) pour tout (x, y) ∈ R2. L'application f est à
coordonnées polynomiales donc f di�érentiable. La matrice jacobienne en (x, y) est

Jf (x, y) =

Ñ
1 1
y x
2x 2y

é
Ainsi, pour a = (a1, a2) ∈ R2, notant X⊤ =

(
x y

)
, on a

Jf (a)X =

Ñ
1 1
a2 a1
2a1 2a2

éÅ
x
y

ã
=

Ñ
x+ y

a2x+ a1y
2(a1x+ a2y)

é
autrement dit ∀(x, y) ∈ R2 df(a) · (x, y) = (x+ y, a2x+ a1y, 2(a1x+ a2y))

2. Soit f(x, y) = x2 + 3xy pour tout (x, y) ∈ R2. L'application f est polynomiale donc f
di�érentiable. La matrice jacobienne en (x, y) est la matrice ligne

Jf (x, y) =
(
2x+ 3y 3x

)
Ainsi, pour a = (a1, a2) ∈ R2, notant X⊤ =

(
x y

)
, on a

Jf (a)X =
(
2a1 + 3a2 3a1

)Åx
y

ã
= (2a1 + 3a2)x+ 3a1y

autrement dit ∀(x, y) ∈ R2 df(a) · (x, y) = (2a1 + 3a2)x+ 3a1y

4 Opérations

On conserve les conventions �xées à la sous-partie précédente.

Proposition 13. Soit U ouvert de E, f, g : U → F, a ∈ U et λ réel. Si f et g admettent des
dérivées partielles en a, alors f + λg également et

∀j ∈ [[ 1 ; n ]] ∂j(f + λg)(a) = ∂jf(a) + λ∂jg(a)

Démonstration. Immédiate.

Proposition 14. Soit U ouvert de Rn, f, g : U → Rm et a ∈ U et λ réel. Si f et g sont
di�érentiables en a, alors

Jf+λg(a) = Jf (a) + λJg(a)

Démonstration. Soit comme conséquence de ce qui précède, soit comme conséquence de la
linéarité de la di�érentiation d.
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Proposition 15. Soit U ouvert de E, a ∈ U, f : U → F, g : U → G et B : F × G → H une
application bilinéaire. Si f et g admettent des dérivées partielles en a, alors B(f, g) également
et

∀j ∈ [[ 1 ; n ]] ∂jB(f, g)(a) = B(∂jf, g)(a) + B(f, ∂jg)(a)

Démonstration. Immédiat par propriétés sur des fonctions d'une variable réelle dérivable en un
point appliquées à t 7→ B(f(a+ tej), g(a+ tej)) avec j ∈ [[ 1 ; n ]].

Théorème 8 (Règle de la chaîne ou dérivation composée). Soit U ouvert de E, a ∈ U,
V ouvert de F, f : U → F et g : V → G avec f(U) ⊂ V. Si f et g sont di�érentiables
respectivement en a et f(a), alors g ◦ f admet des dérivées partielles en a et

∀j ∈ [[ 1 ; n ]] ∂jg ◦ f(a) =
m∑
i=1

∂ig(f(a))∂jfi(a)

Démonstration. On a d(g ◦ f)(a) = dg(f(a)) ◦ df(a)

et ∀j ∈ [[ 1 ; n ]] ∂j(g ◦ f)(a) = d(g ◦ f)(a) · ej

= dg(f(a)) · (df(a) · ej) = dg(f(a)) · ∂jf(a)

Par ailleurs, on a ∂jf(a) =
m∑
i=1

∂jfi(a)εi

d'où ∂j(g ◦ f)(a) =
m∑
i=1

∂jfi(a) dg(f(a)) · εi =
m∑
i=1

∂jfi(a)∂ig(f(a))

Remarque : Ce résultat est souvent énoncé sous la forme suivante

d

dui
[f(x1(u1, . . . , um), . . . , xn(u1, . . . , um))] =

n∑
k=1

∂kf(x(u))∂ixk(u)

Avec des approximations au premier ordre, on peut retrouver intuitivement ce résultat :

f(x(u1, . . . , ui + δui, . . . , um)) ≃ f(x(u) + ∂ix(u)δui) ≃ f(x(u)) + δui
n∑

k=1

∂kf(x(u))∂ixk(u)

Corollaire 6 (Règle de la chaîne). Soit U ouvert de E, I intervalle ouvert de R, t ∈ I,
x : I → E et f : U → F avec x(I) ⊂ U. Si x est dérivable t et si f est di�érentiable en x(t),
alors f ◦ x est dérivable en t et

(f ◦ x)′(t) =
n∑

j=1

x′j(t)∂jf(x(t))

Démonstration. Conséquence directe du résultat précédent (pour une fonction d'une seule va-
riable, l'existence de dérivées partielles est simplement la dérivabilité).

Théorème 9. Soit U ouvert de Rn, a ∈ U, V ouvert de Rm, f : U → Rm et g : V → Rp avec
f(U) ⊂ V. Si f est di�érentiable en a et g di�érentiable en f(a), alors

Jg◦f (a) = Jg(f(a))Jf (a)

Démonstration. Soit comme conséquence du théorème 8, soit comme écriture matricielle du
théorème 4.

B. Landelle 13 ISM MP



III Fonctions de classe C 1

Dans ce qui qui, on note B = (e1, . . . , en) une base de E. Les dérivées partielles sont relatives
à la base B. Pour U ouvert de E, une application f : U → F est dite de classe C 0 si elle est
continue sur U. On note C 0(U,F) l'ensemble des fonctions de classe C 0 sur U.

1 Dé�nitions, propriétés

Dé�nition 11. Soit U ouvert de E et f : U → F. L'application f est dite de classe C 1 sur
l'ouvert U si elle est di�érentiable sur U et si df est continue sur U.

Notations : On note C 1(U,F) l'ensemble des fonctions de classe C 1 de U dans F.

Théorème 10. Soit U ouvert de E et f : U → F. La fonction f est de classe C 1 sur U si et
seulement si ses dérivées partielles dans une base existent en tout point de U et sont continues
sur U.

Démonstration. En annexe.

Commentaire : Établir la seule di�érentiabilité d'une application n'est pas trivial. Ce théo-
rème fournit un critère simple à véri�er en pratique pour un résultat plus fort que la di�éren-
tiabilité, d'où sa très grande utilité.

Corollaire 7. Les applications constantes et linéaires de E dans F sont de classe C 1.

Démonstration. Immédiat pour les applications constantes dont les dérivées partielles sont
nulles. Si f ∈ L (E,F), on trouve ∂if(a) = f(ei) pour tout a ∈ E et i ∈ [[ 1 ; n ]] donc les
dérivées partielles sont constantes et par conséquent continues.

! On admet momentanément que la combinaison linéaire, le produit et la composition de
fonctions de C 1 est encore de classe C 1 (ces résultats seront établis plus généralement pour des
fonctions de classe C k avec k ∈ N ∪ {∞}).

Corollaire 8. Les fonctions polynomiales sur Rn sont de classe C 1 et les fonctions rationnelles
sur Rn sont de classe C 1 sur leur ensemble de dé�nition (qui est nécessairement un ouvert de
Rn . . .).

Démonstration. Les applications coordonnées sont linéaires donc de classe C 1. Par produit et
combinaison linéaire, les fonctions polynomiales sont de classe C 1 sur Rn. Considérons R :
x 7→ P/Q(x). La fonction R est bien dé�nie sur Q−1(R∗), ouvert comme image réciproque d'un
ouvert par une application continue. Par composition et produit, on conclut que R est de classe
C 1 sur Q−1(R∗).

Proposition 16. Soit U ouvert de E. On a

C 1(U,F) ⊂ C 0(U,F)

Démonstration. Le caractère C 1 implique di�érentiable qui implique continue.
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Exemples : 1. Soit f dé�nie sur R2 par

∀(x, y) ∈ R2 f(x, y) =


x3

x2 + y2
si (x, y) ̸= (0, 0)

0 sinon

L'application est de classe C 1 sur R2 ∖ {(0, 0)} (fonction rationnelle) et on a

∀(x, y) ∈ R2 ∂f

∂x
(x, y) =


3x2(x2 + y2)− 2x4

(x2 + y2)2
=
x2(x2 + 3y2)

(x2 + y2)2
si (x, y) ̸= (0, 0)

1 sinon

Or ∀y ̸= 0
∂f

∂x
(0, y) = 0 ̸−−→

y→0
1 =

∂f

∂x
(0, 0)

Ainsi f /∈ C 1(R2,R)

−1 −0.5 0
0.5 1−1

0

1
0

0.5

1

Figure 2 � Graphe de z =
∂f

∂x
(x, y)

2. Soit f dé�nie sur R2 par

∀(x, y) ∈ R2 f(x, y) =


x2y2

x2 + y2
si (x, y) ̸= (0, 0)

0 sinon

L'application est de classe C 1 sur R2 ∖ {(0, 0)} (fonction rationnelle) et on a

∀(x, y) ∈ R2 ∂f

∂x
(x, y) =


2xy4

(x2 + y2)2
si (x, y) ̸= (0, 0)

0 sinon

Puis

∣∣∣∣∂f∂x (x, y)− ∂f

∂x
(0, 0)

∣∣∣∣ ⩽ 2 |x| −−−−−−→
(x,y)→(0,0)

0

Par un argument de symétrie, on aura la même régularité pour la dérivée partielle en y et on
conclut

f ∈ C 1(R2,R)
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Figure 3 � Graphe de z =
∂f

∂x
(x, y)

2 Intégration le long d'un chemin

Théorème 11. Soit U ouvert de E, f ∈ C 1(U,F) et γ ∈ C 1(I,E) avec I intervalle ouvert
contenant [ 0 ; 1 ] et γ(I) ⊂ U. Notant a = γ(0) et b = γ(1), on a

f(b)− f(a) =

∫ 1

0

df(γ(t)) · γ′(t) dt

Démonstration. D'après le corollaire 3, la fonction f ◦ γ est dérivable sur I avec (f ◦ γ)′(t) =
df(γ(t)) ·γ′(t) pour t ∈ I. D'après le théorème fondamental d'intégration appliqué à la fonction
continue (f ◦ γ)′, il vient∫ 1

0

(f ◦ γ)′(t) dt = f(γ(1))− f(γ(0)) = f(b)− f(a)

Corollaire 9. Soit U ouvert de E, f ∈ C 1(U,F). Pour [ a ; b ] ⊂ U, on a

f(b)− f(a) =

∫ 1

0

df(a+ t(b− a)) · (b− a) dt

Démonstration. Si a = b, le résultat est trivial. On suppose a ̸= b. Par ouverture de U, on
dispose de ε > 0 tel que B(a, ε) ⊂ U et B(b, ε) ⊂ U. Avec δ = ε/∥b− a∥ et I = ]−δ ; 1 + δ [, on
dé�nit γ : I → U, t 7→ a+ t(b− a). Il su�t alors d'appliquer le résultat précédent.

Corollaire 10. Soit U ouvert connexe par arcs de E et f ∈ C 1(U,F). On a

f constante ⇐⇒ df = 0 ⇐⇒ ∀i ∈ [[ 1 ; n ]] ∂if = 0

Démonstration. Pour la première équivalence, le sens direct est immédiat. Montrons la réci-
proque dans le cas où U est convexe (cas général hors-programme). Pour (a, b) ∈ U2, on a
[ a ; b ] ⊂ U et le résultat découle alors du corollaire précédent. La dernière équivalence peut se
voir comme conséquence du théorème 6.
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3 Vecteurs tangents à une partie

Dé�nition 12. Si X est une partie de E et x ∈ X, un vecteur v ∈ E est dit tangent à X en x
s'il existe ε > 0 et un arc γ : ]−ε ; ε [ → X, dérivable en 0 tel que γ(0) = x et γ′(0) = v.

Notation : On note TxX l'ensemble des vecteurs tangents à X en x qu'on appelle espace
tangent à X en x (appellation qui ne �gure pas dans le programme o�ciel).

−1 −0.5 0
0.5 1−1

0

1
0.5

1

Figure 4 � Vecteur tangent au graphe de z = e−x2−y2

Exemples : 1. Soit X = x + F avec x ∈ E et F un sev de E. Soit v ∈ TxX, ε > 0 et
γ : ]−ε ; ε [ → X un arc associé à v. Pour h ̸= 0, on a

1

h
(γ(h)− γ(0)) =

1

h
(γ(h)− x− (γ(0)− x)) −−→

h→0
γ′(0) = v

et est à valeurs dans F fermé d'où v ∈ F. Réciproquement, pour v ∈ F, l'arc γ : t 7→ x+ tv est
dérivable en 0 avec γ(0) = x et γ′(0) = v d'où TxX = F.

2. Soit E euclidien, a ∈ E, r > 0, X = S(a, r) et x ∈ X. Soit v ∈ TxX, ε > 0 et γ : ]−ε ; ε [ → X
un arc associé à v. On a ⟨γ(t)− a, γ(t)− a⟩ = r2 pour tout t ∈ ]−ε ; ε [ et par dérivation en 0,
il vient

⟨γ′(0), γ(0)− r⟩ = ⟨v, x− a⟩ = 0

ce qui prouve TxX ⊂ Vect (x − a)⊥. On peut montrer l'inclusion réciproque avec quelques

e�orts. Soit v ∈ Vect (x − a)⊥ non nul (le cas v = 0E est trivial). On note e1 =
x− a

∥x− a∥
et

e2 =
v

∥v∥
qui forme une famille orthonormée de E. On pose

∀t ∈ R γ(t) = a+ r

Å
cos

Å∥v∥
r
t

ã
e1 + sin

Å∥v∥
r
t

ã
e2

ã
et on véri�e que γ est à valeurs dans S(a, r) avec γ(0) = x et γ′(0) = v.

3. On munit l'espace R3 de sa structure euclidienne canonique pour la dé�nition et la proposition
qui suivent.

Dé�nition 13. Soit U ouvert de R2 et f : U → R. On appelle graphe de f l'ensemble dé�ni
par

{(x, y, z) ∈ U× R | z = f(x, y)} ou {(x, y, f(x, y)), (x, y) ∈ U}
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Proposition 17. Soit U ouvert de R2, f : U → R di�érentiable en M0 = (x0, y0) ∈ U. On note

A0 = (x0, y0, f(M0)),
−→
n0 =

Å
∂f

∂x
(M0),

∂f

∂y
(M0),−1

ã
. Notant X le graphe de f , on a

TA0X ⊂ Vect (
−→
n0)

⊥

Démonstration. Soit v un vecteur tangent au graphe en A0. Il existe alors ε > 0 et γ : ]−ε ; ε [ →
X associé à v. On a γ(t) = (x(t), y(t), f(x(t), y(t)) pour t ∈ ]−ε ; ε [ avec x, y dérivables en 0 et
f di�érentiable en M0 avec (x, y)(0) = M0. Par dérivation (avec la règle de la chaîne), il vient

γ′(0) =

Å
x′(0), y′(0), x′(0)

∂f

∂x
(M0) + y′(0)

∂f

∂y
(M0)

ã
et clairement γ′(0) ∈ Vect

Å
∂f

∂x
(M0),

∂f

∂y
(M0),−1

ã⊥

Remarques : (1) Le plan a�ne A0+Vect (
−→
n0)

⊥ est appelé plan tangent à la surface d'équation
z = f(x, y) en A0 et on a

(x, y, z) ∈ A0 +Vect (
−→
n0)

⊥ ⇐⇒ z = f(M0) +
∂f

∂x
(M0)(x− x0) +

∂f

∂y
(M0)(y − y0)

(2) On peut démontrer que l'inclusion est une égalité mais ceci requiert un théorème di�cile.

−1 −0.5 0
0.5 1−1

0

1
0

1

Figure 5 � Plan tangent au graphe de z = e−x2−y2 et contenant un vecteur tangent

Théorème 12. Soit U ouvert de E, f ∈ C 1(U,R), λ réel et X = f−1({λ}) une ligne de niveau
de f . Pour x ∈ X tel que df(x) ̸= 0L (E,R), on a

TxX = Ker df(x)

Si l'espace E est euclidien, on a TxX = ∇f(x)⊥

Démonstration partielle. Soit v ∈ TxX, ε > 0 et γ : ]−ε ; ε [ → X un arc associé à v. On a

∀t ∈ ]−ε ; ε [ f(γ(t)) = λ

La fonction f ◦ γ est dérivable en 0 avec

(f ◦ γ)′(0) = df(γ(0)) · γ′(0) = df(x) · v = 0
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ce qui prouve l'inclusion TxX ⊂ Ker df(x). L'inclusion réciproque requiert un théorème di�cile
et hors-programme (théorème des fonctions implicites). Si E est euclidien, on a df(x) · h =
⟨∇f(x), h⟩ pour tout h ∈ E et le résultat suit.

Remarque : Pour E = Rn muni de sa structure euclidienne canonique, on a

v ∈ ∇f(x)⊥ ⇐⇒
n∑

i=1

∂if(x)vi = 0

x

y

f(x, y) = 0 •
A0

∇f(A0)

A0 + TA0Γ

Figure 6 � Tangente en A0 dirigée par TA0Γ avec Γ : f(x, y) = 0

Exemple : Soit U ouvert de R3, f ∈ C 1(U,R) et S la surface de R3 décrite par l'équation
f(x, y, z) = 0. En un point A0 = (x0, y0, z0) ∈ U dit régulier, c'est-à-dire tel que ∇f(A0) ̸= 0,
on dé�nit le plan tangent à S en A0 comme le plan a�ne A0 + TA0S. On a

M ∈ A0 + TA0S ⇐⇒
〈
∇f(A0),

−−→
A0M

〉
= 0

En particulier, pour le cas d'un graphe décrit par z = f(x, y) en A0 = (M0, f(M0)), on retrouve
le vecteur −→n0 introduit précédemment en considérant g(x, y, z) = z − f(x, y) avec

∇g(A0) = −−→
n0 =

Å
−∂f
∂x

(M0),−
∂f

∂y
(M0), 1

ã
IV Optimisation, premier ordre

1 Extremums locaux, globaux

Dé�nition 14. Soit A une partie de E, a ∈ A et f : A → R. On dit que f admet un minimum
local, respectivement maximum local, en a s'il existe un voisinage V de a tel que

∀x ∈ V ∩ A f(x) ⩾ f(a)

respectivement ∀x ∈ V ∩ A f(x) ⩽ f(a)

Un extremum local est un maximum ou minimum local.

Vocabulaire : On rappelle qu'un voisinage V de a est un ensemble contenant un ouvert
contenant a.
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Figure 7 � Minimum et maximum local

Dé�nition 15. Soit A une partie de E, a ∈ A et f : A → R. On dit que f admet un minimum
global, respectivement maximum global, en a si

∀x ∈ A f(x) ⩾ f(a)

respectivement ∀x ∈ A f(x) ⩽ f(a)

Un extremum global est un maximum ou minimum global.

Remarque : Un extremum global est nécessairement local.

Vocabulaire : Si une des inégalités précédentes est stricte pour x ∈ V ∩ A ∖ {a} ou pour
x ∈ A∖ {a}, on parle d'extremum strict.

2 Point critique

Dé�nition 16. Soit U ouvert de E, a ∈ U et f : U → R di�érentiable en a. On dit que le point
a est point critique de f si df(a) = 0L (E,R).

Proposition 18. On suppose E muni d'une base quelconque B = (e1, . . . , en). Soit U ouvert
de E, a ∈ U et f : U → R di�érentiable en a. On a

df(a) = 0 ⇐⇒ ∀i ∈ [[ 1 ; n ]] ∂if(a) = 0

Si E est euclidien, on a df(a) = 0 ⇐⇒ ∇f(a) = 0

Démonstration. Conséquence immédiate des théorèmes 6 et 7.

Théorème 13 (Condition nécessaire d'extremum local). Soit U ouvert de E, a ∈ U et
f : U → R di�érentiable. Si f admet un extremum local en a , alors le point a est point critique.

Démonstration. Soit a un extremum local de f et V un voisinage ouvert de a tel que l'inégalité
est satisfaite sur V ∩U. L'ensemble V ∩U est un ouvert de E comme intersection �nie d'ouverts
et contient a donc contient une boule ouverte B(a, ε) avec ε > 0. Soit v vecteur non nul de E.
Il existe un intervalle J = ]−δ ; δ [ tel que a+ tv ∈ B(a, ε) (on choisit δ = ε/∥v∥). On pose

∀t ∈ J g(t) = f(a+ tv)
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D'après le corollaire 3, la fonction g = f ◦ (t 7→ a + tv) est dérivable en 0. Or, la fonction g
admet un extremum local en 0 point intérieur de J donc g′(0) = 0 et on a

g′(0) = Dvf(a) = df(a) · v
Ainsi, la di�érentielle s'annule en tout vecteur d'où df(a) = 0.

−1 −0.5 0
0.5 1−1

0

1
−1

−0.5

Figure 8 � Extremum local suivant une courbe coordonnée

! Avertissements : Il est indispensable de travailler sur un ouvert. Ce résultat est important
puisqu'il permet de localiser les potentiels extremums locaux. En�n, la réciproque est fausse.

Contre-exemples : 1. Pour une fonction d'une variable réelle, on peut considérer t 7→ t3 par
exemple.
2. Sur R2, on pose f : (x, y) 7→ xy. Le point (0, 0) est point critique de f mais n'est pas
extremum local de f . On dit qu'il s'agit d'un point col ou point selle (en référence à un col de
montagne ou une selle de cheval).

−1 −0.5
0 0.5

1

−1

0

1

−1

0

1

Figure 9 � Point col ou point selle

Exemples : 1. Soit f : (x, y) 7→ 3x2 + 3xy + y2. On a

∀(x, y) ∈ R2 f(x, y) =

Å
3

2
x+ y

ã2
+

3

4
x2 ⩾ 0 = f(0, 0)
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2. Soit f : (x, y) 7→ x2 + y2 + x3. On a (0, 0) point critique puis

f(x, y)− f(0, 0) = (x2 + y2) (1 + o(1)) ⩾ 0 localement et f(x, 0) −−−−→
x→−∞

−∞

Le point (0, 0) est un minimum local non global.

3. Soit f : R2 → R, (x, y) 7→ xy(1− x− y) et A = {(x, y) ∈ R2 | x ⩾ 0, y ⩾ 0, x+ y ⩽ 1}.

x

y

A

x

y

Å

Figure 10 � Domaines A et Å

La fonction f est continue car polynomiale. L'ensemble A est un fermé borné de R2, espace
de dimension �nie et par conséquent A est compact. D'après le théorème des bornes atteintes,
la fonction f admet un minimum et un maximum sur A. Les extremums de f sont atteints
soit sur ∂A, soit dans Å. On trouve en munissant par exemple R2 de ∥ · ∥∞ l'intérieur Å =
{(x, y) ∈ R2 | x > 0, y > 0, x+ y < 1} et on voit que f(x, y) > 0 pour (x, y) ∈ Å. On observe
que f(x, y) = 0 pour (x, y) ∈ ∂A puisque

∀t ∈ [ 0 ; 1 ] f(0, t) = f(t, 0) = f(t, 1− t) = 0

On en déduit que la fonction f atteint son minimum sur A en tout point de ∂A et son maximum
sur A dans Å. La fonction f est de classe C 1 sur Å car polynomiale et elle atteint son maximum
sur A dans l'ouvert Å donc en un point critique. On trouve pour (x, y) ∈ Å

∇f(x, y) = (0, 0) ⇐⇒
®
y(1− y − 2x) = 0

x(1− x− 2y) = 0
⇐⇒ (x, y) =

Å
1

3
,
1

3

ã
3 Optimisation sous contrainte

Proposition 19. Soit U ouvert de E, X ⊂ U, f : U → R. Si la restriction f
X

admet un
extremum local en x ∈ X avec f di�érentiable en x, alors

TxX ⊂ Ker df(x)

Démonstration. Soit v ∈ TxX, ε > 0 et γ : ]−ε ; ε [ → X un arc associé. La fonction f
X

admet
un extremum local en x et par conséquent, la fonction f ◦ γ admet un extremum local en 0,
point intérieur à ]−ε ; ε [. D'après le corollaire 3, la fonction f ◦ γ est dérivable en 0 et on a
(f ◦ γ)′(0) = 0, autrement dit

df(γ(0)) · γ′(0) = df(x) · v = 0

ce qui prouve le résultat attendu.
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Proposition 20. Soit E un K-ev et φ, ψ des formes linéaires sur E. On a

Ker φ ⊂ Ker ψ ⇐⇒ ψ ∈ Vect (φ)

Démonstration. Le sens indirect est immédiat. Supposons Ker φ ⊂ Ker ψ et aussi φ ̸= 0L (E,R)
(sinon, c'est immédiat). Soit x0 ∈ E∖Ker φ. On a E = Ker φ⊕Vect (x0) puis, pour x ∈ E, on
dispose d'un unique couple (u, λ) ∈ Ker φ×K tel que x = u+ λx0. Il vient

ψ(x) = ψ(u) + λψ(x0) = λψ(x0)

Or φ(x) = φ(u) + λφ(x0) = λφ(x0) et φ(x0) ̸= 0

ce qui prouve ψ(x) =
ψ(x0)

φ(x0)
φ(x)

et le résultat suit.

Théorème 14 (Optimisation sous contrainte). Soit U ouvert de E et f, g : U → R de
classe C 1 et X = g−1({0}). Pour x ∈ X tel que dg(x) ̸= 0L (E,R), si la restriction f

X
admet un

extremum local en x, alors df(x) est colinéaire à dg(x).

Démonstration. D'après le théorème 12, on a TxX = Ker dg(x). Puis, d'après la proposition
19, on a TxX ⊂ Ker df(x). Le résultat suit d'après la proposition précédente.

Remarque : Si l'espace E est euclidien, la condition dg(x) ̸= 0 peut s'écrire ∇g(x) ̸= 0 et on
conclut ∇f(x) colinéaire à ∇g(x).

Exemple : Soit s > 0. On note U = ] 0 ; +∞ [n et

∀x = (x1, . . . , xn) ∈ Rn f(x) =
n∏

i=1

xi et g(x) =
n∑

i=1

xi − s

Sur le domaine K = [ 0 ; +∞ [n ∩ g−1({0}) qui est un fermé borné donc un compact de l'espace
de dimension �nie Rn, la fonction continue f y atteint son maximum et celui prend une valeur
strictement positive puisque f(x) > 0 pour tout x ∈ U ∩ g−1({0}). Ce maximum est donc
atteint dans l'ouvert U. On peut alors considérer les restrictions de f et g à U (qu'on notera
simplement f et g) et appliquer le théorème précédent puisque les fonctions polynomiales f et
g sont de classe C 1 sur U avec ∇g(x) ̸= 0 pour x ∈ U. On note désormais X = g−1 ({0}) et
x ∈ X un point en lequel la restriction f

X
admet un maximum global donc local. Le point x

solution est tel que

∇f(x) = λ∇g(x) et g(x) = 0

avec λ réel. On trouve x1 = . . . = xn =
s

n
et par conséquent

∀u = (u1, . . . , un) ∈ U ∩ g−1 ({0}) f(u) ⩽ f(x) =
( s
n

)n

=

Å
1

n

n∑
i=1

ui

ãn

On retrouve alors l'inégalité arithmético-géométrique.

On peut aussi obtenir les conditions du théorème d'optimisation sous contrainte en considérant
le lagrangien :

∀(x, λ) ∈ U× R L(x, λ) = f(x)− λg(x)

Un point critique du lagrangien véri�e les conditions d'un extremum sous contrainte puisque
pour (x, λ) ∈ U× R, on a
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dL(x, λ) = 0 ⇐⇒ df(x) = λdg(x) et g(x) = 0

On peut montrer qu'un extremum libre pour le Lagrangien est un extremum lié pour f , i.e.
un extremum sous la contrainte g(x) = 0. En e�et, soit (a, α) ∈ U × R un extremum libre du
lagrangien, par exemple un minimum local de L. En particulier, le point (a, α) est point critique
de L d'où g(a) = 0. Alors, pour (x, λ) dans un voisinage de (a, α) avec g(x) = 0, il vient

f(x) = L(x, λ) ⩾ L(a, α) = f(a)

V Fonctions de classe C k

Dans ce qui suit, on suppose que B = (e1, . . . , en) est une base de E et L = (ε1, . . . , εm) une
base de F.

1 Dé�nitions, propriétés

Dé�nition 17. Soit U ouvert de E, f : U → F, a ∈ U, k entier non nul et (i1, . . . , ik) ∈
[[ 1 ; n ]]k. On dit que f admet une dérivée partielle k-ème ou d'ordre k en a par rapport aux
places i1, . . . , ik (ou xi1 , . . . , xik) successivement si :

� ∂i1f , ∂i2 (∂i1f), . . ., ∂ik−1
(. . . (∂i1f) . . .) existent sur un voisinage de a ;

� ∂ik
(
∂ik−1

(. . . (∂i1f) . . .)
)
(a) existe.

Dans ce cas, l'élément ∂ik
(
∂ik−1

(. . . (∂i1f) . . .)
)
(a) est appelé dérivée partielle k-ème ou d'ordre

k de f en a par rapport aux places i1, . . . , ik (ou xi1 , . . . , xik) successivement et noté

∂ik . . . ∂i1f(a) ou
∂kf

∂xik . . . ∂xi1
(a)

Si cette k-ème dérivée partielle existe en tout point de U, on dé�nit l'application dérivée partielle
k-ème par rapport aux places i1, . . . , ik (ou xi1 , . . . , xik) successivement notée ∂ik . . . ∂i1f ou

∂kf

∂xik . . . ∂xi1
par

∂ik . . . ∂i1f :

®
U −→ F

a 7−→ ∂ik . . . ∂i1f(a)

Dé�nition 18. Soit U ouvert de E et k entier non nul. Une application f : U → F est dite
de classe C k sur l'ouvert U si ses dérivées partielles d'ordre k existent et sont continues sur U.
Une application est dite de classe C ∞ si elle est de classe C k pour tout k entier.

Notations : Pour k ∈ N ∪ {∞}, on note C k(U,F) l'ensemble des fonctions de classe C k sur
U. On a les relations

∀k ∈ N C k+1(U,F) ⊂ C k(U,F) C ∞(U,F) =

+∞⋂
k=0

C k(U,F)

Remarques : (1) Pour k = 1, on ne retrouve pas la dé�nition du caractère C 1 mais la
caractérisation fournie par le théorème 11 ce qui assure une cohérence de la dé�nition.
(2) Pour n = 1, la dé�nition coïncide avec celle d'une fonction d'une variable réelle.

Proposition 21. Les applications constantes de E dans F sont de classe C ∞ sur E.

Démonstration. Les applications constantes sont di�érentiables de di�érentielles nulles donc de
dérivées partielles à tout ordre nulles d'où le résultat.
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Proposition 22. Les applications linéaires de E dans F sont de classe C ∞.

Démonstration. Soit f ∈ L (E,F). On a f di�érentiable avec ses dérivées partielles contantes
∂if = f(ei) pour tout i ∈ [[ 1 ; n ]]. On conclut d'après le résultat précédent.

Théorème 15. Soit k ∈ N ∪ {∞}, U ouvert de E et f : U → F avec f =
m∑
j=1

fjεj. On a

f ∈ C k(U,F) ⇐⇒ ∀j ∈ [[ 1 ; m ]] fj ∈ C k(U,R)

Démonstration. Par propriétés sur les fonctions vectorielles.

2 Opérations

Dans ce qui suit, on a k ∈ N ∪ {∞}.

Théorème 16. Soit U ouvert de E, f, g : U → F et λ réel. Si f et g sont de classe C k, alors
f + λg l'est aussi.

Démonstration. On procède par récurrence sur k. Le cas k = 0 est vraie. Supposons le résultat
vrai pour k entier. Soient f , g de classe C k+1. D'après la proposition 13, l'application f + λg
admet des dérivées partielles avec

∀i ∈ [[ 1 ; n ]] ∂i(f + λg) = ∂if + λ∂ig

Les fonctions ∂if et ∂ig sont de classe C k d'où ∂i(f+λg) également par hypothèse de récurrence.
Le résultat suit. Le cas k = ∞ s'en déduit.

Corollaire 11. Soit U ouvert de E. L'ensemble C k(U,F) est un R-ev.

Démonstration. L'ensemble C k(U,F) contient la fonction nulle et est stable par combinaison
linéaire donc est un sev de F (U,F).

Théorème 17. Soit U ouvert de E, f : U → F, g : U → G et B : F× G → H bilinéaire. Si f
et g sont de classe C k, alors B(f, g) l'est également.

Démonstration. On procède par récurrence sur k. Le cas k = 0 est vraie car B est continue.
Supposons le résultat vrai pour k entier. Soient f , g de classe C k+1. D'après la proposition 15,
l'application B(f, g) admet des dérivées partielles avec

∀i ∈ [[ 1 ; n ]] ∂iB(f, g) = B(∂if, g) + B(f, ∂ig)

Il su�t ensuite d'appliquer l'hypothèse de récurrence et le théorème 16. Le cas k = ∞ s'en
déduit.

Corollaire 12. Soit U ouvert de E, f : U → F, g : U → R. Si f et g sont de classe C k, alors
gf est de classe C k.

Démonstration. On considère B : R×F → F, (x, y) 7→ xy et on applique le théorème précédent.

Corollaire 13. Soit U ouvert de E et F une algèbre. L'ensemble C k(U,F) est également une
algèbre.
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Démonstration. On véri�e que C k(U,F) est une sous-algèbre de F (U,F). En particulier, on
considère B : F2 → F, (x, y) 7→ xy et on applique le théorème précédent.

Remarque : On utilise ce résultat typiquement avec F = R ou F = Mn(R).

Théorème 18. Soit U ouvert de E, f : U → F, V ouvert de F, g : V → G avec f(U) ⊂ V. Si
f et g sont de classe C k, alors g ◦ f est de classe C k.

Démonstration. On procède par récurrence. C'est immédiat pour k = 0. Supposons le résultat
vrai pour k entier et supposons f, g de classe C k+1. D'après le théorème 8, l'application g ◦ f
admet des dérivées partielles avec

∀j ∈ [[ 1 ; n ]] ∂j(g ◦ f) =
m∑
i=1

(∂jfi)× (∂ig) ◦ f

Le résultat suit par hypothèse de récurrence avec le théorème 16 et le corollaire 12. Le cas
k = ∞ s'en déduit.

Théorème 19. Les fonctions polynomiales sur Rn sont de classe C ∞ et les fonctions ration-
nelles sur Rn sont de classe C ∞ sur leur ensemble de dé�nition.

Démonstration. Les applications coordonnées x 7→ xi sont linéaires donc de classe C ∞. Par
produit(corollaire 13) et combinaison linéaire (théorème 16), le résultat suit pour les fonctions
polynomiales. Par composition (théorème 18)avec la fonction inverse puis produit, le résultat
suit pour les fonctions rationnelles.

Remarque : Le résultat s'étend aux fonctions polynomiales sur Mn(R) puisque Mn(R) est
isomorphe à Rn2

.

Exemples : 1. Le déterminant det : Mn(R) → R est de classe C ∞ car polynomial.

2. Soit f dé�nie sur R2 par

∀(x, y) ∈ R2 f(x, y) =


cos(x)− cos(y)

x− y
si x ̸= y

− sin(x) sinon

Par trigonométrie, on a

∀(x, y) ∈ R2 cos(x)− cos(y) = −2 sin
(x+ y

2

)
sin

(x− y

2

)

On pose ∀t ∈ R φ(t) =


sin(t)

t
si t ̸= 0

1

La fonction φ est de classe C ∞ sur R car développable en série entière avec

∀t ∈ R φ(t) =
+∞∑
n=0

(−1)nt2n

(2n+ 1)!

Or, on a ∀(x, y) ∈ R2 f(x, y) = −φ
(x− y

2

)
sin

(x+ y

2

)
Par composition f ∈ C ∞(R2,R)
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Figure 11 � Graphe de z = f(x, y)

3 Théorème de Schwarz

Théorème 20 (Théorème de Schwarz). Soit U ouvert de E et f ∈ C 2(U,F). On a

∀(i, j) ∈ [[ 1 ; n ]]2
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

ou synthétiquement ∂i∂jf = ∂j∂if

Démonstration. En annexe.

Corollaire 14. Soit U ouvert de E, k entier non nul et f ∈ C k(U,F). Alors, pour (i1, . . . , ik) ∈
[[ 1 ; n ]]k, on a

∀σ ∈ Sk
∂kf

∂xik . . . ∂xi1
=

∂kf

∂xiσ(k) . . . ∂xiσ(1)

ou synthétiquement ∂ik . . . ∂i1f = ∂iσ(k)
. . . ∂iσ(1)

f

autrement dit, les dérivées partielles k-èmes ne dépendent pas de l'ordre de dérivation.

Démonstration. Toute permutation peut s'écrire comme produit de transpositions de type(
1 2

)
,
(
2 3

)
,. . .,

(
k − 1 k

)
. Le résultat suit.

VI Optimisation, deuxième ordre

Dans ce qui suit, l'espace Rn est muni de sa structure euclidienne canonique.

1 Matrice Hessienne

Dé�nition 19. Soit U ouvert de Rn, a ∈ U et f ∈ C 2(U,R). On appelle matrice hessienne de
f en a la matrice notée Hf (a) dé�nie par

Hf (a) =
(
∂i∂jf(a)

)
1⩽i,j⩽n

ou

Å
∂2f

∂xi∂xj
(a)

ã
1⩽i,j⩽n

Proposition 23. Soit U ouvert de Rn, a ∈ U et f ∈ C 2(U,R). On a Hf (a) ∈ Sn(R).
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Démonstration. Conséquence immédiate du théorème de Schwarz.

Théorème 21 (Théorème de Taylor-Young à l'ordre 2). Soit U ouvert de Rn, a ∈ U et
f ∈ C 2(U,R). On a, en confondant Hf (a) et l'application linéaire qui lui est canoniquement
associée

f(a+ h) =
h→0Rn

f(a) + ⟨∇f(a), h⟩+ 1

2
⟨Hf (a) · h, h⟩+ o(∥h∥2)

qu'on peut aussi écrire, en confondant h avec un vecteur de Mn,1(R)

f(a+ h) =
h→0Rn

f(a) +∇f(a)⊤h+
1

2
h⊤Hf (a)h+ o(∥h∥2)

Démonstration. En annexe.

2 Étude au deuxième ordre

Théorème 22. Soit U ouvert de Rn, a ∈ U et f ∈ C 2(U,R). Si la fonction f admet un
minimum local en a, respectivement maximum local, alors le point a est point critique de f et
Hf (a) ∈ S +

n (R), respectivement −Hf (a) ∈ S +
n (R).

Démonstration. Quitte à considérer −f , on peut supposer que le point a est un minimum
local de f . D'après le théorème 13, le point a est point critique de f . La matrice hessienne
Hf (a) symétrique réelle est diagonalisable d'après le théorème spectral. Soit λ ∈ Sp (Hf (a)) et
v ∈ Eλ(Hf (a)) avec ∥v∥ = 1. Supposons λ < 0. Considérant tv avec t→ 0, il vient

f(a+ tv)− f(a) =
t→0

t2

2
⟨Hf (a) · v, v⟩+ t2∥v∥2o(1) =

t→0

t2

2
(λ+ o(1))

Comme λ+o(1) −−→
t→0

λ < 0, on peut choisir t assez proche de zéro pour avoir f(a+tv) < f(a) ce

qui contredit le fait que le point a soit minimum local. On en déduit λ ⩾ 0 et par caractérisation
spectrale des matrices de S +

n (R), le résultat suit.

Théorème 23. Soit U ouvert de Rn, a ∈ U et f ∈ C 2(U,R). Si le point a est point critique de
f et si Hf (a) ∈ S ++

n (R), respectivement −Hf (a) ∈ S ++
n (R), alors le point a est un minimum

local strict, respectivement maximum local strict.

Démonstration. Quitte à considérer −f , on peut supposer Hf (a) ∈ S ++
n (R). On note E = Rn.

Pour h ∈ E, on a f(a+ h)− f(a) =
h→0E

1

2
⟨Hf (a) · h, h⟩+ o(∥h∥2)

Soit B = (e1, . . . , en) une base orthonormée de E constituée de vecteurs propres de Hf (a)
associés aux valeurs propres λ1 ⩽ . . . ⩽ λn. Par caractérisation spectrale des matrices de
S ++

n (R), on a Sp (Hf (a)) ⊂ ] 0 ; +∞ [ d'où λ1 > 0 puis

∀h =
n∑

i=1

hiei ∈ E ⟨Hf (a) · h, h⟩ =
n∑

i=1

λih
2
i ⩾ λ1

n∑
i=1

h2i = λ1∥h∥2

Ainsi, on obtient f(a+ h)− f(a) ⩾
1

2
∥h∥2 (λ1 + o(1))

Comme λ1 + o(1) −−−→
h→0E

λ1, on peut trouver un voisinage V de 0E tel que λ1 + o(1) ⩾
λ1
2
> 0

pour h ∈ V d'où

∀h ∈ V ∖ {0E} f(a+ h)− f(a) > 0

ce qui prouve que le point a est minimal local strict.
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Corollaire 15. Soit U ouvert de R2, a ∈ U, f ∈ C 2(U,R). On dé�nit les notations de Monge

r =
∂2f

∂x2
(a) s =

∂2f

∂x∂y
(a) t =

∂2f

∂y2
(a)

On suppose que le point a est point critique de f . On a

1. Si rt− s2 > 0, le point a est un extremum local de f ;
� Si rt− s2 > 0 et r + t > 0, le point a est un minimum local strict de f ;
� Si rt− s2 > 0 et r + t < 0, le point a est un maximum local strict de f ;

2. Si rt− s2 < 0, le point a n'est pas un extremum local de f (on dit que a est point col ou
point selle) ;

3. Si rt− s2 = 0, on ne peut rien dire.

Démonstration. D'après le théorème spectral, la matrice Hf (a) =

Å
r s
s t

ã
est orthogonalement

semblable à diag(λ1, λ2). On a

det(Hf (a)) = rt− s2 = λ1λ2 et Tr (Hf (a)) = r + t = λ1 + λ2

Si rt − s2 > 0, alors les valeurs propres λ1 et λ2 sont non nulles et de même signe et donc du
signe de λ1 + λ2. Le résultat suit pour ce cas d'après le théorème 23. Si rt − s2 < 0, alors les
valeurs propres λ1, λ2 sont non nulles et de signe opposé. D'après le théorème 22, le point a
n'est ni un minimum, ni un maximum local. En considérant les applications dé�nies sur R2 par
(x, y) 7→ x4 + y4, (x, y) 7→ −(x4 + y4) ou (x, y) 7→ x4 − y4 qui admettent toutes (0, 0) comme
unique point critique, on constate que toutes les con�gurations sont possibles sous la condition
rt− s2 = 0.

Remarque : Le critère portant sur r + t peut être remplacé par un critère portant sur r. En
e�et, si rt − s2 > 0, alors les valeurs propres λ1 et λ2 sont non nulles de même signe d'où un
signe constant pour ⟨Hf (a) · h, h⟩ et en particulier pour h = (1, 0). Le résultat suit.
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Annexes

Caractérisation des fonctions de classe C 1

Théorème 11. Soit U ouvert de E et f : U → F. La fonction f est de classe C 1 sur U si et
seulement si ses dérivées partielles dans une base existent en tout point de U et sont continues
sur U.

Démonstration. Pour i ∈ [[ 1 ; n ]], on pose dxi ∈ L (E,R) dé�nie par dxi(ej) = δi,j pour tout
(i, j) ∈ [[ 1 ; n ]]2. La famille ( dxi)i∈[[ 1 ;n ]] est une base de L (E,R) (appelée base duale) car libre
et génératrice. Par conséquent, la famille (εj dxi)(i,j)∈[[ 1 ;n ]]×[[ 1 ;m ]] est une base de L (E,F) car
libre et de cardinal égal à dimE× dimF. Pour φ ∈ L (E,F), on a la décomposition

φ =
n∑

i=1

φ(ei) dxi =
∑

(i,j)∈[[ 1 ;n ]]×[[ 1 ;m ]]

φj(ei) dxiεj

Supposons f di�érentiable. On a

df(a) =
∑

(i,j)∈[[ 1 ;n ]]×[[ 1 ;m ]]

(dfj(a) · ei) dxiεj =
∑

(i,j)∈[[ 1 ;n ]]×[[ 1 ;m ]]

∂ifj(a) dxiεj

d'où df =
∑

(i,j)∈[[ 1 ;n ]]×[[ 1 ;m ]]

(∂ifj) dxiεj =
n∑

i=1

∂if dxi

Or, on sait

df ∈ C 0(U,L (E,F)) ⇐⇒ ∀(i, j) ∈ [[ 1 ; n ]]× [[ 1 ; m ]] ∂ifj ∈ C 0(U,R)

⇐⇒ ∀i ∈ [[ 1 ; n ]] ∂if ∈ C 0(U,F)

Le sens direct en résulte. Démontrons la réciproque dans le cas où dimE = 2. On munit E de
la norme in�nie relativement à la base B. Soit a ∈ U. Comme U est ouvert, il existe η > 0 tel
que B(a, η) ⊂ U. Soit h ∈ E tel que ∥h∥∞ = max(|h1| , |h2|) < η. On a

f(a+ h)− f(a) = f(a1 + h1, a2 + h2)− f(a1 + h1, a2) + f(a1 + h1, a2)− f(a1, a2)

=

∫ h2

0

∂2f(a1 + h1, a2 + t) dt+

∫ h1

0

∂1f(a1 + t, a2) dt

Par suite

f(a+ h)− f(a)− h1∂1f(a)− h2∂2f(a) =∫ h2

0

[∂2f(a1 + h1, a2 + t)− ∂2f(a1, a2)] dt+

∫ h1

0

[∂1f(a1 + t, a2)− ∂1f(a1, a2)] dt

Pour ε > 0, comme ∂1f et ∂2f sont continues en a, il existe δ > 0 tel que pour ∥h∥∞ < δ

∥∂2f(a1 + h1, a2 + t)− ∂2f(a1, a2)∥ ⩽ ε et ∥∂1f(a1 + t, a2)− ∂1f(a1, a2)∥ ⩽ ε

Ainsi ∥f(a+ h)− f(a)− h1∂1f(a)− h2∂2f(a)∥ ⩽ ε(|h1|+ |h2|) ⩽ 2ε∥h∥∞

D'où f(a+ h)− f(a)− h1∂1f(a)− h2∂2f(a) = o(h)

ce qui prouve que l'application f est di�érentiable sur U avec

∀a ∈ U df(a) · h = h1∂1f(a) + h2∂2f(a)

La continuité des dérivées partielles équivaut à la continuité des dérivées partielles des applica-
tions coordonnées qui équivaut à la continuité de df .

B. Landelle 30 ISM MP



Caractérisation des fonctions constantes

Corollaire 10. Soit U ouvert connexe par arcs de E et f ∈ C 1(U,F). On a

f constante ⇐⇒ df = 0 ⇐⇒ ∀i ∈ [[ 1 ; n ]] ∂if = 0

Pour la réciproque de la première équivalence dans le cas général :

Démonstration. Soit (a, b) ∈ U2. Par connexité par arcs, il existe φ ∈ C 0([ 0 ; 1 ] ,U) tel que
φ(0) = a, φ(1) = b. L'ensemble φ([ 0 ; 1 ]) est compact comme image directe d'un compact
par une application continue. L'application d(·,E ∖ U) est continue car 1-lipschitzienne. Par
conséquent, elle atteint son minimum sur le compact φ([ 0 ; 1 ]) en un point φ(t0) hors du fermé
E∖ U avec t0 ∈ [ 0 ; 1 ] (il s'agit en fait de d(φ([ 0 ; 1 ]),E∖ U)). Ainsi

∀t ∈ [ 0 ; 1 ] d(φ(t),E∖ U) ⩾ ε = d(φ(t0),E∖ U) > 0

Ainsi, pour t ∈ [ 0 ; 1 ] et x ∈ E∖ U, on a

d(x, φ(t)) ⩾ d(φ(t),E∖ U) ⩾ d(φ(t0),E∖ U) ⩾ ε

d'où par contraposée x ∈ B(φ(t), ε) =⇒ x ∈ U

D'après le théorème de Heine, l'application φ est uniformément continue sur le compact [ 0 ; 1 ].
On dispose alors de η > 0 tel que

∀(s, t) ∈ [ 0 ; 1 ]2 |s− t| < η =⇒ ∥φ(s)− φ(t)∥ < ε

On choisit une subdivision (ti)0⩽i⩽n assez �ne pour avoir |ti+1 − ti| < η pour tout i ∈ [[ 0 ; n−1 ]].
Par construction, on a

∀i ∈ [[ 0 ; n− 1 ]] [φ(ti) ;φ(ti+1) ] ⊂ U

En e�et, soit i ∈ [[ 0 ; n− 1 ]] et λ ∈ [ 0 ; 1 ]. On a

∥λφ(ti) + (1− λ)φ(ti+1)− φ(ti)∥ = (1− λ)∥φ(ti+1)− φ(ti)∥ < ε

d'où λφ(ti) + (1− λ)φ(ti+1) ∈ B(φ(ti), ε) ⊂ U

D'après le corollaire précédent, on

∀i ∈ [[ 0 ; n− 1 ]] f(ai) = f(ai+1)

ce qui prouve que la suite (f(ai))0⩽i⩽n est constante et par conséquent

f(a) = f(a0) = f(an) = f(b)

d'où le résultat.

Théorème de Schwarz

Théorème 18 (Théorème de Schwarz). Soit U ouvert de E et f ∈ C 2(U,F). On a

∀(i, j) ∈ [[ 1 ; n ]]2
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

Démonstration. Seuls les cas avec i ̸= j méritent l'attention. On suppose (i, j) = (1, 2) pour
alléger la rédaction. Comme on va �ger toutes les coordonnées sauf les deux premières, on note
abusivement f(x) = f(x1, x2) pour x ∈ U au lieu de f(x1, . . . , xn). Soit a ∈ U. Il existe un
voisinage V de 0 dans R2 tel que a+ (h1, h2, 0, . . . , 0) ∈ U pour h = (h1, h2) ∈ V . On pose

∀(h1, h2) ∈ V ∆(h1, h2) = f(a1 + h1, a2 + h2)− f(a1, a2 + h2)− f(a1 + h1, a2) + f(a1, a2)
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Fixons h ∈ V . D'après le théorème des accroissements �nis appliqué à

φ : t 7→ u(t, h2) = f(a1 + t, a2 + h2)− f(a1 + t, a2)

il existe c1 entre 0 et h1 tel que

∆(h) = φ(h1)− φ(0) = h1φ
′(c1) = h1 (∂1f(a1 + c1, a2 + h2)− ∂1f(a1 + c1, a2))

Puis, avec le théorème des accroissements �nis appliqué à ψ : t 7→ ∂1f(a1 + c1, a2 + t), il existe
c2 entre 0 et h2 tel que

∆(h) = h1 [ψ(h2)− ψ(0)] = h1h2ψ
′(c2) = h1h2∂2∂1f(a1 + c1, a2 + c2)

Par continuité de ∂2∂1f , il vient

∆(h)

h1h2
−−−−→
h→(0,0)

∂2∂1f(a)

En permutant les deux et troisièmes termes dans l'écriture de ∆(h) et en suivant une démarche
identique à précédemment, on obtient

∆(h)

h1h2
−−−−→
h→(0,0)

∂1∂2f(a)

Le résultat suit.

Le théorème de Taylor-Young à l'ordre deux

Théorème 20 (Théorème de Taylor-Young à l'ordre 2). Soit U ouvert de Rn, a ∈ U et
f ∈ C 2(U,R). On a, en confondant Hf (a) et l'application linéaire qui lui est canoniquement
associée

f(a+ h) =
h→0Rn

f(a) + ⟨∇f(a), h⟩+ 1

2
⟨Hf (a) · h, h⟩+ o(∥h∥2)

qu'on peut aussi écrire, en confondant h avec un vecteur de Mn,1(R)

f(a+ h) =
h→0Rn

f(a) +∇f(a)⊤h+
1

2
h⊤Hf (a)h+ o(∥h∥2)

Démonstration. Soit h ∈ E et I un intervalle ouvert contenant [ 0 ; 1 ] tel a + th ∈ U pour
t ∈ [ 0 ; 1 ]. On pose

∀t ∈ I φ(t) = f(a+ th)

La fonction φ = f ◦ (t 7→ a + th) est de classe C 2 sur I par composition. Par Taylor reste
intégral et linéarité de l'intégrale sur le segment [ 0 ; 1 ] :

φ(1) = φ(0) + φ′(0) +

∫ 1

0

φ′′(t)(1− t) dt

= φ(0) + φ′(0) +

∫ 1

0

φ′′(0)(1− t) dt+

∫ 1

0

[φ′′(t)− φ′′(0)] (1− t) dt

Par dérivation, on trouve pour t ∈ I

φ′(t) = df(a+ th) · h =
n∑

j=1

hj∂jf(a+ th)

puis φ′′(t) =
n∑

j=1

hj
d

dt
[∂fj ◦ (t 7→ a+ th)]

=
n∑

j=1

hjd (∂jf) (a+ th) · h =
n∑

j=1

hj

Å
n∑

i=1

hi∂i∂jf(a+ th)

ã
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autrement dit φ′′(t) =
∑

1⩽i,j⩽n

hihj∂i∂jf(a+ th) = ⟨Hf (a+ th) · h, h⟩

Par linéarité de l'intégrale sur le segment [ 0 ; 1 ], il vient

φ(1) = φ(0) + φ′(0) +
1

2
φ′′(0) +

∑
1⩽i,j⩽n

hihj

∫ 1

0

[∂i∂jf(a+ th)− ∂i∂jf(a)] (1− t) dt

Soit (i, j) ∈ [[ 1 ; n ]]2. La fonction ∂i∂jf est continue sur U. Ainsi, pour ε > 0, il existe δ > 0 tel
que, pour ∥h∥ ⩽ δ, on a

∀t ∈ [ 0 ; 1 ] ∥∂i∂jf(a+ th)− ∂i∂jf(a)∥ ⩽ ε

Par inégalité triangulaire, on obtient pour ∥h∥ ⩽ δ∣∣∣∣∣ ∑
1⩽i,j⩽n

hihj

∫ 1

0

[∂i∂jf(a+ th)− ∂i∂jf(a)] (1− t) dt

∣∣∣∣∣ ⩽ ∑
1⩽i,j⩽n

|hi| |hj|
∫ 1

0

ε(1− t) dt ⩽ ε∥h∥21

Les normes sur Rn étant équivalentes, on a donc prouvé∑
1⩽i,j⩽n

hihj

∫ 1

0

[∂i∂jf(a+ th)− ∂i∂jf(a)] (1− t) dt =︸︷︷︸
h→0Rn

o(∥h∥2)

Ainsi f(a+ h) =︸︷︷︸
h→0Rn

f(a) + ⟨∇f(a), h⟩+ 1

2
⟨Hf (a) · h, h⟩+ o(∥h∥2)

Équations aux dérivées partielles d'ordre 1

Proposition 24. Soient I, J des intervalles ouverts non vides de R. Pour f ∈ C 1(I× J,R), on
a

∂f

∂x
= 0 ⇐⇒ ∀(x, y) ∈ I× J f(x, y) = B(y) avec B ∈ C 1(J,R)

Démonstration. La fonction x 7→ f(x, y) est de dérivée nulle sur un intervalle donc constante
vis-à-vis de x mais dépend éventuellement de y d'où f(x, y) = B(y) pour (x, y) ∈ I × J. Pour
x0 ∈ I, on a y 7→ B(y) = f ◦ (y 7→ (x0, y)) de classe C 1 par composition d'où B ∈ C 1(J,R). La
réciproque est immédiate.

Remarque : On dispose d'un résultat identique pour
∂f

∂y
par symétrie des rôles.

Exemple : On a

∂f

∂x
(x, y) = y ⇐⇒ f : (x, y) 7→ xy + B(y) avec B ∈ C 1(R,R)

Dé�nition 20. Une application φ est un changement de variable de classe C 1 d'un ouvert U
de Rn sur V = φ(U) ⊂ Rn si φ est bijective de U sur V, de classe C 1 avec φ−1 de classe C 1.
On dit aussi que φ est un C 1-di�éomorphisme.

Exemple : Passage en coordonnées polaires

L'application

®
] 0 ; +∞ [× ]−π ; π [ → R2 ∖ (R− × {0})
(r, θ) 7→ (r cos(θ), r sin(θ))
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est un changement de variables.

•(x, y)
r
θ

Figure 12 � Coordonnées polaires

Par trigonométrie, on a

tan

Å
θ

2

ã
=

y

x+
√
x2 + y2

d'où

θ = 2Arctan

Ç
y

x+
√
x2 + y2

å θ

•(x, y)

θ/2−
√
x2 + y2

et r =
√
x2 + y2 d'où le caractère C 1 de l'application réciproque.

Méthode avec changement de variables : Deux con�gurations sont possibles.

• On a le changement de variables (u, v) = φ(x, y) avec φ : U → V et U,V des ouverts de R2.

Soit f ∈ C 1(U,R). On a le diagramme commutatif U
f //

φ
��

R

V
f̃

?? ce qui traduit f = f̃ ◦φ ou

encore f̃ = f ◦ φ−1 qui est donc de classe C 1. D'après la règle de la chaîne, il vient
∂f

∂x
=
∂f̃

∂u

∂u

∂x
+
∂f̃

∂v

∂v

∂x

∂f

∂y
=
∂f̃

∂u

∂u

∂y
+
∂f̃

∂v

∂v

∂y

En pratique, on utilise cette écriture � à la physicienne � pour résoudre simplement les EDP
(équations aux dérivées partielles). On peut aussi obtenir cette égalité par le produit des ma-
trices jacobiennes correspondant à l'égalité df = df̃(φ) ◦ dφ :Å

∂f

∂x

∂f

∂y

ã
=

Å
∂f̃

∂u

∂f̃

∂v

ãÖ∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

è
• L'autre con�guration est celle du changement de variables (x, y) = φ(u, v). On a le diagramme

commutatif V
f̃ //

φ
��

R

U
f

?? ce qui traduit f̃ = f ◦φ qui est donc de classe C 1. D'après la règle

de la chaîne, il vient
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
∂f̃

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

∂f̃

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v

Exemples : 1. Résoudre l'équation aux dérivées partielles

2
∂f

∂x
− ∂f

∂y
= x2 (E1)

à l'aide du changement de variables®
u = x

v = x+ 2y
avec (x, y) ∈ R2

On cherche f ∈ C 1(R2,R) solution de l'équation aux dérivées partielles. Notons (u, v) =

φ(x, y) = (x, x + 2y) le changement de variables. On a le diagramme U
f //

φ
��

R

V
f̃

?? donc

f = f̃ ◦ φ.

On trouve


∂f

∂x
=
∂f̃

∂u
+
∂f̃

∂v

∂f

∂y
= 2

∂f̃

∂v

Ainsi f ∈ SE1 ⇐⇒ 2
∂f̃

∂u
= u2 ⇐⇒ f̃(u, v) =

u3

6
+ A(v)

avec A ∈ C 1(R,R). En revenant aux coordonnées d'origine, on conclut que le solutions de (E1)
sont les fonctions de la forme

∀(x, y) ∈ R2 f(x, y) =
x3

6
+ A(x+ 2y) avec A ∈ C 1(R,R)

2. Résoudre l'équation aux dérivées partielles

x
∂f

∂x
+ y

∂f

∂y
= 0 (E2)

avec les coordonnées polaires (x, y) = φ(r, θ) = (r cos(θ), r sin(θ)) où (r, θ) ∈ ] 0 ; +∞ [× ]−π ; π [
et (x, y) ∈ Ω = R2 ∖ (R− × {0}). On est dans la seconde con�guration de changement de
variables avec f̃ = f ◦ φ. D'après la règle de la chaîne, il vient

∂f̃

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
= cos(θ)

∂f

∂x
+ sin(θ)

∂f

∂y

∂f̃

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
= −r sin(θ)∂f

∂x
+ r cos(θ)

∂f

∂y

En particulier r
∂f̃

∂r
= x

∂f

∂x
+ y

∂f

∂y

D'où f ∈ SE2 ⇐⇒ r
∂f̃

∂r
= 0 ⇐⇒ ∂f̃

∂r
= 0 ⇐⇒ f̃(r, θ) = A(θ)
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avec A ∈ C 1(]−π ; π [ ,R). En revenant aux coordonnées d'origine, on conclut que le solutions
de (E2) sont les fonctions de la forme

∀(x, y) ∈ Ω f(x, y) = A

ñ
2Arctan

Ç
x

x+
√
x2 + y2

åô
avec A ∈ C 1(]−π ; π [ ,R)

Équations aux dérivées partielles d'ordre 2

Proposition 25. Soient I, J des intervalles ouverts non vides de R. Pour f ∈ C 2(I× J,R), on
a

∂2f

∂x∂y
= 0 ⇐⇒ f(x, y) = A(x) + B(y)

∂2f

∂x2
= 0 ⇐⇒ f(x, y) = xA(y) + B(y)

∂2f

∂y2
= 0 ⇐⇒ f(x, y) = yA(x) + B(x)

avec A,B de classe C 2.

Démonstration. On a
∂2f

∂x∂y
= 0 ⇐⇒ ∂f

∂y
= b(y) ⇐⇒ f(x, y) = A(x) + B(y)

D'après la proposition 24, la fonction b est de classe C 1 et une de ses primitives B est de classe
C 2. Ensuite, pour y0 ∈ J, on a A : x 7→ f ◦ (x 7→ (x, y0)) − B(y0) de classe C 2 par opérations
sur de telles fonctions.

Puis
∂2f

∂x2
= 0 ⇐⇒ ∂f

∂x
= A(y) ⇐⇒ f(x, y) = xA(y) + B(y)

Soit (x1, x2) ∈ I2 avec x1 ̸= x2. On pose φ1 : y 7→ x1A(y) +B(y) et φ2 : y 7→ x2A(y) +B(y). On
trouve

∀y ∈ J A(y) =
φ1(y)− φ2(y)

x1 − x2
et B(y) =

x2φ1(y)− x1φ2(y)

x2 − x1

Les fonctions φ1, φ2 sont de classe C 2 par composition puisqu'on a φ1 = f ◦ (y 7→ (x1, y))
et φ2 = f ◦ (y 7→ (x2, y)) et le résultat suit pour les fonctions A et B. Les réciproques sont
immédiates.

Dé�nition 21. Une application φ est un changement de variable de classe C k d'un ouvert U
de Rn sur V = φ(U) ⊂ Rn si φ est bijective de U sur V, de classe C k avec φ−1 de classe C k.
On dit aussi que φ est un C k-di�éomorphisme.

Remarque : Il existe un théorème très e�cace pour caractériser un C k-di�éomorphisme (théo-
rème d'inversion globale) mais celui-ci est hors-programme. Caractériser une telle application
ne fait donc pas partie des attendus des candidats aux concours.

Exemples importants : 1. L'équation des ondes

Soit c > 0. Résolvons
∂2f

∂x2
− 1

c2
∂2f

∂t2
= 0

où f : (x, t) 7→ f(x, t) avec f ∈ C 2(R2,R) à l'aide du changement de variable
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®
u = x+ ct

v = x− ct

On a f = f̃ ◦ φ. Avec la règle de la chaîne, il vient
∂f

∂x
=
∂f̃

∂u

∂u

∂x
+
∂f̃

∂v

∂v

∂x
=
∂f̃

∂u
+
∂f̃

∂v

∂f

∂t
=
∂f̃

∂u

∂u

∂t
+
∂f̃

∂v

∂v

∂t
= c

∂f̃

∂u
− c

∂f̃

∂v

puis, en regroupant les dérivées croisées d'après le théorème de Schwarz

∂2f

∂x2
=

∂

∂x

Ç
∂f̃

∂u
+
∂f̃

∂v

å
=
∂2f̃

∂u2
∂u

∂x
+

∂2f̃

∂v∂u

∂v

∂x
+

∂2f̃

∂u∂v

∂u

∂x
+
∂2f̃

∂v2
∂v

∂x
=
∂2f̃

∂u2
+ 2

∂2f̃

∂u∂v
+
∂2f̃

∂v2

et

∂2f

∂t2
=

∂

∂t

Ç
c
∂f̃

∂u
− c

∂f̃

∂v

å
= c

∂2f̃

∂u2
∂u

∂t
+ c

∂f̃

∂v∂u

∂v

∂t
− c

∂2f̃

∂u∂v

∂u

∂t
− c

∂2f̃

∂v2
∂v

∂t
= c2

∂2f̃

∂u2
− 2c2

∂2f̃

∂u∂v
+ c2

∂2f̃

∂v2

Ainsi
∂2f

∂x2
− 1

c2
∂2f

∂t2
= 0 ⇐⇒ ∂2f̃

∂u∂v
= 0

et d'après le résultat de la proposition 25, on a

∂2f̃

∂u∂v
= 0 ⇐⇒ ∀(u, v) ∈ R2 f̃(u, v) = A(u) + B(v)

avec A,B fonctions de C 2(R,R). En revenant aux coordonnées d'origine, on conclut que les
solutions de l'équation des ondes sont les fonctions de la forme

∀(x, t) ∈ R2 f(x, t) = A(x+ ct) + B(x− ct) avec A,B dans C 2(R,R)

2. Laplacien en coordonnées polaires

Dé�nition 22. Soit U ouvert de Rn et f ∈ C 2(U,R). On appelle Laplacien de f la fonction
notée ∆f dé�nie par

∆f =
n∑

i=1

∂2f

∂x2i
=

n∑
i=1

∂2i f

Soit f ∈ C 2(U,R) avec U ⊂ R2 ∖ (R− × {0}). Exprimons le Laplacien de f en fonction des co-
ordonnées polaires (r, θ) liées à (x, y) par le changement de variables (x, y) = (r cos(θ), r sin(θ)).
On a établi précédemment 

∂f̃

∂r
= cos(θ)

∂f

∂x
+ sin(θ)

∂f

∂y

∂f̃

∂θ
= −r sin(θ)∂f

∂x
+ r cos(θ)

∂f

∂y

Toujours avec la règle de la chaîne et en regroupant les dérivées croisées d'après le théorème de
Schwarz, il vient
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∂2f̃

∂r2
=

∂

∂r

Å
cos(θ)

∂f

∂x
+ sin(θ)

∂f

∂y

ã
= cos(θ)

∂

∂r

Å
∂f

∂x

ã
+ sin(θ)

∂

∂r

Å
∂f

∂y

ã
= cos(θ)

Å
∂2f

∂x2
∂x

∂r
+

∂2f

∂y∂x

∂y

∂r

ã
+ sin(θ)

Å
∂2f

∂x∂y

∂x

∂r
+
∂2f

∂y2
∂y

∂r

ã
= cos(θ)

Å
cos(θ)

∂2f

∂x2
+ sin(θ)

∂2f

∂x∂y

ã
+ sin(θ)

Å
cos(θ)

∂2f

∂x∂y
+ sin(θ)

∂2f

∂y2

ã
∂2f̃

∂r2
= cos(θ)2

∂2f

∂x2
+ 2 sin(θ) cos(θ)

∂2f

∂x∂y
+ sin(θ)2

∂2f

∂y2

puis, avec les règles usuelles de dérivation d'un produit de fonctions

∂2f̃

∂θ2
=

∂

∂θ

Å
−r sin(θ)∂f

∂x
+ r cos(θ)

∂f

∂y

ã
= −r cos(θ)∂f

∂x
− r sin(θ)

∂

∂θ

Å
∂f

∂x

ã
− r sin(θ)

∂f

∂y
+ r cos(θ)

∂

∂θ

Å
∂f

∂y

ã
= −r∂f̃

∂r
− r sin(θ)

Å
∂2f

∂x2
∂x

∂θ
+

∂2f

∂y∂x

∂y

∂θ

ã
+ r cos(θ)

Å
∂2f

∂x∂y

∂x

∂θ
+
∂2f

∂y2
∂y

∂θ

ã
= −r∂f̃

∂r
− r sin(θ)

Å
−r sin(θ)∂

2f

∂x2
+ r cos(θ)

∂2f

∂x∂y

ã
+ r cos(θ)

Å
−r sin(θ) ∂

2f

∂x∂y
+ r cos(θ)

∂2f

∂y2

ã
∂2f̃

∂θ2
= −r∂f̃

∂r
+ r2

Å
sin(θ)2

∂2f

∂x2
− 2 sin(θ) cos(θ)

∂2f

∂x∂y
+ cos(θ)2

∂2f

∂y2

ã
Finalement, on obtient ∆f =

∂2f̃

∂r2
+

1

r2
∂2f̃

∂θ2
+

1

r

∂f̃

∂r

L'entropie d'un gaz parfait

Dans le cas d'un gaz parfait, l'entropie S : ] 0 ; +∞ [2 → R, (t, v) 7→ S(t, v) véri�e la relation
suivante :

dS = nc
dT

T
+ nR

dV

V

Les notations (dT, dV) désignent la base duale de la base canonique de R2, c'est-à-dire

∀(t, v) ∈ R2 dT(t, v) = t et dV(t, v) = v

On a ∀(T,V, t, v) ∈ ] 0 ; +∞ [2 × R2 dS(T,V) · (t, v) = nc
t

T
+ nR

v

V

Ainsi, par intégration le long d'un chemin, il vient pour (T0,V0) et (T,V) dans ] 0 ; +∞ [2

S(T,V)− S(T0,V0) =

∫ 1

0

dS ((T0,V0) + u(T− T0,V − V0)) · (T− T0,V − V0) du

=

∫ 1

0

Å
nc

T− T0

T0 + u(T− T0)
+ nR

V − V0

V0 + u(V − V0)

ã
du

S(T,V)− S(T0,V0) = [nc ln (T0 + u(T− T0)) + nR ln (V0 + u(V − V0))]
1
0

On conclut S(T,V)− S(T0,V0) = nc ln

Å
T

T0

ã
+ nR ln

Å
V

V0

ã
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Remarque : Le calcul présenté en physique est cohérent avec le formalisme mathématique
puisqu'on observe par linéarité de l'intégrale puis changement de variables (t = T0+u(T−T0)
pour la première intégrale et v = V0 + u(V − V0) pour la deuxième) :

S(T,V)− S(T0,V0) =

∫ 1

0

nc
T− T0

T0 + u(T− T0)
du+

∫ 1

0

nR
V − V0

V0 + u(V − V0)
du

= nc

∫ T

T0

dt

t
+ nR

∫ V

V0

dv

v

Plus généralement, pour une entropie véri�ant

dS = f(T)dT + g(V)dV

avec f et g continues, on a

S(T,V)− S(T0,V0) =

∫ T

T0

f(t) dt+

∫ V

V0

g(v) dv

Ceci s'explique par le caractère � séparé � des variables dans l'écriture de la di�érentielle dS.
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