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Dans tout ce qui suit, ’ensemble I désigne un intervalle ouvert non vide de R et les ensembles
E, F, G, H des R-ev normés de dimensions finies.

Notations : Soit g : U - Ravec U C Eeta € U. Pour f : U — F, on note f(z) = o(g(x)) si,
r—a
pour z au voisinage de a, on a f(x) = g(x)e(z) avec () — Op. La notation o(1) pour x — a
T—a

désigne une fonction de limite nulle dans F en a. Dans ce qui suit, on notera abusivement o(h)
pour o(||k||) ou ||h]lo(1) lorsque A — Og.

I Différentielle

1 Définitions

Définition 1. Soit U ouvert de E, a € U et f : U — F. On dit que f différentiable en a sl
existe { € L (E,F) telle que

fla+h) = f(a)+£(h) + o(h)

On dit que ¢ est une application linéaire tangente a f en a.

Définition 2. Soit U ouvert de E, a € U et f: U — F. On appelle développement limité de f
a l'ordre 1 en a une égalité de la forme

fla+h)= f(a)+L(h)+ o(h) avec (€ Z(E,F)

Proposition 1. Soit U ouvert de E, a € U. Si f admet un développement limité en a a l’ordre
1, alors celui-ci est unique.

Démonstration. Soit a € U et x € E. On a clairement tx — Og. Considérons deux dévelop-
t30
pements limités de f en a et montrons qu’ils coincident. On note

fla+h) = fla) 4+ 41(h)+o(h) et fla+h) = f(a)+ la(h)+ o(h)

h—0

avec l1,0y € L (E,F). Il s’ensuit, en considérant une asymptotique pour ¢ 30
(6 = L) (tx) = oftx) = t[lx]o(1)

t=0
d’ot (6, — 05)(x) = ||z]|o(1) — 0
t=0 t=0
ce qui prouve {1 = ls. O

Définition 3. Soit U ouvert de E, a € U et f : U — F différentiable en a. L’application linéaire
tangente o f en a est appelée différentielle de f en a et notée df(a) € Z(E,F) avec

q ‘ E—F
fla): {hr—>df(a)'h

Remarque : On peut parler de Papplication linéaire tangente (et non d’une application) par
unicité de celle-ci.

Définition 4. Soit U ouvert de E et f : U — F. On dit que f est différentiable sur U si f est
différentiable en tout point de U et on note df Uapplication différentielle définie par

'{U—L,Z(E,F)
" |a — df(a)
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2 Propriétés

Proposition 2. Soit U ouvert de E, a € U et f: U — F différentiable en a. Alors, la fonction
f admet le développement limité a l'ordre 1 en a

fla+h) = fla)+df(a)-h—+ o(h)

Démonstration. Immeédiate. O

Proposition 3. Soit U ouvert de E, a € U, £ = (e1,...,&y) une base de F et f =" fje; :
j=1
U — F avec les f; fonctions coordonnées. On a

[ différentiable en a <= f; différentiable en a pour j € [1; m]

et dans ce cas df(a) = idfj(a)ﬁfj
j=1

. . N
Démonstration. On note (5j)1<j<m

(i,7) € [1; m]? Supposons f différentiable en a, on a

fla+h) = f(a) +df(a)-h+o(h)
Pour j € [1; m], en composant par £7, il vient par continuité et donc caractére lipschitzien en
zéro de €7 :

la base duale de (g;)1<j<m qui vérifie €7(¢;) = &; ; pour tout

fila+h) = fi(a) + (g5 o df(a)) - h+ o(h)
d’ou la différentiabilité des fonctions coordonnées. Réciproquement, si pour tout j € [1; m],
on a

fila+h) = fi(a) +dfj(a) - h +o(h)

alors fla+h)= ifj(a)ej + (édfj(a)ej) ~h+o(h)

d’out le résultat. O

Proposition 4. Les applications constantes de E dans F sont différentiables en tout point de
différentielle nulle.

Démonstration. Immeédiate. O

Proposition 5. Soit f € Z(E,F). L’application f est différentiable en tout point a € E avec
df(a) = f.

Démonstration. On a f(a + h) = f(a) + f(h) d’ou f différentiable en tout point a € E avec
af(a) = f. .

Exemple : Soit E = .#,(R) et f: E — E définie par f(M) = M? pour M € E. Pour A € E,
on a

VHeE  f(A+H)=A?+AH+HA +H?*= f(A)+ AH + HA + H?
En munissant E d’une norme sous-multiplicative, on a

VHeE [[H?|| < [H|* = o(|IH])

d’ou VHeE  f(A+H)=f(A)+/¢(H)+o(H) avec ¢(H)= AH+ HA
On conclut que f est différentiable en A avec df(A) : E — E,H — AH + HA.
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Proposition 6. Soit f: 1 - F etael Ona

f dérivable en a < f différentiable en a

et dans ce cas Vh € R df(a)-h= f'(a)h

AAvertissement : Cette équivalence a lieu pour f définie sur un intervalle.
Démonstration. Supposons f dérivable en a. On a
fla+h) = f(a) + f'(a)h+ o(h)
d’on f différentiable en a et  Vh € R df(a)-h = f'(a)h
Réciproquement, supposons f différentiable en a. On a
fla+h)= f(a) +df(a) - h+o(h)

fla+h)—f(a)
h
Ainsi, la fonction f est dérivable avec f'(a) = df(a) - 1. O

d’ot, pour h # 0 :df(a)-1+o(1)ﬁ>df(a)-1

Proposition 7. Soit U ouvert de E, a € U et f: U — F. St [ est différentiable en a, alors f
est_continue en a.

Démonstration. Immédiat par continuité de df(a) comme application linéaire sur un espace de
dimension finie. ]

3 Opérations

Proposition 8. Soit U ouvert de E, a € U, f,g: U — F et X\ réel. Si f et g et sont différen-
tiables en a, alors Uapplication f + \g est différentiable en a avec

d(f 4+ Ag)(a) = df(a) + Adg(a)

Démonstration. On a
(f+Ag)(a+h) = (f+Ag)(a) + (df(a) + Adg(a)) - h + o(h)

avec df(a) + Adg(a) € Z(E,F). Ainsi, 'application f + \g est différentiable en a avec d(f +
Ag)(a) = df(a) + Adg(a). O

Théoréme 1. Soit U ouvert de E. L’ensemble des fonctions différentiables de U dans F est un
sev de F (U, F).

Démonstration. L’application nulle est différentiable et on a la stabilité par combinaison li-
néaire. O

Théoréme 2. Soit U ouvert de E, f : U —>F, g: U — G et B: F x G — H une application
bilinéaire. Si f et g sont différentiables sur U, alors Uapplication B(f,g) est différentiable sur
U avec

dB(f,g) = B(df,g) + B(f,dg)
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Démonstration. Soit a € U. Par linéarité sur la premiére variable puis sur la seconde variable
en ne détaillant que les termes d’ordre au plus 1, on trouve

B(f.g)(a+h) =B(f(a+h),g(a+ h))

B(f(a) +df(a) - b+ o(h),g(a) + dg(a) - h + o(h))

B(f(a), g(a)) +B(df(a) - b, g(a)) + B(f(a),dg(a) - h)+
B(f(a),o(h)) + B(df(a) - h,dg(a) ht o(h)) + B(o(h), g(a + h))

S

B(f, 9)(a+h)

=o(1)

On a B(df(a), g(a)) + B(f(a),dg(a)) : h— B(df(a)-h,g(a)) +B(f(a),dg(a) - h) € Z(E, H). 1l
reste & vérifier que les termes qui suivent forment un o(h). Comme df(a) est linéaire sur E de
dimension finie et comme B est bilinéaire sur E? produit d’espaces de dimension finie, il existe
C1 et Cy positives telles que

V(z,y,2) e ExFx G  [[df(a) -zl < Cillzl| By, 2)|| < Callyll|]]
On en déduit que 'expression restant du développement précédent est majorée en norme par
Caollf(a)lIAllo(1) + CoCal[Allo(1) + ColRllo(1)llg(a + R)|| = [[h[lo(1)
Autrement dit, on a
B(f,9)(a+h) =B(f(a),g(a)) + B(df(a) - h,g(a)) + B(f(a),dg(a) - h) + o(h)
m

Corollaire 1. Soit U ouvert de E, f,g : U — F avec F une algébre. Si f et g sont différentiables
sur U, alors l'application fg ’est avec

d(fg) = (df)g + f(dg)

Démonstration. On considére B : F2 — F, (z,y) — xy. O

Théoréme 3. Soit U ouvert de E, Fq,...,F, des R-ev normés de dimensions finies, f; : U —
p

F; différentiable sur U et M : [[F; — G application p-linéaire avec p > 2. L’application
=1

M(fi,---s fp) : U= G,z — M(fi(x), ., fo()) est différentiable sur U avec
dM(fy1,..., fp) = M(df1, fo, .-, fp) + M(fr,df2, .., fp) + o+ M(f1, .o, fo—1,dfp)

Démonstration. On procéde par récurrence sur p. On a

M(fl(a+ h)v tet 7fp+1(a’+ h)) -
MF (@ B fyla+ h), fyer (@) + M(fi(a B), ., fyla+ B),dfyia(a) - B)+
M(fi(a+h),..., fy(a+ h),o(h))

Puis IM(fi(a+h),..., fyla+h),0(h))|| < Cl[hllo(1) IBI1 Ifila + )|l = o(h)

Par hypothése de récurrence, il vient

M(fi(a+h),..., fola+h), frri(a)) =
M(fl, ey fp+1)(a) + M(dfl,fg, NN ,fp+1)(a) ~h+...+ M(fl, ce ,dfp, fp+1)<(l) -h+ O(h)
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n
Puis, on décompose dans & = (ey,...,e,) base de E avec h = > _h;e; avec les h; réels
i=1

M<f1(a+h)a---afp(a+h)>dfp+l(a) ) h) = ihiM<fl(a+h ?"'>fp(a+h)’dfp+1(a) '6i)/

Z M (f1(a), o (@) dfpe1 (a)-€1) +o(1)
= M(fi(a),..., fy(a), dfp+1(a) -h)+o(h)
Le résultat suit. ]

Théoréme 4. Soit U ouvert de E, a € U, V ouvert de F, f : U - F etg:V — G avec
fU) C V. Si f et g sont différentiables respectivement en a et f(a), alors go f est différentiable
en a avec

d(go f)(a) = dg(f(a)) odf(a)

Démonstration. On a
go fla+h)=yg(f(a)+df(a) h+o(h))
= go f(a) +dg(f(a)) - (df(a) - h+o(h)) +o(df(a) h+o(h))

= go f(a) +[dg(f(a)) o df(a)] - h+dg(f(a)) - o(h) + o(df(a) - h + o(h))
Les applications df(a) et dg(f(a)) sont lipschitziennes de constantes respectives C1,Cy > 0
d’ou

1dg(f(a)) - o(M)]l < Callhljo(1)
et [lo(df(a)-h+o(h))] = l[df(a) - h+o(h)[o(1) < (Ci[all + [IA]o(1)) o(1) = [[Allo(1)

Ainsi go fla+h)=go f(a)+[dg(f(a)) odf(a)]- h+ of(h)

d’out le résultat. O

Corollaire 2. Soit U ouvert de E, a € U, ¢ : I >R et f: U — R telle que f(U) C 1. Si f est
différentiable en a et ¢ dérivable en f(a), alors p o f est différentiable en a avec

d(eo f)(a) = ¢’ o fa)df(a)

Démonstration. D’aprés la proposition @, on a  différentiable en f(a) puis, d’aprés le théoréme
il vient pour h € E

d(eo f)a)-h=de(f(a)) odf(a)-h=¢"o fla)df(a)- h

d’ou le résultat. ]

Remarque : L’ensemble I est un intervalle d’ou I'usage licite de la dérivabilité.

.. . 1 1 .
Applications : On en déduit d(f") = nf"'df, d <?> = _Fdf si f ne s’annule pas , etc.
Les applications coordonnées sur R” sont clairement différentiables puisque linéaires. Par pro-
duit et combinaison linéaire, il s’ensuit que les applications polynomiales le sont aussi et par
composition et produit, les fonctions rationnelles le sont sur leur ensemble de définition (néces-
sairement ouvert .. .)

b
Remarque : Dans la notation / f(x)dz avec f € €°([a;b],R), il est d’'usage de voir le terme

a
dx comme un élément infinitésimal. Cette notation est compatible avec le point de vue d'une
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différentielle lors d’un changement de variables : si on pose x = ¢(t) avec ¢ € €1(J, 1) ou I, J
sont des intervalles de R avec (a,b) € (Im ¢)°, en considérant ¢ = id, il vient

de =d(pot) =¢ otdt =¢(t)dt

Corollaire 3 (Dérivée le long d’un arc). Soit U ouvert de E, f: U —F et v:1 — E avec
v(I) € U. Si~y est dérivable ent €1 et si f est différentiable en v(t), alors f o~y est dérivable
ent et

(fo)'(®) =df(r(®) - '(¥)

Démonstration. On v différentiable en ¢t avec dy(t) = h +— ~/(t)h. D’aprés le théoréme précé-
dent, on a f o~ différentiable en t avec

d(f o)(t) = df(7(t)) o dy(t) = df(v(t)) o (h =~ (1)h)
On conclut avec (f o) (t) =d(fov)(t) - 1. O

Remarque : En particulier, pour v : ¢t — x 4 th, on a

%f(x—l—th) =df(z+th)-h

II Dérivée selon un vecteur, dérivée partielle

1 Dérivée selon un vecteur

Définition 5. Soit U ouvert de E, a € U, v e E et f: U — F. On dit que [ est dérivable en a
selon le vecteur v si la fonction t — f(a + tv) est dérivable en zéro. On note alors

Do (@) — g 0+ 1) = £(a)

t—0 t

qu’on appelle vecteur dérivée de f en a selon le vecteur v.

Remarque : Pour v € E, la fonction ¢ — f(a + tv) est définie sur un intervalle ouvert centré
en zéro. C’est immédiat si v = Og et sinon, comme a € U avec U ouvert, il existe r > 0 tel que
B(a,r) C Uet

a+tv € Bla,r) <= tE} —L;L[
[l vl

Définition 6. Soit U ouvert de E, v € E et f: U — F. On dit que f est dérivable sur U selon
le vecteur v si f dérivable en tout point de U selon le vecteur v et on note D, f Uapplication

dérivée selon v définie par
U—F
D,f:

a — D, f(a)

Théoréme 5. Soit U ouvert de E, a € U et f : U — F. Si f est différentiable en a, alors
Papplication f est dérivable en a selon tout vecteur v € E et on a

D,f(a) =df(a)-v
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Démonstration. Soit v € E. Comme tv = Og, on a
—
flattv) = f(a)+dfa)- o+ |t Jollo()

Comme |t| /t est bornée pour t # 0, il vient

fla+tv) = f(a)
t

— df(a)-v +o(1)

Remarque : La réciproque est fausse. Considérons la fonction f définie sur R? par

3

V(z,y) eR*  f(z,y) =< Y 7

0 sinon

FIGURE 1 — Tracé de la surface d’équation z = f(z,y)

_ 3
flin,ty) = £0.0) 2t
t Yy =0
f(tx,ty) _ f(07 0)
t
Donc f est dérivable selon tout vecteur en (0,0). Cependant, on a

(z,2°) — (0,0) et VYx#£0  f(z,2%)=1 — 1(0,0)

ce qui prouve que f n’est pas continue en (0,0) et ne peut donc étre différentiable en (0,0). Cet
exemple illustre également le fait qu’une fonction peut étre dérivable selon tout vecteur en un
point sans y étre continue.

Soit y # 0. On a

=0

et pour y =0

2 Dérivée partielle, gradient

Dans ce qui suit, on suppose que # = (ej,...,e,) est une base de E et & = (gq,...,6m)
n

une base de F. Pour x € E, on note z = > x;e; sa décomposition dans A. Les z; sont les
i=1
coordonnées de z dans ZA. Pour f: U — F avec U C E, on s’autorise & confondre les écritures

f(x) et flxy,...,x,).
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Définition 7. Soit U ouvert de E, a € U, f : U = F eti € [1;n]. On dit que f admet une
i-eme dérivée partielle en a dans la base A si f est dérivable en a selon e;, i.e. t — f(a+ te;)

dérivable en zéro. On note cette i-éme dérivée partielle 0;f(a) ou encore

0f(0) = 5-(a) = Duf(a)

(a), c’est-a-dire

al’i

Rermarque : La notation

of .
(a) est malheureuse puisqu’il n’y a aucune raison a priori que x;
x.

7
désigne la i-éme coordonnée selon e;. Mais 'usage s’est répandu d’ou la nécessité de connaitre
et manipuler cette notation.

Définition 8. Soit U ouvert de E, f : U — F et i € [1;n]. On dit que f admet une i-éme
dérivée partielle sur U dans la base B si f est dérivable en tout point de U selon e;. On note

cette i-eme dérivée partielle O; f ou encore , c’est-a-dire

8%
_of {U—>F

of = or; | a — D..f(a)

Proposition 9. Soit U ouvert de E, a € U et f = > fie; : U = F avec les f; fonctions
j=1

coordonnées. Pouri € [1;n], on a

f admet une i-éme dérivée partielle en a <= f; admet une i-éme dérivée partielle en a pour
tout j € [1; m]

et dans ce cas 0:f(a) = iaz‘fj(a)gj
j=1

Démonstration. Conséquence des théorémes sur les fonctions vectorielles. O

Théoréme 6. Soit U ouvert de E, a € U et f: U — F. Si f est différentiable en a, alors ses
dérivées partielles en a dans la base A existent et on a

Vie[l;n] Oif(a) =df(a)-e;

n

ot Vh=Yhie; €E  df(a) h=Daf(a) = S hidif(a)
=1

i=1

Démonstration. L’existence des dérivées partielles et leur expression fonction de df est une
conséquence du théoréme 5| La derniére égalité vient par linéarité de df(a) pour a € U :

Af(@) = a(0) - (Shier) = Shidf () = Shidif(a)
O]
Remarques : (1) On peut aussi écrire df(a) = > 0;f(a)e; avec (ef)1<i<n base duale de A
i=1

(également couramment noté df(a) = > 0;f(a)dz; avec (dz;)i<icn base duale de A).
i=1

(2) Comme pour le théoréme |5} la récipr—oque est fausse. Il suffit de considérer le contre-exemple
correspondant.
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Corollaire 4. Soit U ouvert de E, a € U et f: U — F. Si f est différentiable en a, on a le
développement limité a ['ordre 1

fla+h) = f(a) + i:lhiaiﬂa) + o(h)

Démonstration. Immeédiate. O

Proposition 10. Soit U ouvert de E, a € U, f: U = F eti € [1;n]. Si f admet une i-éme
dérivée partielle en a, alors on a

af d
(Zf(CI) — 8xl ((Z) — dl’l [f(ala sy Ly e )an)] o
Plus généralement, si f admet une i-éme dérivée partielle sur U, on a
0 d
VoeU  Oif@) = gr(@) = <o f(on oo misee )

Démonstration. Conséquence de la définition de la dérivée de f en a selon e; :

1 d

n [flay,...;a;+t, ... a,) — f(a)] v i (flar, ...,z . an)] |zi=a;

]

Commentaire : En pratique, pour calculer la i-éme dérivée partielle d’une fonction (si elle
existe), on fige toutes les autres variables et on dérive en ;.

Exemple : Soit f définie sur R? par

3

Y(z,y) €R>  f(z,y) =< 22 +y? si (z,y) # (0,0)

0 sinon
L’application est différentiable sur R? \ {(0,0)} (fonction rationnelle). Par exemple, pour cal-

0
culer a—f(:c, y), on dérive f en la variable x en considérant y constante. On trouve
x

0 322 (2% + y?) — 224 2042 1 32
Yoy) € RN A(0.0) 8_£(x’y> == (9(U$2++yy2)2 — = 90(3(::1;" ++y2?;2)

Pour savoir si f admet en (0,0) des dérivées partielles selon z et selon y, on étudie les limites
des taux d’accroissements suivants :

~—0 =1 — 1 = 5 (0,0) existe et 5 (0,0)=1
=0 =0 = 0 = a—y(O, 0) existe et a—y(O, 0)=0
Théoréme 7. Soit U ouvert de E euclidien, B = (e, ..., e,) base orthonormée de E, a € U

et f:U—R. Si [ est différentiable en a, il existe un unique vecteur de E noté V f(a) tel que
Vh e E df(a)-h=(Vf(a),h)

et Vf(a) = ;:aiﬂa)ei
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Démonstration. Onadf(a) € Z(E,R) donc 'existence et unicité de V f(a) est une conséquence
immédiate du théoréme de représentation de Riesz. Par ailleurs, on a

n n

Vi(a) =5 (Vfa),e)er =3 (Af(a) - e;) e = é&f(a)ei

1=1 i=1

]

Définition 9. Soit U ouvert de E euclidien, a € U et f : U — R différentiable en a. Le vecteur
V f(a) est appelé gradient de application [ en a.

Exemple : Soit f définie sur R? par f : (z,y) — 22 + 3zy. On a
V(z,y) eR*  Vf(z,y) = (22 + 3y, 32)

Corollaire 5. Soit U ouvert de E euclidien, a € U et f : U — R. Si f est différentiable en a,
on a le développement limité a 'ordre 1

fla+h) = fla) + (Vf(a),h) + o(h)

Démonstration. Immeédiate. O

Proposition 11. Soit U ouwvert de E euclidien, a € U et f : U — R différentiable en a.
Si Vf(a) # Og, alors le vecteur unitaire selon lequel la dérivée de f en a est mazimale est
positivement colinéaire au gradient.

Démonstration. Soit h € E normé. D’apres l'inégalité de Cauchy-Schwarz, on a

Dif(a) = df(a) - h = (Vf(a), h) < [V f(a)]

et la dérivée de f en a selon h est donc maximale si 'inégalité est une égalité donc si h est
positivement colinéaire & V f(a). O

Remarque : Cette propriété justifie U'intérét de la méthode du gradient.

3 Matrice jacobienne

Dans ce qui suit, on suppose que & = (eq,...,€e,) est une base de E et £ = (eq,...,&,,) une
base de F. Les dérivées partielles sont relatives a la base 4. Pour f : U — F avec U ouvert de

m
E, on note f = ) fie; avec les f; applications coordonnées de f dans .Z.
i=1

AAvertissement : On choisit les indices pour la cohérence avec ce qui suit.

Proposition 12. Soit U ouvert de E, a € U et f : U — F. Si f est différentiable en a, la
matrice de df(a) dans les bases B et £ est donnée par

matgg,gdf<a> = (8jfi(a))(i7j)e[[1;m}]x[[l;n]]

Démonstration. Conséquence du théoréme [6] et de la proposition

m

VheE  df(a)-h— ilafj(a)hj = (iajfi(a)hj> .

=1
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Définition 10. Soit U ouvert deR", a € U et f = (f1,..., fm) : U— R™. Si f est différentiable
en a, on définit la matrice jacobienne de f en a notée J¢(a) comme matrice de df(a) dans les
bases canoniques de R™ et R™, c’est-a-dire

of;
Jr(a) = (ajfi(a))(i,j)e[[l;m]]X[[l%”]] - (8_52(61))

(i)€l1;m]x[1;5n]

Exemples : 1. Soit f(z,y) = (z + v, zy, 2* + y?) pour tout (x,y) € R?. L’application f est a
coordonnées polynomiales donc f différentiable. La matrice jacobienne en (z,y) est

1 1
Jilxy)=|vy =
2z 2y

Ainsi, pour a = (a1, az) € R?, notant X" = (z y), on a

1 1 . T+y
Jr@)X =1 a2 o ( ) = a2 + a1y
201 2as y 2(a1x + asy)

autrement dit V(z,y) € R? df(a) - (z,y) = (x + y, a0x + a1y, 2(a12 + azy))

2. Soit f(x,y) = x? + 3wy pour tout (z,y) € R2 L’application f est polynomiale donc f
différentiable. La matrice jacobienne en (z,y) est la matrice ligne

Jp(z,y) = (20 + 3y 3x)

Ainsi, pour a = (a1, az) € R?, notant X' = (z y), on a

Je(a)X = (2@1 + 3a, 3a1) (5) = (2a1 + 3az)z + 3a1y
autrement dit V(z,y) € R? df(a) - (z,y) = (2a1 + 3az)x + 3a1y

4 Opérations

On conserve les conventions fixées a la sous-partie précédente.

Proposition 13. Soit U ouvert de E, f,g : U — F, a € U et X\ réel. St f et g admettent des
dérivées partielles en a, alors f + A\g également et

Viell;n]l  8(f +Ag)(a) = 9;f(a) + A;g(a)

Démonstration. Immeédiate. O

Proposition 14. Soit U ouvert de R", f,g : U — R™ et a € U et X réel. Si f et g sont
différentiables en a, alors

Jriagla) = Jf(a) + Ay(a)

Démonstration. Soit comme conséquence de ce qui précéde, soit comme conséquence de la
linéarité de la différentiation d. m
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Proposition 15. Soit U ouvert de E, a € U, f : U —>F,g:U—->GetB:FxG— H une
application bilinéaire. Si f et g admettent des dérivées partielles en a, alors B(f,g) également
et

viell;n]  9;B(f 9)(a) = B(9;f g)(a) + B(f, 9;g)(a)

Démonstration. Immédiat par propriétés sur des fonctions d’une variable réelle dérivable en un
point appliquées a ¢t — B(f(a + te;), g(a + te;)) avec j € [1; n]. O

Théoréme 8 (Régle de la chaine ou dérivation composée). Soit U ouvert de E, a € U,
V ouvert de ¥, f : U = Fetg:V — G avec f(U) C V. Si f et g sont différentiables
respectivement en a et f(a), alors go f admet des dérivées partielles en a et

vie[l;n]  go fla) = i":laz-gu(a))ajfi(a)

Démonstration. On a d(go f)(a) =dg(f(a)) odf(a)

et Vie[l;n] dj(go f)(a) =d(go f)(a) - e,
= dg(f(a)) - (df(a) - ¢;) = dg(f(a)) - 8;[(a)

Par ailleurs, on a d;if(a) = éajfi(a)gi
doi 9i(g0 f)(a) = i@-ﬁ(a) dg(f(a) & = iajma)&g(ﬂa))

Remarque : Ce résultat est souvent énoncé sous la forme suivante

dii F a1 (un, o tumn)s o Tty )] = é@kf(x(u))aimk(u)

Avec des approximations au premier ordre, on peut retrouver intuitivement ce résultat :

fla(ug, ..o u + 0wy, .o uy)) =~ flo(u) + O(u)du;) ~ fx(u)) + 6uléﬁkf(x(u))8lxk(u)

Corollaire 6 (Régle de la chaine). Soit U ouvert de E, 1 intervalle ouvert de R, t € 1,
x:1—>Eetf:U—F avec x(I) C U. Si x est dérivable t et si f est différentiable en x(t),
alors f ox est dériwable en t et

n

(fox)(t) = X a;(t)d; f(«(t))

=1

Démonstration. Conséquence directe du résultat précédent (pour une fonction d’une seule va-
riable, I'existence de dérivées partielles est simplement la dérivabilité). O

Théoréme 9. Soit U ouvert de R", a € U, V ouvert de R™, f : U - R™ et g: V — RP avec
fU) C V. Si f est différentiable en a et g différentiable en f(a), alors

Jgor(a) = Jg(f(a))Js(a)

Démonstration. Soit comme conséquence du théoréme [8| soit comme écriture matricielle du
théoréme [l [
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III Fonctions de classe &

Dans ce qui qui, on note & = (ey,...,e,) une base de E. Les dérivées partielles sont relatives
a la base 4. Pour U ouvert de E, une application f : U — F est dite de classe € si elle est
continue sur U. On note €°(U, F) I'ensemble des fonctions de classe €° sur U.

1 Définitions, propriétés

Définition 11. Soit U ouvert de E et f : U — F. L’application f est dite de classe €' sur
Pouvert U si elle est différentiable sur U et si df est continue sur U.

Notations : On note €' (U, F) Pensemble des fonctions de classe ¢! de U dans F.

Théoréme 10. Soit U ouvert de E et f: U — F. La fonction f est de classe €' sur U si et
seulement si ses dérivées partielles dans une base existent en tout point de U et sont continues
sur U.

Démonstration. En annexe. O

Commentaire : Etablir la seule différentiabilité d’une application n’est pas trivial. Ce théo-
réme fournit un critére simple & vérifier en pratique pour un résultat plus fort que la différen-
tiabilité, d’ou sa trés grande utilité.

Corollaire 7. Les applications constantes et linéaires de E dans F sont de classe €.

Démonstration. Immédiat pour les applications constantes dont les dérivées partielles sont
nulles. Si f € Z(E,F), on trouve 0;f(a) = f(e;) pour tout a € E et i € [1;n] donc les
dérivées partielles sont constantes et par conséquent continues. L]

AOn admet momentanément que la combinaison linéaire, le produit et la composition de
fonctions de € est encore de classe €' (ces résultats seront établis plus généralement pour des
fonctions de classe €% avec k € NU {oo}).

Corollaire 8. Les fonctions polynomiales sur R™ sont de classe €' et les fonctions rationnelles

sur R™ sont de classe €' sur leur ensemble de définition (qui est nécessairement un ouvert de
R™...).

Démonstration. Les applications coordonnées sont linéaires donc de classe €. Par produit et
combinaison linéaire, les fonctions polynomiales sont de classe €' sur R". Considérons R :
z — P/Q(x). La fonction R est bien définie sur Q' (R*), ouvert comme image réciproque d’un

ouvert par une application continue. Par composition et produit, on conclut que R est de classe
€1 sur Q7H(RY). O

Proposition 16. Soit U ouvert de E. On a
¢ (U,F) c ¢°(U,F)

Démonstration. Le caractére € implique différentiable qui implique continue. O]
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Exemples : 1. Soit f définie sur R? par

.’133

Vg e B Sy —{@rye V700
0 sinon

L’application est de classe ¢! sur R? \ {(0,0)} (fonction rationnelle) et on a

322 (2% +y?) — 22*  2?(a? + 3y? .
Wty 2 W) G ey £ (0,0)

of

V(z,y) € R? a—($, y) = (22 +y?)? (a2 y?)?
! 1 sinon
Or w40 y=0—p1=00)
Ainsi f ¢ €(R% R)

FIGURE 2 — Graphe de z = %(w,y)

2. Soit f définie sur R? par

z,y) # (0,0)

sinon

V(z,y) € R? x2 —I— y?

L’application est de classe €' sur R? \ {(0,0)} (fonction rationnelle) et on a

i(x,y) # (0,0
sinon
) af of
P — 2 —_
uis ax(%y) Or (0 0)] < 2|z () =(0.0) 0

Par un argument de symétrie, on aura la méme régularité pour la dérivée partielle en y et on
conclut

f e ¢ (R%R)
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FIGURE 3 — Graphe de z = g—f(x,y)
s

2 Intégration le long d’un chemin

Théoréme 11. Soit U ouvert de E, f € €' (U,F) et v € € (ILE) avec 1 intervalle ouvert
contenant [0;1] et v(I) C U. Notant a = v(0) et b =~y(1), on a

£(0) — f(a) = / Af((t)) - 7/(2) dlt

Démonstration. D’aprés le corollaire 3] la fonction f o est dérivable sur I avec (f o~)'(t) =
df(v(t))-+'(t) pour t € I. D’aprés le théoréme fondamental d’intégration appliqué a la fonction
continue (f o), il vient

/0 (fon)(t)dt = f(v(1)) = f(7(0)) = f(b) — f(a)

Corollaire 9. Soit U ouvert de E, f € €' (U,F). Pour [a;b] C U, on a

£(b) — fla) = / df(a+1t(b—a))- (b—a) dt

Démonstration. Si a = b, le résultat est trivial. On suppose a # b. Par ouverture de U, on
dispose de € > 0 tel que B(a,e) C Uet B(b,e) CU. Avec 6 =¢/||b—al et I=]—0;1+ [, on
définit v : I — U, ¢t +— a + t(b — a). Il suffit alors d’appliquer le résultat précédent. O]

Corollaire 10. Soit U ouvert connexe par arcs de E et f € €'(U,F). On a
f constante <= df =0 < Vie[1;n] Oif=0

Démonstration. Pour la premiére équivalence, le sens direct est immédiat. Montrons la réci-
proque dans le cas ot U est convexe (cas général hors-programme). Pour (a,b) € U? on a
[a;b] C U et le résultat découle alors du corollaire précédent. La derniére équivalence peut se
voir comme conséquence du théoréme [6] O
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3 Vecteurs tangents & une partie

Définition 12. St X est une partie de E et x € X, un vecteur v € E est dit tangent ¢ X en x
s’il existe € > 0 et un arc y: | —e;e[ — X, dérivable en 0 tel que v(0) = x et 7/(0) = v.

Notation : On note T, X l'ensemble des vecteurs tangents & X en x qu’on appelle espace
tangent & X en x (appellation qui ne figure pas dans le programme officiel).

2

FIGURE 4 — Vecteur tangent au graphe de z = e %y

Exemples : 1. Soit X = o+ F avec x € E et F un sev de E. Soit v € T, X, ¢ > 0 et
v:]—e;e] — X un arc associé¢ a v. Pour h # 0, on a

7 (000 =9(0) = £ 6 =2 = (40) = 2)) = (O = v

et est a valeurs dans F fermé d’ott v € F. Réciproquement, pour v € F, 'arc v : t — x + tv est
dérivable en 0 avec v(0) = x et 7/(0) = v d’on T, X = F.

2. Soit E euclidien, a € E, r > 0, X = S(a,r) et z € X. Soit v € T, X, e >0ety:]—e;e[ > X
un arc associé¢ a v. On a (y(t) — a,v(t) — a) = r? pour tout ¢ € | —¢ ;¢ et par dérivation en 0,
il vient

(v(0),7(0) =) = (v, 2 —a) =0

ce qui prouve T,X C Vect (r — a)t. On peut montrer 'inclusion réciproque avec quelques
T—a

efforts. Soit v € Vect (z — a)* non nul (le cas v = Og est trivial). On note e; = o —al et
T—a

v

€9 = —— qui forme une famille orthonormée de E. On pose

o]

VieR  ~(t)=a+r (cos (Mt) €1 + sin (Mt> 62)
r r

et on vérifie que 7 est & valeurs dans S(a,r) avec y(0) = z et /(0) = v.

3. On munit P’espace R? de sa structure euclidienne canonique pour la définition et la proposition
qui suivent.

Définition 13. Soit U ouvert de R? et f : U — R. On appelle graphe de f ’ensemble défini
par

{(z,y,2) eUxR |z = flx,y)} ou {(x,9 f(z,9)), (x,y) € U}
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Proposition 17. Soit U ouvert de R?, f : U — R différentiable en Mgy = (z9,yo) € U. On note

0 15}
Ao = 0,0, T M), 75 = ( L 0o), 2 ), ~1). Notant X te graphe de £, on.a
Z Y
Ta, X C Vect (g)*
Démonstration. Soit v un vecteur tangent au graphe en Ag. Il existe alorse > Oety: | —e;e[ —

X associé a v. On a y(t) = (z(t),y(t), f(x(t),y(t)) pour t € | —e ;e[ avec x, y dérivables en 0 et
f différentiable en My avec (z,y)(0) = My. Par dérivation (avec la régle de la chaine), il vient

70) = (/0,902 F o) + 705 M) )
et clairement 7'(0) € Vect (%(MO), Z_ch(MO>’ —1>

]

Remarques : (1) Le plan affine Ay + Vect (775)L est appelé plan tangent a la surface d’équation
z= f(z,y) en Ag et on a

(0,0:5) € Ao+ Vect (@) = == F(Mo) + G- = 20) + 5 (Mo}~ )

(2) On peut démontrer que l'inclusion est une égalité mais ceci requiert un théoréme difficile.

FIGURE 5 — Plan tangent au graphe de z = e **~%* ¢t contenant un vecteur tangent

Théoréme 12. Soit U ouvert de E, f € €*(U,R), X réel et X = f~1({\}) une ligne de niveau
de f. Pour x € X tel que df(x) # Ogmr), on a

T,X = Ker df(x)

Si Uespace E est euclidien, on a T.X =V f(z)*

Démonstration partielle. Soit v € T, X, e >0et v:]—e;e][ — X un arc associé¢ a v. On a

Vie]—e;e[  f((t) =A

La fonction f o~y est dérivable en 0 avec

(f o) (0) =df(7(0)) -~7'(0) =df(z) - v=0
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ce qui prouve U'inclusion T, X C Ker df(z). L’inclusion réciproque requiert un théoréme difficile
et hors-programme (théoréme des fonctions implicites). Si E est euclidien, on a df(z) - h =
(Vf(x),h) pour tout h € E et le résultat suit. O

Remarque : Pour E = R” muni de sa structure euclidienne canonique, on a

v E Vf(JZ)J' <~ Zn:l&f(x)vz =0

Yo Vf(Ao)

Ag+ Ty, T

FIGURE 6 — Tangente en A dirigée par T I" avec I' : f(z,y) =0

Exemple : Soit U ouvert de R3, f € €'(U,R) et S la surface de R?® décrite par I’équation
f(z,y,2z) = 0. En un point Ag = (2o, Y0, 20) € U dit régulier, ¢’est-a-dire tel que V f(Aq) # 0,
on définit le plan tangent a S en Ay comme le plan affine Ag + Ty,S. On a

—
M e Ag+Ta,S <Vf(A0), 0M>:O

En particulier, pour le cas d’un graphe décrit par z = f(x,y) en Ag = (Mo, f(Mp)), on retrouve
le vecteur ng introduit précédemment en considérant g(z,y, z) = z — f(z,y) avec

)
Vo(ao) = - = (- Lot - 1)
IV  Optimisation, premier ordre

1 Extremums locaux, globaux

Définition 14. Soit A une partie de E, a € A et f: A — R. On dit que f admet un minimum
local, respectivement maximum local, en a s’il existe un voisinage ¥V de a tel que

Vee V7V NA f(x) = f(a)

respectivement VeV NA f(x) < f(a)

Un extremum local est un maximum ou minimum local.

Vocabulaire : On rappelle qu’'un voisinage 7 de a est un ensemble contenant un ouvert
contenant a.
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FIGURE 7 — Minimum et maximum local

Définition 15. Soit A une partie de E, a € A et f: A — R. On dit que f admet un minimum
global, respectivement maximum global, en a si

Ve A f(z) > f(a)

respectivement Ve e A f(z) < f(a)

Un extremum global est un mazimum ou minimum global.

Remarque : Un extremum global est nécessairement local.

Vocabulaire : Si une des inégalités précédentes est stricte pour x € ¥ N A \ {a} ou pour
x € A~ {a}, on parle d’extremum strict.

2 Point critique

Définition 16. Soit U ouvert de E, a € U et f : U — R différentiable en a. On dit que le point
a est point critique de f si df(a) = 0@ r)-

Proposition 18. On suppose E muni d’une base quelconque B = (e1,...,e,). Soit U ouvert
de E, a €U et f:U— R différentiable en a. On a

df(a) =0 <= Vie[1l;n] Oif(a) =0

Si E est euclidien, on a df(a) =0 <= Vf(a) =0

Démonstration. Conséquence immeédiate des théorémes [0] et [7] O

Théoréme 13 (Condition nécessaire d’extremum local). Soit U ouvert de E, a € U et
f U — R différentiable. Si f admet un extremum local en a , alors le point a est point critique.

Démonstration. Soit a un extremum local de f et ¥ un voisinage ouvert de a tel que I'inégalité
est satisfaite sur 7’ NU. I’ensemble 7 NU est un ouvert de E comme intersection finie d’ouverts
et contient a donc contient une boule ouverte B(a, ) avec € > 0. Soit v vecteur non nul de E.
Il existe un intervalle J =] —4§; [ tel que a + tv € B(a, ) (on choisit § = £/||v||). On pose

Vied  g(t) = fla+tv)
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D’aprés le corollaire |3} la fonction g = f o (¢t — a + tv) est dérivable en 0. Or, la fonction g
admet un extremum local en 0 point intérieur de J donc ¢’(0) = 0 et on a

9'(0) = Duf(a) = df(a)-v

Ainsi, la différentielle s’annule en tout vecteur d’out df(a) = 0. O

Soa& Ny
\\\\\‘\Q SSty E’ 4
N L i

N

—0.5]

A
NS
,,

FIGURE 8 — Extremum local suivant une courbe coordonnée

AAvertissements : Il est indispensable de travailler sur un ouvert. Ce résultat est important
puisqu’il permet de localiser les potentiels extremums locaux. Enfin, la réciproque est fausse.

Contre-exemples : 1. Pour une fonction d’une variable réelle, on peut considérer ¢ — t3 par
exemple.

2. Sur R?, on pose f : (z,y) — wy. Le point (0,0) est point critique de f mais n’est pas
extremum local de f. On dit qu’il s’agit d’un point col ou point selle (en référence a un col de
montagne ou une selle de cheval).

FIGURE 9 — Point col ou point selle

Exemples : 1. Soit f: (z,y) — 3z% + 3zy + 3*. On a

V(x,y) € R? flz,y) = (gxnty) +Zx220=f(0,0)
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2. Soit f: (z,y) — 2% +y*+ 23 On a (0,0) point critique puis
f(x,y) — f(0,0) = (z* + %) (1 + o(1)) = 0 localement et f(z,0) — -o00

T—r—00

Le point (0,0) est un minimum local non global.
3.50it f:R? >R, (z,y) —»ay(l—x—y)et A={(z,y) ER* |2 >0,y >0,z +y < 1}.

y/\ y,\

FIGURE 10 — Domaines A et A

La fonction f est continue car polynomiale. L’ensemble A est un fermé borné de R2, espace
de dimension finie et par conséquent A est compact. D’aprés le théoréme des bornes atteintes,
la fonction f admet un minimum et un maximum sur A. Les extremums de f sont atteints
soit sur DA, soit dans A. On trouve en munissant par exemple R? de || - ||s Vintérieur A =
{(z,y) €R% | 2 >0,y > 0,24y < 1} et on voit que f(z,y) > 0 pour (z,y) € A. On observe
que f(x,y) =0 pour (z,y) € OA puisque

Vte[0:1]  f(0,8) = f(£,0) = f(t,1— 1) =0

On en déduit que la fonction f atteint son minimum sur A en tout point de JA et son maximum
sur A dans A. La fonction f est de classe €1 sur A car polynomiale et elle atteint son maximum
sur A dans l'ouvert A donc en un point critique. On trouve pour (z,y) € A

Vf(z,y) = (0,0) — {%:ijﬁzg = (1) = (%%)

3 Optimisation sous contrainte

Proposition 19. Soit U ouvert de E, X C U, f : U — R. 5% la restriction f\x admet un
extremum local en © € X avec f différentiable en x, alors

T,X C Ker df(x)

Démonstration. Soit v € T, X, e > 0ety:]—e;¢[ — X un arc associé. La fonction f\x admet
un extremum local en = et par conséquent, la fonction f oy admet un extremum local en 0,
point intérieur & | —e;e[. D’aprés le corollaire (3| la fonction f o~y est dérivable en 0 et on a
(fo7)(0) =0, autrement dit

df(7(0)) -~ (0) = df(z) -v =

ce qui prouve le résultat attendu. O]
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Proposition 20. Soit E un K-ev et ¢, ¢ des formes linéaires sur E. On a

Ker ¢ C Ker ¢y < 9 € Vect (p)

Démonstration. Le sens indirect est immédiat. Supposons Ker ¢ C Ker 9 et aussi ¢ # 02 r)
(sinon, c¢’est immédiat). Soit zop € E N\ Ker ¢. On a E = Ker ¢ @ Vect () puis, pour z € E, on
dispose d’un unique couple (u, \) € Ker ¢ x K tel que z = u + Axg. Il vient

(@) = () + Ap(xo) = A (o)

Or p(x) = p(u) + Ap(zo) = Ap(z0) et p(z0) # 0
ce qui prouve T) = ¥(o) T
qui p U(z) o) ()

et le résultat suit. O

Théoréme 14 (Optimisation sous contrainte). Soit U ouvert de E et f,g : U — R de
classe €* et X = g1 ({0}). Pour x € X tel que dg(z) # 0g(mr), si la restriction flx admet un
extremum local en x, alors df(x) est colinéaire a dg(zx).

Démonstration. D’aprés le théoréme , on a T,X = Ker dg(x). Puis, d’aprés la proposition
, on a T, X C Ker df(z). Le résultat suit d’aprés la proposition précédente. O

Remarque : Si 'espace E est euclidien, la condition dg(x) # 0 peut s’écrire Vg(z) # 0 et on
conclut V f(x) colinéaire a Vg(z).

Exemple : Soit s > 0. On note U =]0;+00[" et
Ve = (xq1,...,2,) € R" fl@)=1]z et glx)=> zi—s
=1 i=1

Sur le domaine K = [0;+o00 [* N g1 ({0}) qui est un fermé borné donc un compact de P'espace
de dimension finie R", la fonction continue f y atteint son maximum et celui prend une valeur
strictement positive puisque f(z) > 0 pour tout x € U N g~'({0}). Ce maximum est donc
atteint dans l'ouvert U. On peut alors considérer les restrictions de f et g & U (qu’on notera
simplement f et g) et appliquer le théoréme précédent puisque les fonctions polynomiales f et
g sont de classe €' sur U avec Vg(z) # 0 pour z € U. On note désormais X = g~ ({0}) et
x € X un point en lequel la restriction f\x admet un maximum global donc local. Le point z
solution est tel que

Vf(z) =AVg(z) et g(z)=0
s
avec A réel. On trouve x1 = ... =z, = — et par conséquent
n

V= () €UNGT (0D S <50 = () = (55u)

n

On retrouve alors I'inégalité arithmético-géométrique.

On peut aussi obtenir les conditions du théoréme d’optimisation sous contrainte en considérant
le lagrangien :

V(z,\) e UxR  L(z,\) = f(z) — \g(x)

Un point critique du lagrangien vérifie les conditions d’un extremum sous contrainte puisque
pour (z,A\) € U X R, on a
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dL(z,A\) =0 < df(z) = Adg(x) et g(z)=0

On peut montrer qu’un extremum [tbre pour le Lagrangien est un extremum lié pour f, i.e.
un extremum sous la contrainte g(x) = 0. En effet, soit (a,a) € U x R un extremum libre du
lagrangien, par exemple un minimum local de L. En particulier, le point (a, ) est point critique
de L d’ot g(a) = 0. Alors, pour (x, ) dans un voisinage de (a, ) avec g(x) = 0, il vient

f(:L’) = L(Iv /\) = L(a,a) = f(a)

V Fonctions de classe €

Dans ce qui suit, on suppose que & = (ey,...,€,) est une base de E et £ = (eq,...,¢,,) une
base de F.

1 Définitions, propriétés

Définition 17. Soit U ouvert de E, f : U — F, a € U, k entier non nul et (iy,...,i) €
[1;n]k. On dit que f admet une dérivée partielle k-¢me ou d’ordre k en a par rapport auzx
places iy, ... i (ou x;y, ..., x;, ) successivement si :

— O f, 0, (01, f), -+, Oipy (. (04 f) - ..) existent sur un voisinage de a ;

— 03 (03, (- (03 f) ) (a) existe.

Dans ce cas, I'élément 8, (8;,_, (... (8;,f)...)) (a) est appelé dérivée partielle k-éme ou d’ordre

k de f en a par rapport auz places iy, ..., i (0u x;, ..., T; ) successivement et noté
ok f
0; ...0; f(a ou ——(a
'k llf( ) axlk 500 ﬁxil ( )
Si cette k-eme dérivée partielle existe en tout point de U, on définit Uapplication dérivée partielle
k-éme par rapport auz places iy, ... i (0u T4y, ...,z ) Successivement notée 0y, ...0; f ou
o f

—— par
o0z, ...0x;, :

U—F
@k 811f
a —— 8% o 8,1f(a)

Définition 18. Soit U ouvert de E et k entier non nul. Une application f : U — F est dite
de classe €% sur ouvert U si ses dérivées partielles d’ordre k existent et sont continues sur U.
Une application est dite de classe € si elle est de classe €% pour tout k entier.

Notations : Pour k¥ € NU {cc}, on note *(U, F) I'ensemble des fonctions de classe €% sur
U. On a les relations

+00
VkeN  ¢HUUF) Cc U F)  ¢%(UF) =) UF)
k=0
Remarques : (1) Pour k¥ = 1, on ne retrouve pas la définition du caractére €' mais la
caractérisation fournie par le théoréme [11] ce qui assure une cohérence de la définition.
(2) Pour n = 1, la définition coincide avec celle d’une fonction d’une variable réelle.

’Proposition 21. Les applications constantes de E dans F sont de classe € sur E.

Démonstration. Les applications constantes sont différentiables de différentielles nulles donc de
dérivées partielles a tout ordre nulles d’ot le résultat. O
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’Proposition 22. Les applications linéaires de E dans F sont de classe €°.

Démonstration. Soit f € Z(E,F). On a f différentiable avec ses dérivées partielles contantes
0;f = f(e;) pour tout ¢ € [1; n]. On conclut d’aprés le résultat précédent. ]

Théoréme 15. Soit k € NU {oo}, U ouvert de E et f: U — F avec f =) fie;. On a
=1

fe€*(UF) < Vje[l;m] f; € €*(U,R)

Démonstration. Par propriétés sur les fonctions vectorielles. O

2 Opérations

Dans ce qui suit, on a k € NU {oo}.

Théoréme 16. Soit U ouvert de E, f,g: U — F et \ réel. Si f et g sont de classe €%, alors
f+ Ag Uest aussi.

Démonstration. On procéde par récurrence sur k. Le cas k = 0 est vraie. Supposons le résultat
vrai pour k entier. Soient f, g de classe €*!. D’aprés la proposition Iapplication f + A\g
admet des dérivées partielles avec

Vie[l;n]  O(f+Ag) =0if +Ndig

Les fonctions 0; f et 0;g sont de classe €% d’ot1 0;(f +\g) également par hypothése de récurrence.
Le résultat suit. Le cas &k = oo s’en déduit. O]

Corollaire 11. Soit U ouvert de E. L’ensemble €*(U,F) est un R-ev.

Démonstration. L’ensemble €*(U, F) contient la fonction nulle et est stable par combinaison
linéaire donc est un sev de # (U, F). O

Théoréme 17. Soit U ouvert de E, f: U —>F, g: U — G et B: F x G — H bilinéaire. St f
et g sont de classe €%, alors B(f,g) l'est également.

Démonstration. On procéde par récurrence sur k. Le cas k = 0 est vraie car B est continue.
Supposons le résultat vrai pour k entier. Soient f, g de classe €**1. D’aprés la proposition
lapplication B(f,g) admet des dérivées partielles avec

vie[l;n]  9B(f.g9) =B(9:f, 9) +B(f,dyg)

Il suffit ensuite d’appliquer 'hypothése de récurrence et le théoréme Le cas k = oo s’en

Corollaire 12. Soit U ouvert de E, f : U —F, g: U= R. Si f et g sont de classe €*, alors
gf est de classe €.

Démonstration. On considére B : RxF — F| (z,y) — zy et on applique le théoréme précédent.
O

Corollaire 13. Soit U ouvert de E et F une algébre. L’ensemble €*(U,F) est également une
algebre.
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Démonstration. On vérifie que €*(U,F) est une sous-algébre de .#(U,F). En particulier, on
considére B : F? — F, (x,y) — xy et on applique le théoréme précédent. O]

Remarque : On utilise ce résultat typiquement avec F =R ou F = ., (R).

Théoréme 18. Soit U ouvert de E, f: U — F, V ouvert de F, g : V. — G avec f(U) C V. Si
f et g sont de classe €%, alors go f est de classe €.

Démonstration. On procéde par récurrence. C’est immédiat pour k& = 0. Supposons le résultat
vrai pour k entier et supposons f, g de classe €*T!. D’aprés le théoréme |8, 'application g o f
admet des dérivées partielles avec

vjell;n] aJ-(gof):é(ajfi)x(aig)of

Le résultat suit par hypothése de récurrence avec le théoréme et le corollaire Le cas
k = oo s’en déduit. O

Théoréme 19. Les fonctions polynomiales sur R™ sont de classe € et les fonctions ration-
nelles sur R™ sont de classe € sur leur ensemble de définition.

Démonstration. Les applications coordonnées x +— x; sont linéaires donc de classe €. Par
produit(corollaire et combinaison linéaire (théoréme , le résultat suit pour les fonctions
polynomiales. Par composition (théoréme avec la fonction inverse puis produit, le résultat
suit pour les fonctions rationnelles. O

Remarque : Le résultat s’étend aux fonctions polynomiales sur ., (R) puisque ., (R) est
isomorphe a R,

Exemples : 1. Le déterminant det : .#,(R) — R est de classe > car polynomial.

2. Soit f définie sur R? par
cos(z) — cos(y)

Vir,y) eR*  fla,y) = T =y
— sin(z) sinon

sixz#vy

Par trigonométrie, on a

V(z,y) € R? cos(z) — cos(y) = —2sin <$ ;r y) sin (37 - y>

2
sin(t) .
On pose VteR o(t) = sit#0
1
La fonction ¢ est de classe € sur R car développable en série entiére avec
+00 (_1)nt2n
Vte R t)y=>  ———
A= 2 o )
Or, on a V(z,y) € R f(:z:,y)z—go( 5 >sm( 5 )
Par composition f € €°(R? R)
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FIGURE 11 — Graphe de z = f(x,)

3 Théoréme de Schwarz

Théoréme 20 (Théoréme de Schwarz). Soit U ouvert de E et f € €*(U,F). On a
*f  O*f

e 8 5 2
V<Z,]) < [[17 n]] (91'101‘] B 81‘]8151

ou synthétiquement 0,0;f = 0,0, f

Démonstration. En annexe. OJ

Corollaire 14. Soit U ouvert de E, k entier non nul et f € €*(U,F). Alors, pour (i1, ..., i) €
[1;n]k ona

oF f B oF f
&vik 500 8$i1 B atio(k) ooa &vig(l)

Yo € S

ou synthétiquement O - 0i f = @dk) .. .61-0(1)]”

autrement dit, les dérivées partielles k-émes ne dépendent pas de 'ordre de dérivation.

Démonstration. Toute permutation peut s’écrire comme produit de transpositions de type
(1 2), (2 3),. Ve (k -1 k) Le résultat suit. O

VI Optimisation, deuxiéme ordre

Dans ce qui suit, I'espace R™ est muni de sa structure euclidienne canonique.

1 Matrice Hessienne

Définition 19. Soit U ouvert de R", a € U et f € €*(U,R). On appelle matrice hessienne de
f en a la matrice notée Hy(a) définie par

82
Hy(a) = (9:0;f(a),; e, OV (axgm(a))

1<i,5<n

Proposition 23. Soit U ouvert de R", a € U et f € €*(U,R). On a Hy(a) € S, (R).
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Démonstration. Conséquence immédiate du théoréme de Schwarz. O

Théoréme 21 (Théoréme de Taylor-Young a ’ordre 2). Soit U ouvert de R, a € U et
f € €*(U,R). On a, en confondant Hy(a) et Uapplication linéaire qui lui est canoniquement
associée

flath), = fla)+{VF(a), h) + 5 (Hy(a)- b h) + oI

h—0rn

qu’on peut aussi écrire, en confondant h avec un vecteur de M, 1(R)

flath) = (@) + V(@) h+ ghTHy@h+ of|Al?)

h—}ORTL

Démonstration. En annexe. OJ

2 FEtude au deuxiéme ordre

Théoréme 22. Soit U ouvert de R, a € U et f € €*(U,R). Si la fonction f admet un
minimum local en a, respectivement mazximum local, alors le point a est point critique de f et
H¢(a) € Z(R), respectivement —Hy(a) € .7 F(R).

Démonstration. Quitte & considérer —f, on peut supposer que le point a est un minimum
local de f. D’aprés le théoréme [I3] le point a est point critique de f. La matrice hessienne
H¢(a) symétrique réelle est diagonalisable d’apres le théoréme spectral. Soit A € Sp (Hy(a)) et
v € Ex(Hf(a)) avec ||v]| = 1. Supposons A < 0. Considérant tv avec t — 0, il vient

2 2
_ = —(H . 2 2 1) = — 1
flat )~ fla) =, (Hya)-v,0) + 2lolPo(1) = T (A +0(1))
Comme A+o(1) — A < 0, on peut choisir ¢ assez proche de zéro pour avoir f(a+tv) < f(a) ce
—
qui contredit le fait que le point @ soit minimum local. On en déduit A > 0 et par caractérisation
spectrale des matrices de .7 (R), le résultat suit. O

Théoréme 23. Soit U ouvert de R, a € U et f € €*(U,R). Si le point a est point critique de
f et si He(a) € ZT(R), respectivement —Hy(a) € 7T (R), alors le point a est un minimum
local strict, respectivement mazximum local strict.

Démonstration. Quitte & considérer — f, on peut supposer H¢(a) € . (R). On note E = R".

1
Pour h € E, on a fla+h)—fla) = = (Hs(a)-h,h)+o(||h]?)
h—0g 2
Soit # = (ey,...,e,) une base orthonormée de E constituée de vecteurs propres de Hy(a)
associés aux valeurs propres \; < ... < \,. Par caractérisation spectrale des matrices de

ZFH(R), on a Sp (Hy(a)) C]0;+00[ d’ott Ay > 0 puis
Vh =3 hie; € E (Hy(a) - hyh) = S 002 = M YR = \||A))?
i=1 =1

=1
Ainsi, on obtient fla+h) - fla) > %Hmy? (A +o(1)

A
Comme A; 4 o(1) — A1, on peut trouver un voisinage ¥ de Og tel que \; +o(1) > ?1 >0
—Ug
pour h € ¥ d’ou
Vh e ¥ ~{0g} fla+h)— f(a) >0

ce qui prouve que le point a est minimal local strict. O
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Corollaire 15. Soit U ouvert de R?, a € U, f € €*(U,R). On définit les notations de Monge

o _&f o
r=gal)  s=gi@  t=35

On suppose que le point a est point critique de f. On a

t

1. Sirt —s% >0, le point a est un extremum local de f ;
— Sirt—s2>0cetr+t>0, le point a est un minimum local strict de f ;
— Sirt—s52>0etr+t<0, le point a est un mazimum local strict de f ;

2. Sirt—s* <0, le point a n'est pas un extremum local de f (on dit que a est point col ou
point selle) ;

3. Sirt — s> =0, on ne peut rien dire.

Démonstration. D’aprés le théoréme spectral, la matrice Hy(a) = <Z i) est orthogonalement
semblable & diag(A1, A2). On a
det(Hp(a)) =1t — s> =My et Tr(Hp(a)=r+t=XM\—+ X\

Si rt — s? > 0, alors les valeurs propres A; et Ay sont non nulles et de méme signe et donc du
signe de \; + \o. Le résultat suit pour ce cas d’aprés le théoréme Sirt —s? <0, alors les
valeurs propres Ay, A2 sont non nulles et de signe opposé. D’apreés le théoréme le point a
n’est ni un minimum, ni un maximum local. En considérant les applications définies sur R? par
(z,y) = ' +y*, (2,9) = — (2 +9*) ou (x,y) — 2* — y* qui admettent toutes (0,0) comme
unique point critique, on constate que toutes les configurations sont possibles sous la condition
rt —s? = 0.

O

Remarque : Le critére portant sur r + ¢ peut étre remplacé par un critére portant sur r. En
effet, si rt — s? > 0, alors les valeurs propres \; et A\ sont non nulles de méme signe d’oul un
signe constant pour (H¢(a) - h, h) et en particulier pour h = (1,0). Le résultat suit.
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Annexes

Caractérisation des fonctions de classe ¢

Théoréme 11. Soit U ouvert de E et f : U — F. La fonction f est de classe €1 sur U si et
seulement si ses dérivées partielles dans une base existent en tout point de U et sont continues
sur U.

Démonstration. Pour i € [1; n], on pose dz; € Z(E,R) définie par dz;(e;) = d;; pour tout
(4,7) € [1; n]? La famille (dz;)ief1,n] est une base de Z(E,R) (appelée base duale) car libre
et génératrice. Par conséquent, la famille (¢; da;); ;ycr1.nyx1.m] €5t une base de Z(E, F) car
libre et de cardinal égal & dimE x dim F. Pour ¢ € Z(E, F), on a la décomposition
= p(e;)dw; = > ©;(e;) dzie;
i=1 (@HEll;n]x[1;m]

Supposons f différentiable. On a

df(a) = > (dfj(a) - e;) daie; = > difj(a) dze;
(@AElLsn]x[1;m] (@3)€ElLsn]x[1;m]
(@3ell;n]x[1;m] i=1

Or, on sait
df e 6°(U, Z(E,F)) <= V(i,j) €[1;n] x[1;m] dif; € €°(U,R)
< Vie[l;n] 0f€%€°(UF)

Le sens direct en résulte. Démontrons la réciproque dans le cas ot dim E = 2. On munit E de
la norme infinie relativement & la base 4. Soit a € U. Comme U est ouvert, il existe n > 0 tel
que B(a,n) C U. Soit h € E tel que ||h||oc = max(|hi|, |h2|) <n. On a

fla+h) — f(a) = f(a1 + h1, a2+ he) — f(a1 + hy,a2) + f(a1 + h1,a2) — f(a, az)

h2 hl

= Oaf(ay + hi,as +t) dt + O1f(ay +t,aq) dt
0 0

Par suite
fla+h) = fla) = hi0if(a) = ha0sf(a) =
/0h2 Oof(ar + Iy, az + ) — Baf(ar,az)] di + /Ohl Ouf(ar + 1, a2) — Oy f(ar, a)] dt
Pour € > 0, comme 0 f et 0y f sont continues en a, il existe § > 0 tel que pour ||hl|s < &
[02f (a1 + hi,a2 +1) = Do f (a1, a2)[| <& et [[O1f (a1 +1,a2) — 01 f(ar,a2) <€
Alnsi [f(a+h) = f(a) = 101 f(a) — haa f(a)|| < e([h] + [ha]) < 2e]|h|[
D’ou fla+h) — f(a) — h101f(a) — haOaf(a) = o(h)

ce qui prouve que 'application f est différentiable sur U avec
Va €U df(a)-h = hi01f(a) + haOaf (a)

La continuité des dérivées partielles équivaut a la continuité des dérivées partielles des applica-
tions coordonnées qui équivaut a la continuité de df. O
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Caractérisation des fonctions constantes

Corollaire 10. Soit U ouvert conneze par arcs de E et f € €' (U,F). On a
f constante <= df =0 <= Vie[1;n] Oif=0

Pour la réciproque de la premiére équivalence dans le cas général :

Démonstration. Soit (a,b) € U2 Par connexité par arcs, il existe ¢ € €°([0;1],U) tel que
©(0) = a, ¢(1) = b. L’ensemble ¢([0;1]) est compact comme image directe d’'un compact
par une application continue. L’application d(-,E \ U) est continue car 1-lipschitzienne. Par
conséquent, elle atteint son minimum sur le compact ¢([0;1]) en un point ¢(to) hors du fermé
E N Uavec ty € [0;1] (il s’agit en fait de d(¢([0;1]),E~ U)). Ainsi

Vte[0;1] d(p(t),EXTU) > e =d(¢(ty), EXTU) >0
Ainsi, pour t € [0;1] et 2 € EXU, on a
d(z, (1)) = d(p(t), EXU) = d(p(to), EXU) > ¢

d’ont par contraposée r € B(e(t),e) = =z€U

D’aprés le théoréme de Heine, 'application ¢ est uniformément continue sur le compact [0;1].
On dispose alors de n > 0 tel que

V(s ) € (051 fs—tl<n = lo(s) — o)l <e

On choisit une subdivision (¢;)o<;<, assez fine pour avoir |t;;1 — t;] < n pour touti € [0; n—1].
Par construction, on a

Vie[0;n—1]  [e(t);e(ti)] CU

En effet, soit i € [O; n—1] et A€[0;1]. On a
[Ap(t:) + (1 = MNe(tivr) = p(t) ]l = (1= Mlle(tin) —t)]| <e
d’ott Ap(ti) + (1 = Np(tir) € Blo(ti),e) CU
D’aprés le corollaire précédent, on
Vie[0;n—-1]  fla) = fai)
ce qui prouve que la suite (f(a;))o<i<n €St constante et par conséquent
fla) = flao) = flan) = f(b)

d’ou le résultat. ]

Théoréme de Schwarz

Théoréme 18 (Théoréme de Schwarz). Soit U ouvert de E et f € €*(U,F). On a
*f  0f

. . . 2
V<Z7]) < [[17 n]] 89318.%] B 8$]85L'Z

Démonstration. Seuls les cas avec ¢ # j méritent I'attention. On suppose (i,7) = (1,2) pour
alléger la rédaction. Comme on va figer toutes les coordonnées sauf les deux premiéres, on note
abusivement f(z) = f(z1,22) pour z € U au lieu de f(z1,...,x,). Soit a € U. Il existe un
voisinage ¥ de 0 dans R? tel que a + (hy, h2,0,...,0) € U pour h = (hy, hy) € ¥. On pose

V(hi,ho) €V A(hi, he) = f(ar + hi,as + ha) — f(ar, a2 + he) — far + hi,a2) + f(a1, az)
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Fixons h € 7. D’aprés le théoréme des accroissements finis appliqué a
p:tu(t,hy) = flay +t,as + he) — far +t,az)
il existe c¢; entre 0 et hy tel que
A(h) = ¢(h1) = p(0) = hi¢'(c1) = h1 (01 f(ar + c1, a2 + ha) — D1 f (a1 + c1, a2))

Puis, avec le théoréme des accroissements finis appliqué a ¢ : t — 0y f(a; + ¢1, a2 + 1), il existe
co entre 0 et hy tel que

A(h) = hy [tp(he) — ¥(0)] = hihoy'(ca) = h1ha0201 f (a1 + c1, a2 + ¢2)
Par continuité de 050, f, il vient
A(h)
hihs h—(0,0)

azalf(a)

En permutant les deux et troisiémes termes dans 1’écriture de A(h) et en suivant une démarche
identique & précédemment, on obtient

A(h)
hl hg h—(0,0) 8182f<a)

Le résultat suit. O

Le théoréme de Taylor-Young & I’ordre deux

Théoréme 20 (Théoréme de Taylor-Young a l’ordre 2). Soit U ouvert de R, a € U et
f € €*(U,R). On a, en confondant Hy(a) et Uapplication linéaire qui lui est canoniquement
associée
1
fla+h), = fla)+{Vf(a)h)+ 5 Hs(a)-h h)+ of|[])

h—)O]Rn

qu’on peut aussi écrire, en confondant h avec un vecteur de M, 1(R)

flath), = f(a)+ V(@) h+ ShTH(@)h+ of A2)

h—0rn

Démonstration. Soit h € E et I un intervalle ouvert contenant [0;1] tel a + th € U pour
€[0;1]. On pose

Vel  o(t) = fla+th)

La fonction ¢ = f o (t — a + th) est de classe €2 sur I par composition. Par Taylor reste
intégral et linéarité de l'intégrale sur le segment [0;1] :

p(1) = ©(0) + ¢'(0) +/0 () (1 — 1) dt

= #(0) +¢(0) +/0 " (0)(1 —1) dt+/0 ["(8) = @"(0)] (1 — ) dt

Par dérivation, on trouve pour t € I

G () = df(a+th) -h =3 h;0,f(a+th)
j=1

puis " (t) h; = [0f;0(t— a+th)]

,d(0f) (a+th) -h =Y, (ihi@-@jf(a + th))

M: I M:

.
Il
—
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autrement dit O"t)= >, hih;0;0;f(a+th) = (Hf(a+th)-h,h)

1<i,j<n
Par linéarité de I'intégrale sur le segment [0; 1], il vient

1 1

©(1) = p(0) + ¢'(0) + 5@”(0) + > hihj/ (0,0 f(a +th) — 0;0;f(a)] (1 —t) dt
1<i,j<n 0
Soit (4,7) € [1; n]?. La fonction 9;0; f est continue sur U. Ainsi, pour £ > 0, il existe § > 0 tel
que, pour ||h]| < 6, on a
vt e[0;1] 10:0;f(a + th) — 9;0; f(a)[| < €

Par inégalité triangulaire, on obtient pour ||l < ¢

1
< T il [ e1-pd <<l

<g,j<n

Sty [ 10030+ ) - 00,50 (1~ 0 at

1<i,j<n

Les normes sur R™ étant équivalentes, on a donc prouvé

T by / 0:0;f(a+ th) — 0, ()] (1 =) dt = o(|h]]>
<L 0 h—0gn
Ainsi Flath) = Fa)+(VF(a), 1)+ 5 {Hy(a) - b B) + ol

h—Ogn

Equations aux dérivées partielles d’ordre 1

Proposition 24. Soient I, J des intervalles ouverts non vides de R. Pour f € €'(I1x J,R), on
a
of

%:O < V(z,y)elxJ f(z,y) =B(y) avec B e E'(J,R)

Démonstration. La fonction x — f(x,y) est de dérivée nulle sur un intervalle donc constante
vis-a-vis de z mais dépend éventuellement de y d’ou f(z,y) = B(y) pour (z,y) € I x J. Pour
ro €L, onayr— Bly) = fo(y+— (x9,y)) de classe €' par composition d’on B € € (J,R). La
réciproque est immeédiate. ]

of

Remarque : On dispose d’un résultat identique pour 3y par symétrie des roles.
Y

Exemple : On a

%(m,y):y < f:(z,y) = 2y +B(y) avec Be FYR,R)

Définition 20. Une application ¢ est un changement de variable de classe €' d’un ouvert U
de R" sur V.= o(U) C R" si ¢ est bijective de U sur V, de classe €' avec ¢~ de classe €.
On dit aussi que ¢ est un €'-difféomorphisme.

Exemple : Passage en coordonnées polaires

]0;+00 [ x ] —m;m [ — R\ (R- x {0})

L applicati
application {(7“7 g) — (rcos(f),rsin(6))
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est un changement de variables.

FIGURE 12 — Coordonnées polaires

Par trigonométrie, on a

. (Q) _ y (2, y)

2/ w4 at 4P i

d’ott —VaT+yE\ 0/2 0

60 = 2 Arctan ¥y
T+ /22 +1y?

et 7 = /22 + 92 d’otl le caractére € de lapplication réciproque.

Méthode avec changement de variables : Deux configurations sont possibles.

e On a le changement de variables (u,v) = p(x,y) avec ¢ : U — V et U,V des ouverts de R
Soit f € €*(U,R). On a le diagramme commutatif U TR e qui traduit f = ]70 © ou
17
f
\Y
encore f: f o™ qui est donc de classe €', D’apreés la régle de la chaine, il vient
of _ofou_ ofon
ox Ooudx  OvOox
of _ofou oo
oy Ooudy  Ovdy
En pratique, on utilise cette écriture « a la physicienne » pour résoudre simplement les EDP

(équations aux dérivées partielles). On peut aussi obtenir cette égalité par le produit des ma-
trices jacobiennes correspondant a I’égalité df = df(¢) ody :

Ou  Ou
(ﬁ %):@f af) dw Oy
ox  y u v/ \ 9v v
or 0Oy

e [’autre configuration est celle du changement de variables (z,y) = ¢(u, v). On a le diagramme

commutatif V- >R ce qui traduit fv: f o qui est donc de classe €. D’aprés la régle

|7

U
de la chaine, il vient
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of _ogos ofoy
ou  dxdu 0y Ju
of  ofdx  dfdy
v dxdv 0y o
Exemples : 1. Résoudre I'équation aux dérivées partielles
of of _ ,
g9l 9 E
or Oy ()
a I'aide du changement de variables
u=ux
,y) € R?
{U ety avec (z,y)
On cherche f € %'(R?* R) solution de I’équation aux dérivées partielles. Notons (u,v) =
o(z,y) = (x,x + 2y) le changement de variables. On a le diagramme U—L-R  donc
sot /
f
N \Y%
f=Tfop
of _of of
9r ~ ou v
On trouve
of _,0f
oy 87}
. (9]7 5 ~ u?
Ainsi f €Sk, = 2% =u? <= f(u,v) = 5 + A(v)

avec A € ¢'(R,R). En revenant aux coordonnées d’origine, on conclut que le solutions de (E;)

sont les fonctions de la forme

3
V(z,y) e R*  f(z,y) = % +A(xr +2y) avec A€ €' (R,R)
2. Résoudre I’équation aux dérivées partielles
of  of
'l 0 E
e * y@y (E2)
avec les coordonnées polaires (x,y) = p(r,0) = (r cos(0),rsin(f)) ou (r,0) € |0;+00 [ x| —m ;7|

t (z,y) € Q =R~

(R_ x {0}). On est dans la seconde configuration de changement de

variables avec f = f o p. D’aprés la régle de la chaine, il vient

L
oL s o) e,
En particulier T%v gi; +y 85
D’oil f €Sy «— r%:() g—f:o = f(r,0) = A(6)
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avec A € ¢'(] —m ;7 [,R). En revenant aux coordonnées d’origine, on conclut que le solutions
de (Es) sont les fonctions de la forme

x
T+ /2 +1y?

V(z,y) € Q f(a:,y)zA[QArctan( )] avec A e (| —m;7[,R)

Equations aux dérivées partielles d’ordre 2

Proposition 25. Soient I, J des intervalles ouverts non vides de R. Pour f € €*(I x J,R), on

a
v =0 < f(z,y) = A(z) + B(y)
o0 f
rroiad U ons f(@,y) = zA(y) + B(y)
0 f
o2 =0 <= f(z,y) = yA(z) + B(z)
avec A, B de classe €.
Démonstration. On a
D*f of

D’apres la proposition , la fonction b est de classe 6! et une de ses primitives B est de classe
€*. Ensuite, pour yp € J,on a A : x +— fo (x — (z,4)) — B(yo) de classe €2 par opérations
sur de telles fonctions.

0% f of
=0 = = =A(y) <= =zA B

922 9~ W) fla,y) = zAly) + Bly)

Soit (z1, ) € I? avec x1 # x5. On pose 1 : y — 21A(y) + B(y) et ¢ : y = x2A(y) + B(y). On
trouve

Puis

Vy el Aly) = e1(y) — v2(y) et B(y) = T21(y) — T16p2(y)
T1 — T2 Ty — X1
Les fonctions ¢y, ¢ sont de classe 4 par composition puisqu'on a ¢; = fo (y — (z1,y))
et wo = fo(y — (xg9,y)) et le résultat suit pour les fonctions A et B. Les réciproques sont
immédiates. O

Définition 21. Une application ¢ est un changement de variable de classe €* d’un ouvert U
de R"™ sur V.= o(U) C R" si o est bijective de U sur V, de classe €% avec o' de classe €*.
On dit aussi que @ est un €*-difféomorphisme.

Remarque : Il existe un théoréme trés efficace pour caractériser un ¢*-difféomorphisme (théo-
reme d’inversion globale) mais celui-ci est hors-programme. Caractériser une telle application
ne fait donc pas partie des attendus des candidats aux concours.

Exemples importants : 1. L’équation des ondes

0? 1 02
Soit ¢ > 0. Résolvons 8_;; — ?a_tf =0

ou f:(z,t)— f(z,t) avec f € €*(R? R) a I'aide du changement de variable
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u=x+ct
v=1x —ct
Ona f= fo @. Avec la régle de la chaine, il vient

o _ofou ofow_of o
or  Oudxr Ovdr Ou Ov
o _ofou ofon_ of o
ot ouot  ovot ou “ow
puis, en regroupant les dérivées croisées d’apreés le théoréme de Schwarz
O _ 0 (of of
0x2  Ox \Ou v
CPfou 8f v Pf ou  Pfov  PF _Pf  Pf
T 0u? iz * dvdu Oz * dudv O * 2 ozr  ou? +28u80 - ov?

et
Of_ 0 (.0f  of
a2~ ot \“ou ‘o
_ 0w Of dv | Of Ou_ PfOv _ LOf .0 | 50°f
9w ot “ovouot “ouwot ozt our C dudv | o2
- Pf  1f *f
Alnsi 72 2o " Guw
et d’aprés le résultat de la proposition 25 on a
82f—o — VY(u,v) eR2  f(u,v) = A(u) + B(v)
Juon U, U u,v) = A(u v

avec A, B fonctions de (R, R). En revenant aux coordonnées d’origine, on conclut que les
solutions de ’équation des ondes sont les fonctions de la forme

V(z,t) e R*  f(x,t) = Az +ct) +B(x —ct) avec A,B dans €*(R,R)

2. Laplacien en coordonnées polaires

Définition 22. Soit U ouvert de R™ et f € €*(U,R). On appelle Laplacien de f la fonction
notée Af définie par
n an

2 p—
i=1 8%

o f
i=1

Soit f € €*(U,R) avec U C R? \ (R_ x {0}). Exprimons le Laplacien de f en fonction des co-
ordonnées polaires (r, ) liées & (z,y) par le changement de variables (z,y) = (r cos(f), r sin(6)).
On a établi précédemment

% = COS(Q)% + sin(&)g—g
% =—r sin(Q)% +r cos(@)%

Toujours avec la régle de la chaine et en regroupant les dérivées croisées d’aprés le théoréme de
Schwarz, il vient
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= COS(@% (%) + Sm(@)g <g§>

B O*fox O f Oy , O*f dx  O*f Oy

= cos(f) (89:2 or * Jyox E) +sin(f) <8x8y5 o 0y? 87“)

_ *f Of . R2f . 0%
= cos(h) (cos( )W + sin <9)8x8y> + sin(6) (COS(G)E)xE)y + 81n(9)8—y2>

O = cos(f)? an + 2sin(#) cos(0) il + sin(@)Qan

or? 922 0x0y 8_y2
puis, avec les régles usuelles de dérivation d’un produit de fonctions

*f 0 ( _Of ) f)

02 = ag \ " sm(&)% + Tcos(Q)a—y
L 8f_ ) 0 (0f>_ . of (8]‘)
= TCOj(e) B rsin(6) 50 \ B rsin(6) o + rcos(@)ae 3
_of ) (82]”8:6 0*f 83/) ( 0*f Ox 82f8y>
=5 O\ G298 T agomae) T\ groy 98 T a2 06

af o0 f 0% f

=—rg rsin(6) (—r sin(@)m + rcos(&)(%ay) + 1 cos(f) (—7’ sin(0) Bizgy + rcos(ﬁ)%)

’f __ of ( et 0 f 26‘2]")

502~ "oy + 72 | sin(6) ? 2sin(0) cos(@)axay + cos(0) 52

. : P 1 10f
Finalement, on obtient Af = 92 + 902 + = o

L’entropie d’un gaz parfait

2

Dans le cas d’un gaz parfait, 'entropie S : |0;+00[" — R, (t,v) — S(t,v) vérifie la relation

suivante :

dT dv
ds = ne— el
S=nc T +nR v

Les notations (dT,dV) désignent la base duale de la base canonique de R?, ¢’est-a-dire
V(t,v) e R?  dT(t,v) =t et dV(t,v)=w

t
On a V(T,V.tv) €]0;00 [ x B2 dS(T,V) - (10) = nems + nR%

Ainsi, par intégration le long d’un chemin, il vient pour (Tg, Vo) et (T, V) dans | 0; +oc [*

S(T, V) — 8(To, Vo) = /1dS ((To, Vo) + u(T — Ty, V — Vo)) - (T — Ty, V — Vo) du

! 0 0
= = ! TI w7 bR )d
/0 <7’LC ) u( 0) n ) u( 0) u

S(T,V) — S(Ty, Vo) = [neln (To + u(T — To)) + nRIn (Vo + u(V — Vo))l

T
On conclut S(T, V) —S(Ty, Vo) =ncln < ) +nRlIn ( v )
To )
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Remarque : Le calcul présenté en physique est cohérent avec le formalisme mathématique
puisqu’on observe par linéarité de l'intégrale puis changement de variables (¢t = Ty + u(T — Ty)
pour la premiére intégrale et v = Vy + u(V — Vy) pour la deuxiéme) :

1 T-—T, ! V-V,
S(T,V) — S(Ty, Vo) = d R d
(T, V) = 5(To, Vo) /OncT0+u(T—T0) u+/0n Vo +u(V — V) Y

T \%
dt dv
= nc / —+nR | —
T, t vo U
Plus généralement, pour une entropie vérifiant
ds = f(T)dT + g(V)dV
avec [ et g continues, on a

S(T, V) — S(Ty, Vo) = Tf(t) dt+/vg(v) do

Vo
Ceci s’explique par le caractére « séparé » des variables dans I’écriture de la différentielle dS.
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