
ISM MP, Informatique
Année 2025/2026

Corrigé du TP Informatique 14

Exercice 1

1. On saisit :

def minimax(tas,J_i):

if tas==1:

return score(J_i)

else:

aux=[]

for k in range(1,4):

reste=tas-k

if reste>0:

aux.append(minimax(reste,adversaire(J_i)))

if J_i==0:

return max(aux)

else:

return min(aux)

2. On saisit :

def nim_minimax(N):

tas,fini,J_i=N,N==1,1

while not fini:

J_i=adversaire(J_i)

print("J_"+str(J_i)+"=",tas)

if J_i==0:

valide=False

while not valide:

retrait=int(input("Retire="))

valide=coup_valide(tas,retrait)

if not valide:

print("Coup invalide")

else:

m,retrait=float('inf'),None

for i in range(1,4):

if tas-i>0:

aux=minimax(tas-i,0)

if aux<=m:

m,retrait=aux,i

print("Retire= ",retrait)

tas-=retrait

fini=(tas==1)

print("J_"+str(J_i)+" gagne")

1

Exercice 2

On saisit :

def minimax(tab,libres,J_i):

align_o=alignement(tab,0)

align_x=alignement(tab,1)

si feuille

if align_o or align_x or len(libres)==0:

if align_o:

return pinf

elif align_x:

return minf

else:

return 0

else:

aux=[]

for (i,j) in libres:

tab_aux=deepcopy(tab)

libres_aux=deepcopy(libres)

tab_aux[i][j]=J_i

libres_aux.remove((i,j))

aux.append(minimax(tab_aux,libres_aux,adversaire(J_i)))

if aux[-1]*(1-2*J_i)==pinf:

return aux[-1]

if J_i==0:

return max(aux)

else:

return min(aux)

2. On saisit :

def morpion_minimax():

tab=[[None]*3 for k in range(3)]

libres=[(i,j) for i in range(3) for j in range(3)]

nb,fini,J_i=0,False,1

print("Partie de morpion")

print("J_0 -> O")

print("J_1 -> X")

print()

while not fini:

J_i=adversaire(J_i)

print('Coup=',nb)

nb+=1

aff(tab)

if J_i==0:

[...]

2

else:

m=pinf

for (x,y) in libres:

if m!=minf:

tab_aux=deepcopy(tab)

libres_aux=deepcopy(libres)

tab_aux[x][y]=1

libres_aux.remove((x,y))

aux=minimax(tab_aux,libres_aux,0)

if aux<=m:

m=aux

i,j=x,y

tab[i][j]=J_i

libres.remove((i,j))

align_o=alignement(tab,0)

align_x=alignement(tab,1)

fini=align_o or align_x or nb==9

print()

if align_o or align_x:

print("J_"+str(J_i)+" gagne")

else:

print("Match nul")

aff(tab)

Exercice 3

1. On saisit :

def minimax_depth(tab,J_i,p):

recherche successeurs de tab pour J_i

succ={}

for pos in cases_libres(tab):

L_retourne=retourne(tab,pos,J_i) # cases retournables pour J_i

if L_retourne!=[]:

succ[pos]=L_retourne

if succ=={}: # si feuille de l'arbre

return score(tab)

elif p==0:

return H(tab,poids)

else:

aux=[]

for pos in succ:

tab_aux=deepcopy(tab)

joue(tab_aux,pos,J_i)

aux.append(minimax_depth(tab_aux,adversaire(J_i),p-1))

if J_i==0:

return max(aux)

else:

return min(aux)

3

2. On saisit :

def othello_minimax_depth(p):

tab=init_tab()

J_i=1

fini=False

print("Partie d'Othello")

print("J_0 -> O")

print("J_1 -> X")

print()

while not fini:

J_i=adversaire(J_i)

aff(tab)

jouables=cases_jouables(tab,J_i)

if len(jouables)>0:

if J_i==0:

[...]

else:

print()

m=pinf

for pos_aux in jouables:

tab_aux=deepcopy(tab)

joue(tab_aux,pos_aux,J_i)

aux=minimax_depth(tab_aux,adversaire(J_i),p)

if aux<=m:

m=aux

pos=pos_aux

print("\nLa machine joue ",pos)

joue(tab,pos,J_i)

elif len(cases_libres(tab))>0:

print("\nJ_"+str(J_i)+" passe")

J0_bloque=len(cases_jouables(tab,0))==0

J1_bloque=len(cases_jouables(tab,1))==0

fini=J0_bloque and J1_bloque

print()

n0,n1=comptage(tab)

[...]

4

Exercice 4

On saisit :

def minimax_depth(tab,col,J_i,p):

place(tab,col,J_i)

if gagne(tab,col,J_i):

return score(J_i)

elif grille_pleine(tab):

return 0

elif p==0:

return H(tab,poids)

else:

aux=[]

for c in range(7):

if coup_valide(tab,c):

tab_aux=deepcopy(tab)

aux.append(minimax_depth(tab_aux,c,adversaire(J_i),p-1))

if J_i==0:

return min(aux)

else:

return max(aux)

2. On saisit :

def puiss4_minimax(p):

tab=init_tab()

J_i=1

fini=False

print("Partie de puissance 4")

print("J_0 -> O")

print("J_1 -> X")

while not fini:

J_i=adversaire(J_i)

aff(tab)

print()

if J_i==0:

[...]

else:

m=pinf

for col_aux in range(7):

if coup_valide(tab,col_aux):

tab_aux=deepcopy(tab)

aux=minimax_depth(tab_aux,col_aux,J_i,p)

if aux<=m:

m=aux

col=col_aux

print("La machine joue : col =",col)

place(tab,col,J_i)

fini=grille_pleine(tab) or gagne(tab,col,J_i)

5

if gagne(tab,col,J_i):

print("J_"+str(J_i)+" gagne")

else:

print("Match nul")

aff(tab)

6

