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Problème I

Pour t ∈ ]−R ;R [ avec R supposé > 0, on a

x(t) =
+∞∑
n=0

ant
n, x′(t) =

+∞∑
n=1

nant
n−1, x′′(t) =

+∞∑
n=2

n(n− 1)ant
n−2

On injecte dans (H) :
+∞∑
n=2

n(n− 1)ant
n−1 +

+∞∑
n=1

2nant
n−1 +

+∞∑
n=0

ant
n+1 = 0

Avec un changement d'indice dans la dernière somme, on obtient
+∞∑
n=2

n(n− 1)ant
n−1 +

+∞∑
n=1

2nant
n−1 +

+∞∑
n=2

an−2t
n−1 = 0

En isolant le premier terme de la seconde somme, on rassemble par linéarité :

2a1 +
+∞∑
n=2

[n(n+ 1)an + an−2] t
n−1 = 0

Par unicité du développement en série entière, il vient

a1 = 0 et ∀n ⩾ 2 n(n+ 1)an + an−2 = 0

Une récurrence immédiate donne

∀n ∈ N a2n+1 = 0 et a0 ̸= 0 =⇒ a2n ̸= 0

Pour obtenir une expression simple de a2n, on écrit un produit téléscopique

a2n = a0

n

Π
k=1

ï
a2k

a2(k−1)

ò
= a0

n

Π
k=1

ï −1

(2k + 1)(2k)

ò
=

a0(−1)n

(2n+ 1)!

Posons φ(t) =
+∞∑
n=0

(−1)nt2n

(2n+ 1)!
. En multipliant par t, on identi�e

∀t ∈ R tφ(t) = sin(t)

ce qui prouve R = +∞ avec ∀t ∈ R φ(t) =


sin(t)

t
si t ̸= 0

1 sinon

Ainsi L'ensemble des solutions développables en série entière de (H) est Vect (φ) .

Plaçons nous sur I = ] 0 ;π [. L'équation (H) est une équation linéaire di�érentielle résolue ho-
mogène d'ordre 2. L'ensemble SH est donc un plan vectoriel. Mettons en ÷uvre la méthode du

wronskien pour la résolution complète. On pose φ : I → R, t 7→ sin(t)

t
. Si ψ est solution de (H),

considérant le wronskien W de (φ, ψ), on a

φψ′ − φ′ψ = W (L)

On sait que le wronskien véri�e l'équation di�érentielle W′ = −2

t
W, autrement dit
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∀t ∈ I W(t) =
α

t2
avec α ∈ R

On peut désormais considérer l'équation (L) comme une équation di�érentielle linéaire d'ordre
1 avec second membre. La droite vectorielle Vect (φ) est l'ensemble des solutions de l'équation
homogène associée et par variation de la constante, avec λ dérivable sur I et ψ = λφ, il vient
pour t ∈ I

φ2(t)λ′(t) =
α

t2
avec α ∈ R

d'où ∀t ∈ I λ(t) =

∫
α

sin(t)2
dt+ β = −α cotan (t) + β

avec α, β réels. Notant λ = −α, on conclut

x ∈ SH ⇐⇒ ∃(λ, µ) ∈ R2 | ∀t > 0 x(t) = λ
sin(t)

t
+ µ

cos(t)

t

Ainsi SH =

ß
t ∈ I 7→ λ

sin(t)

t
+ µ

cos(t)

t
, (λ, µ) ∈ R2

™
Remarque : On peut aussi procéder avec la méthode de Lagrange ou même conjecturer la forme
des solutions manquantes puis la véri�er.

Problème II

1. On véri�e sans di�culté que ch et sh sont solutions de (H) et comme la famille (ch , sh ) est
clairement libre, on conclut

La famille (ch , sh ) est un système fondamental de solutions de (H).

2. Soient a, b réels. On a sh (a− b) =
e ae−b − e−ae b
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On observe ex = ch (x) + sh (x) pour x réel. Par substitution, on trouve

∀x ∈ R sh (a− b) =
(sh (a) + ch (a))(ch (b)− sh (b))− (sh (b) + ch (b))(ch (a)− sh (a))

2

Ainsi ∀(a, b) ∈ R2 sh (a− b) = sh (a) ch (b)− sh (b) ch (a)

3. On procède par variation de la constante. On cherche une solution de (L) de la forme
λ ch +µ sh avec λ, µ dérivables et véri�ant pour t réelÅ

ch (t) sh (t)
sh (t) ch (t)

ãÅ
λ′(t)
µ′(t)

ã
=

Å
0

|cos(t)|

ã
⇐⇒

Å
λ′(t)
µ′(t)

ã
=

Å
ch (t) − sh (t)
− sh (t) ch (t)

ãÅ
0

|cos(t)|

ã
⇐⇒

®
λ′(t) = − sh (t) |cos(t)|
µ′(t) = ch (t) |cos(t)|

Ainsi ∀t ∈ R λ(t) = α−
∫ t

0

sh (s) |cos(s)| ds et µ(t) = β +

∫ t

0

ch (s) |cos(s)| ds

avec α, β réels. En exploitant la relation établie à la question précédente, on trouve

∀t ∈ R x(t) = α ch (t) + β sh (t) +

∫ t

0

sh (t− s) |cos(s)| ds
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Pour t ⩾ 0, on a t − s ⩾ 0 pour s ∈ [ 0 ; t ] puis

∫ t

0

sh (t − s) |cos(s)| ds ⩾ 0 et pour t ⩽ 0,

on a

∫ t

0

sh (t− s) |cos(s)| ds =
∫ 0

t

sh (s− t) |cos(s)| ds par imparité de sh puis s− t ⩾ 0 pour

s ∈ [ t ; 0 ] d'où

∫ 0

t

sh (s − t) |cos(s)| ds ⩾ 0. Ainsi, en choisissant α ⩾ 0 et β = 0, la fonction

dé�nissant x est positive et on conclut

L'équation (L) admet des solutions positives.

4.(a) Si x était constante, on aurait x′′ = 0 d'où x(t) = − |cos(t)| pour t réel ce qui contredit la
constance de x.

Une solution positive x de (L) est non constante.

4.(b) On a x′′ = x + |cos(t)| ⩾ 0 ce qui prouve que x est convexe. Son graphe est donc situé
au dessus de ses tangentes et comme la fonction x n'est pas constante, son graphe admet des
tangentes non horizontales ce qui interdit le caractère borné sur R. On conclut

Une solution positive x de (L) n'est pas bornée.

Problème III

1. Le polynôme minimal πu n'est pas scindé à racines simples. Ainsi

L'endomorphisme u n'est pas diagonalisable.

La matrice A =

Ñ
1 1 0
0 1 0
0 0 2

é
véri�e πA = πu.

2. On a πu(u) = 0 d'où E = Ker πu(u) et comme (X − 1)2 ∧ (X − 2) = 1, il vient d'après le
lemme des noyaux

E = Ker (u− id )2 ⊕Ker (u− 2 id )

3. On a p+ q = (u− id )2 + 2u− u2 = u2 − 2u+ id +2u− u2

D'où p+ q = id

4. Soit x ∈ E. Comme p+ q = id , il vient x = p(x) + q(x) et

(u− 2 id ) ◦ p(x) = πu(u)(x) = 0 et (u− id )2 ◦ q(x) = −u ◦ πu(u)(x) = 0

ce qui prouve (p(x), q(x)) ∈ Ker (u− 2 id )×Ker (u− id )2

et cette décomposition est unique. On conclut

L'application p est la projection sur Ker (u−2 id ) parallèlement à Ker (u−id )2

et q la projection associée.

5. On a (u− 2 id ) ◦ p = πu(u) = 0 d'où u ◦ p = 2p. Par une récurrence immédiate, on obtient

∀k ∈ N uk ◦ p = 2kp

6. Par continuité de la composition (linéaire en dimension �nie), on a
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eu ◦ p =
Å

+∞∑
k=0

uk

k!

ã
◦ p =

+∞∑
k=0

1

k!
uk ◦ p =

+∞∑
k=0

1

k!
2kp

Ainsi eu ◦ p = e 2p

7. On a établi dans la question 4 que (u− id )2 ◦ q = 0. Par suite

∀k ⩾ 2 (u− id )k ◦ q = (u− id )k−2 ◦ (u− id )2 ◦ q = 0

8. On a u = id +(u− id ) avec id et u− id qui commutent. Par conséquent, il vient par propriété
fondamentale de l'exponentielle eu = e id+(u−id ) = e id ◦ eu−id . On a e id = e id et par continuité
de la composition, on trouve

eu ◦ q = e

Å
+∞∑
k=0

(u− id )k

k!

ã
◦ q = e

+∞∑
k=0

(u− id )k ◦ q
k!

= e (q + (u− id ) ◦ q)

Ainsi eu ◦ q = eu ◦ q

9. On a eu = eu ◦ (p+ q) = e 2p+ eu ◦ q

D'où eu = e 2(u− id )2 + eu2 ◦ (2 id −u) = −eu3 + (e 2 + 2e )u2 − 2e 2u+ e 2 id

Problème IV (bonus)

1. Par variation de la constante, on trouve

∀u ∈ C 0([ 0 ; 1 ] ,R) Φ(u) = eA

ñ
X0 +

∫ 1

0

e−AsBu(s) ds

ô
2. On pose ∀X ∈ E Λ(X) = eA (X0 +X)

L'application Λ est une permutation de E puisque pour (X,Y) ∈ E2, on a

Λ(X) = Y ⇐⇒ X = e−AY − X0

et comme on a Φ = Λ ◦Ψ, on conclut

Φ surjective ⇐⇒ Ψ surjective

3. Soit X ∈ E. La matrice K⊤ est constituée des lignes
(
AkB

)⊤
pour k ∈ [[ 0 ; n− 1 ]]. Par suite,

on a

K⊤X = 0 ⇐⇒ ∀k ∈ [[ 0 ; n− 1 ]]
(
AkB

)⊤
X = 0

Autrement dit K⊤X = 0 ⇐⇒ ∀k ∈ [[ 0 ; n− 1 ]]
〈
AkB,X

〉
= 0

4. Soit u ∈ C 0([ 0 ; 1 ] ,R). Pour s ∈ [ 0 ; 1 ], notons βi(s) la i-ème coordonnée de e−AsB pour
i ∈ [[ 1 ; n ]]. Il vient par linéarité du produit scalaire en la première variable avec les propriétés
de fonctions vectorielles

⟨Ψ(u),X⟩ =
Æ∫ 1

0

e−AsBu(s) ds,X

∏
=

∫ 1

0

〈
e−AsBu(s),X

〉
ds

Ainsi ∀u ∈ C 0([ 0 ; 1 ] ,R) ⟨Ψ(u),X⟩ =
∫ 1

0

〈
e−AsB,X

〉
u(s) ds
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5. Soit X ∈ E tel que K⊤X = 0. D'après l'équivalence établie à la question 3, on a

∀k ∈ [[ 0 ; n− 1 ]]
〈
AkB,X

〉
= 0

Or, notant d = deg πA, on sait que (Ak)0⩽k⩽d−1 est une base de R[A] avec d ⩽ n. Par conséquent,
il vient par linéarité en la première variable du produit scalaire

∀k ∈ N
〈
AkBX

〉
= 0

puis pour s ∈ [ 0 ; 1 ] ∀N ∈ N
≠

N∑
k=0

(−As)k

k!
B,X

∑
= 0

et par continuité du produit matriciel et de l'application linéaire en dimension �nie Y 7→ ⟨Y,X⟩,
on obtient faisant tendre N → +∞ 〈

e−AsB,X
〉
= 0

D'après l'expression établie à la question précédente, il vient ⟨Ψ(u),X⟩ = 0 et on conclut

K⊤X = 0 =⇒ Im Ψ ⊂ Vect (X)⊥

Comme le rang est invariant par transposition, on a

rg (K) < n ⇐⇒ ∃X ∈ E∖ {0E} | K⊤X = 0

Sans di�culté, on a Ψ ∈ L (C 0([ 0 ; 1 ] ,E) par linéarité de l'intégrale et du produit à gauche et
par conséquent, l'image Im Ψ est un sev de E. En�n, pour X ∈ E ∖ {0E}, l'espace Vect (X)⊥

est un hyperplan de E. L'inclusion Im Ψ ⊂ Vect (X)⊥ contredit Ψ surjective et contredit donc,
d'après le résultat de la question 2, la contrôlabilité du système (S). On conclut

rg (K) < n =⇒ le système (S) n'est pas contrôlable

6.(a) Dans l'espace E euclidien, si (Im Ψ)⊥ = {0E}, alors Im Ψ = E et comme l'application Ψ
n'est pas surjective, on en déduit par contraposée qu'il existe X ∈ E∖{0E} tel que X ∈ (Im Ψ)⊥

d'où Vect (X) ⊂ (Im Ψ)⊥ et passant à l'orthogonal, on conclut

Il existe X ∈ E∖ {0E} tel que Im Ψ ⊂ Vect (X)⊥.

6.(b) D'après l'égalité établie à la question 4, on a

∀u ∈ C 0([ 0 ; 1 ] ,R)
∫ 1

0

〈
e−AsB,X

〉
u(s) ds = 0

En particulier, si on choisit

∀s ∈ [ 0 ; 1 ] u(s) =
〈
e−AsB,X

〉
on trouve

∫ 1

0

u2(s) ds = 0

La fonction u2 est continue comme composée de fonctions continues, positive et par séparation
de l'intégrale, on obtient

∀s ∈ [ 0 ; 1 ]
〈
e−AsB,X

〉
= 0

La fonction u est de classe C ∞ puisque la fonction exponentielle s 7→ e−As l'est et par linéarité
de Y 7→ ⟨Y,X⟩. Par dérivation, on trouve

∀(s, k) ∈ [ 0 ; 1 ]× N u(k)(s) = (−1)k
〈
Ake−AsB,X

〉
Comme la fonction u est nulle, on conclut
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∀k ∈ [[ 0 ; n− 1 ]] u(k)(0) =
〈
AkB,X

〉
= 0

Variante : On peut tout à fait dé�nir u sur R avec

∀u ∈ R u(s) =
〈
e−AsB,X

〉
Par continuité du produit scalaire en la première variable (linéaire en dimension �nie), on a pour
s réel

u(s) =

≠
+∞∑
k=0

(−1)k
skAkB

k!
,X

∑
=

+∞∑
k=0

(−1)k
〈
AkB,X

〉
k!

sk

ce qui prouve que la fonction est développable en série entière. Or, on a u(s) = 0 pour tout
s ∈ [ 0 ; 1 ], intervalle non réduit à un point contenant zéro. Ainsi, par unicité du développement
en série entière, on obtient

∀k ∈ N (−1)k
〈
AkB,X

〉
k!

= 0

et on retrouve en particulier le résultat attendu.

6.(c) Il s'ensuit K⊤X = 0 d'où rg (K) < n et avec le résultat de la question 2, on a donc établi

le système (S) n'est pas contrôlable =⇒ rg (K) < n

7. Par contraposée des implications établies aux questions 5 et 6.(c), on conclut

Le système (S) est contrôlable ⇐⇒ rg (K) = n
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