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Feuille d'exercices n°81

Exercice 1 (***)

Soit G un groupe �ni véri�ant ∀x ∈ G x2 = e

1. Montrer que G est un groupe abélien.

2. On suppose que G est �ni non réduit à {e}.

(a) Justi�er l'existence de n = min {Card P, P ⊂ G tel que ⟨P⟩ = G} entier non nul.
(b) Soit (x1, . . . , xn) ∈ Gn tel que G = ⟨x1, . . . , xn⟩. On pose

φ : (Z/2Z)n → G, (α1, . . . , αn) 7→ xα1
1 . . . xαn

n avec αi ∈ {0, 1}

Justi�er que φ est bien dé�nie et véri�er que φ est un morphisme de de groupes.

(c) Conclure que G ≃ (Z/2Z)n

Corrigé : 1. Soit (x, y) ∈ G2. On a

(xy)2 = e ⇐⇒ xyxy = e ⇐⇒ yxy = x ⇐⇒ xy = yx

Ainsi Le groupe G est abélien.

2.(a) L'ensemble {Card P, P ⊂ G tel que ⟨P⟩ = G} est non vide puisque ⟨G⟩ = G et il s'agit
d'une partie non vide de N qui admet donc un plus petit élément n. En�n, comme ⟨∅⟩ = {e} ≠ G
et que l'ensemble vide est l'unique partie de cardinal nul, on conclut

Il existe n = min {Card P, P ⊂ G tel que ⟨P⟩ = G} entier non nul.

2.(b) Soit (αi)i∈[[ 1 ;n ]] et (βi)i∈[[ 1 ;n ]] dans Zn tel que αi = βi pour tout i ∈ [[ 1 ; n ]]. Il s'ensuit

xα1
1 . . . xαn

n = xβ1

1 . . . xβn
n

ce qui prouve que l'application φ est bien dé�nie et ne dépend pas du choix des représentants
des classes αi. Puis, par commutativité, on a

φ
(
(α1, . . . , αn) + (β1, . . . , βn)

)
= φ

(
α1 + β1, . . . , αn + βn

)
= xα1+β1

1 . . . xαn+βn
n = xα1

1 . . . xαn
n xβ1

1 . . . xβn
n

= φ(α1, . . . , αn)φ(β1, . . . , βn)

Ainsi L'application φ est un morphisme de groupes.

2.(c) On note H =
{
xα1
1 . . . xαn

n , (αi)i∈[[ 1 ;n ]] ∈ Zn
}
. L'ensemble H est clairement un sous-groupe

de G contenant {x1, . . . , xn} d'où G ⊂ H et on a clairement H ⊂ G d'où l'égalité G = H.
Par dé�nition, on a Im φ = H d'où la surjectivité de φ. En�n, soit (αi)i∈[[ 1 ;n ]] ∈ Zn tel que
(αi)i∈[[ 1 ;n ]] ∈ Ker φ. Supposons αi0 impair avec i0 ∈ [[ 1 ; n ]]. Il vient par commutativité

xi0 =
∏

i∈[[ 1 ;n ]]∖{i0}
xαi
i

Ceci contredirait la minimalité de n, cardinal d'une famille génératrice minimale. On en déduit
que tous les αi sont pairs d'où
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Ker φ = {(0̄, . . . , 0̄)}

Le morphisme de groupes φ est donc un isomorphisme et on conclut

G ≃ (Z/2Z)n

Remarque : On peut observer que le cardinal d'une famille génératrice minimale véri�e n =
log2Card G.

Exercice 2 (***)

Soient p et q des entiers non nuls premiers entre eux. Montrer que l'application φ : Up × Uq →
Upq, (x, y) 7→ xy est un isomorphisme de groupes.

Corrigé : L'application est bien dé�nie puisque pour (x, y) ∈ Up×Uq, on a (xy)pq = (xp)q(yq)p =
1 et est clairement un morphisme puisque

∀(x, x′) ∈ U2
p ∀(y, y′) ∈ U2

q φ(xx′, yy′) = xx′yy′ = xyx′y′ = φ(x, y)φ(x′, y′)

On pose α = e
2iπ
p β = e

2iπ
q γ = e

2iπ
pq

L'application φ réalise la transformation suivante :

∀(k, ℓ) ∈ Z2 φ(αk, βℓ) = γqk+ℓp

Posons ψ :

®
Z2 −→ Z

(k, ℓ) 7−→ qk + pℓ

L'application ψ est clairement un morphisme de groupes donc Im ψ est un sous-groupe de Z.
Or, d'après le théorème de Bézout, comme p∧ q = 1, il s'ensuit que 1 ∈ Im ψ d'où Im ψ = Z et
la surjectivité de φ s'ensuit. On a donc une surjection entre deux ensembles de même cardinaux
d'où la bijectivité de φ et on conclut

L'application φ est un morphisme de groupes.

Variante : Déterminons Ker φ, ou de manière équivalente les couples (k, ℓ) ∈ Z2 tels que
qk + pℓ ≡ 0 [qp], c'est-à-dire qk + pℓ = rpq avec r ∈ Z. En isolant les facteurs en q puis les
facteurs en p, on en déduit à l'aide du théorème de Gauss que p|qk donc p|k puis q|pℓ donc q|ℓ
et par conséquent αk = 1 et βℓ = 1, autrement dit

Ker φ = {(1, 1)}

d'où l'injectivité de φ entre deux ensembles de même cardinal et on conclut comme précédem-
ment. On peut aussi utiliser la relation de Bézout pour établir la surjectivité plutôt que passer
par l'argument sur les cardinaux. En�n, cet exercice est un jumeau du théorème chinois qui
fournit directement

qk + pℓ ≡ 0 [pq] ⇐⇒
®
qk + pℓ ≡ 0 [p]

qk + pℓ ≡ 0 [q]

avec l'isomorphisme d'anneaux Z/pqZ ≃ Z/pZ× Z/qZ.
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Exercice 3 (***)

Soit φ un morphisme d'un groupe �ni (G,×) vers un autre groupe. Établir

Card G = Card Ker φ× Card Im φ

Corrigé : On dé�nit la relation binaire R par

∀(x, y) ∈ G2 xRy ⇐⇒ φ(x) = φ(y)

On véri�e sans di�culté que R est une relation d'équivalence. L'ensemble des classes d'équi-
valence est exactement le cardinal de Im φ. Pour (x, y) ∈ G2, par propriété de morphisme de
groupes, on a

xRy ⇐⇒ φ(x) = φ(y) ⇐⇒ φ(y)−1φ(x) = 1

⇐⇒ φ(y−1x) = 1 ⇐⇒ x−1y ∈ Ker φ ⇐⇒ y ∈ xKer φ

Ainsi, une classe d'équivalence pour R est de la forme xKer φ. Or, l'application G → G, u 7→ xu
est une permutation de G ce qui prouve que les classes d'équivalence sont toutes en bijection
avec Ker φ. Notant x1, . . . , xp des représentants des classes d'équivalence, la famille x1, . . . , xp
est une partition de G d'où

Card G = Card

p⊔
i=1

xi =
p∑

i=1

Card xi = pCard Ker φ

On conclut Card G = Card Ker φ× Card Im φ

Remarque : C'est exactement la démonstration du théorème de Lagrange.

Exercice 4 (***)

Soit (G,×) un groupe �ni d'ordre n. Montrer que

1. G est isomorphe à un sous-groupe de Sn ;

2. G est isomorphe est à un sous-groupe de On(R).
Corrigé : 1. Soit a ∈ G et φa : G → G, x 7→ ax. L'application φa est une permutation de
G (d'application réciproque φa−1). Considérons l'application Φ : G → S(G), a 7→ φa. Pour
(a, b) ∈ G2, on a

∀x ∈ G Φ(ab)(x) = φab(x) = abx = φa ◦ φb(x) = Φ(a) ◦ Φ(b)(x)

autrement dit Φ(ab) = Φ(a) ◦ Φ(b)

ce qui prouve que Φ est un morphisme de groupes. Puis, pour a ∈ G, on trouve

Φ(a) = id ⇐⇒ ∀x ∈ G ax = x ⇐⇒ a = 1

d'où l'injectivité de Φ. Par conséquent, on a

G ≃ Φ(G) avec Φ(G) sous-groupe de S(G)

Comme S(G) est isomorphe à Sn, on obtient

Le groupe G est isomorphe à un sous-groupe de Sn.

Remarque : Ce résultat s'intitule théorème de Cayley.

2. On pose ∀σ ∈ Sn χ(σ) =
(
δi,σ(j)

)
1⩽i,j⩽n
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Pour σ ∈ Sn, les colonnes de χ(σ) forment clairement une base orthonormée :

∀(j, k) ∈ [[ 1 ; n ]]2
n∑

i=1

δi,σ(j)δi,σ(k) = δσ(j),σ(k) = δj,k

Soit (σ, γ) ∈ S2
n. On a

∀(i, j) ∈ [[ 1 ; n ]]2 (χ(σ)χ(γ))i,j =
n∑

k=1

δi,σ(k)δk,γ(j) = δi,σ(γ(j)) = χ(σ ◦ γ)i,j

Autrement dit ∀(σ, γ) ∈ S2
n χ(σ ◦ γ) = χ(σ)χ(γ)

Ainsi, l'application χ est un morphisme du groupe (Sn, ◦) vers le groupe (On(R),×). Puis, pour
σ ∈ Sn, on a

χ(σ) = In ⇐⇒ ∀(i, j) ∈ [[ 1 ; n ]]2 δi,σ(j) = δi,j

⇐⇒ ∀j ∈ [[ 1 ; n ]] j = σ(j) ⇐⇒ σ = id

Ainsi, le morphisme χ est injectif. Comme le groupe G est isomorphe à un sous-groupe de Sn,
on conclut

Le groupe G est isomorphe à un sous-groupe de On(R).

Exercice 5 (***)

Soit (G,×) un groupe cyclique de cardinal n. Montrer que le cardinal de (Aut(G), ◦) est φ(n).

Corrigé : Soit a ∈ G tel que G = ⟨a⟩. Soit f ∈ Aut(G). Comme f est un morphisme de groupes,
on a f(G) = ⟨f(a)⟩ et f(a) ∈ ⟨a⟩ d'où f(a) = aℓ avec ℓ ∈ [[ 0 ; n− 1 ]]. Cet entier ℓ caractérise f .
L'application φ : Z/nZ → G, k 7→ ak est un isomorphisme (voir preuve du théorème décrivant
les groupes monogènes). Il s'ensuit

f(G) = G ⇐⇒ ⟨f(a)⟩ = ⟨a⟩ ⇐⇒
〈
aℓ
〉
= ⟨a⟩ ⇐⇒

〈
ℓ̄
〉
= ⟨1̄⟩ = Z/nZ ⇐⇒ ℓ ∧ n = 1

Ainsi Card Aut(G) = Card {ℓ ∈ [[ 0 ; n− 1 ]] | ℓ ∧ n = 1}

Et on conclut Card Aut(G) = φ(n)

Exercice 6 (***)

Décrire les groupes d'ordre 4.

Corrigé : Si G est monogène, c'est �ni. Supposons qu'il ne le soit pas. Comme l'ordre d'un
élément divise l'ordre du groupe, on en déduit que x2 = e pour tout x ∈ G. Si G contient un
unique élément x d'ordre 2, alors G = {e, x} ce qui est contradictoire. Donc G contient au moins
deux éléments distincts x et y d'ordre 2, d'où {e, x, y} ⊂ G. Si xy = e, on aurait x2y = y = x ce
qui est faux. De même, on n'a pas xy = x ni xy = y. Par stabilité par composition, on a

{e, x, y, xy} ⊂ G

et l'inclusion est une égalité pour raison de cardinal. On a

(xy)2 = e ⇐⇒ xyxy = e ⇐⇒ x2yxy = x ⇐⇒ yxy = x ⇐⇒ y2xy = yx ⇐⇒ xy = yx

On remarque qu'on peut écrire G =
¶
xkyℓ, (k, ℓ) ∈ {0, 1}2

©
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En�n, on considère l'application : φ :

®
(Z/2Z)2 −→ G

(k̄, ℓ̄) 7−→ xkyℓ

C'est un morphisme surjectif. Déterminons Ker φ. Soit (k, ℓ) ∈ {0, 1}2 tel que φ(k̄, ℓ̄) = e.
On véri�e alors φ(k̄, ℓ̄) ̸= e pour (k̄, ℓ̄) ̸= (0̄, 0̄) d'où l'injectivité de φ. Il s'agit donc d'un
isomorphisme et on conclut

G ≃ Z/4Z ou G ≃ (Z/2Z)2

Exercice 7 (***)

Montrer qu'un groupe est �ni si et seulement si l'ensemble de ses sous-groupes est �ni.

Corrigé : Si G est �ni, l'ensemble P(G) des parties de G est �ni (de cardinal égal 2Card G) donc
l'ensemble de ses sous-groupes également. Supposons désormais que l'ensemble des sous-groupes

de G est �ni. On a G =
⋃
x∈G

⟨x⟩ et par hypothèse, il existe F une partie �nie de G tel que

G =
⋃
x∈F

⟨x⟩. Supposons qu'il existe x ∈ F tel que ⟨x⟩ soit in�ni. Dans ce cas, on a ⟨x⟩ ≃ Z. Or,

le groupe Z admet une in�nité de sous-groupes que sont les nZ avec n entier. Par isomorphisme,
le groupe ⟨x⟩ admet donc une in�nité de sous-groupes et par conséquent, G également, ce qui est

absurde. Ainsi, pour tout x ∈ F, on a ⟨x⟩ �ni et G =
⋃
x∈F

⟨x⟩ est donc �ni lui-aussi. On conclut

Un groupe est �ni si et seulement si l'ensemble de ses sous-groupes est �ni.

Exercice 8 (****)

Montrer que les groupes (Zn,+) avec n entier non nul sont deux à deux non isomorphes.

Corrigé : Soit n entier non nul. On note e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc.. On a
clairement

Zn = ⟨e1, . . . , en⟩

On pose p = min {Card A,A �ni | ⟨A⟩ = Zn}

Le minimum est bien dé�ni puisque l'ensemble concerné est une partie non vide (contient
(e1, . . . , en)) de N. On a également p ⩽ n. Montrons qu'il s'agit d'une égalité. Supposons p < n
(cas n = 1 trivial) et soit (x1, . . . , xp) une famille génératrice de Zn. Ainsi

∀k ∈ [[ 1 ; n ]] ∃(αk,j)j∈[[ 1 ; p ]] ∈ Zp | ek =
p∑

j=1

αk,jxj

On pose A =

Ö
α1,1 . . . α1,p

...
...

αn,1 . . . αn,p

è
∈ Mn,p(R)

On a rg A ⩽ min(n, p) = p ce qui signi�e que la famille des lignes est liée. On peut donc trouver
un indice k0 ∈ [[ 1 ; n ]] et des réels (µi)i∈[[ 1 ;n ]]∖{k0} tels que Lk0 =

∑
i∈[[ 1 ;n ]]∖{k0}

µiLi, autrement dit
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(0, . . . , 1︸︷︷︸
indice k0

, 0, . . .) = ek0 =
∑

i∈[[ 1 ;n ]]∖{k0}
µiei = (. . . , 0︸︷︷︸

indice k0

, . . .)

ce qui absurde. On conclut que p = n ce qui signi�e que l'entier n est le cardinal minimal d'une
famille génératrice de Zn. Soient n,m entier et φ : (Zn,+) → (Zm,+) un isomorphisme. Par
surjectivité, on voit que l'application φ envoie une famille génératrice sur une famille génératrice.
On en déduit que m ⩽ n et considérant l'isomorphisme réciproque, on obtient n ⩽ m. Par
conséquent, le cas n = m est l'unique situation d'isomorphisme et on conclut

Les groupes (Zn,+) avec n entier non nul sont deux à deux non isomorphes.

Variante : Soit n entier non nul. Pour (x, y) ∈ (Zn)2, on dé�nit la relation binaire xRy par
x− y ∈ 2Zn. On véri�e sans di�culté qu'il s'agit d'une relation d'équivalence et on note Zn/2Zn

l'ensemble des classes d'équivalence pour cette relation. On montre aisément l'isomorphisme
Zn/2Zn ≃ (Z/2Z)n. Pour m et n entiers non nuls, si Zn ≃ Zm alors il s'ensuit

(Z/2Z)n ≃ Zn/2Zn ≃ Zm/2Zm ≃ (Z/2Z)m

En considérant les cardinaux, il vient 2n = 2m d'où n = m.
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