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Feuille d’exercices n°81

Exercice 1 (***)

Soit G un groupe fini vérifiant Ve e G ?=e
1. Montrer que G est un groupe abhélien.

2. On suppose que G est fini non réduit a {e}.

(a) Justifier I'existence de n = min {Card P, P C G tel que (P) = G} entier non nul.
(b) Soit (z1,...,z,) € G" tel que G = (x1,...,2,). On pose
0 (2)22)" — G, (aq,...,0) — a7 ... 2% avec «; €{0,1}
Justifier que ¢ est bien définie et vérifier que ¢ est un morphisme de de groupes.
(c) Conclure que G~ (z/)22)"
Corrigé : 1. Soit (z,y) € G On a
(ry)?=ec < ayry =€ < yry=1a < TY = YT

Ainsi ’Le groupe G est abélien. ‘

2.(a) L’ensemble {Card P, P C G tel que (P) = G} est non vide puisque (G) = G et il s’agit
d’une partie non vide de N qui admet donc un plus petit élément n. Enfin, comme (@) = {e} # G
et que I'’ensemble vide est I'unique partie de cardinal nul, on conclut

Il existe n = min {Card P, P C G tel que (P) = G} entier non nul.

2.(b) Soit (vi)icf1;n] et (Bi)icf1;n] dans Z™ tel que &; = B; pour tout i € [1; n]. Il s’ensuit
a8 g = g b

ce qui prouve que 'application ¢ est bien définie et ne dépend pas du choix des représentants
des classes @;. Puis, par commutativité, on a

o ((@r,....a@) + (Br, -, Bn) = ¢ (1 + B, + )

a1+p1 on+Bn _ .01 o .01 Jé;
1 coxlm P =gt xSt e

= .y

= (@, ..., @)pBr, .-, Ba)

Ainsi ’L’application @ est un morphisme de groupes.‘

2.(c) On note H = {z" ... 22", (®)ic[1,n] € Z"}. L’ensemble H est clairement un sous-groupe
de G contenant {xy,...,z,} d'ot G C H et on a clairement H C G d’ou l'égalité G = H.
Par définition, on a Im ¢ = H d’ou la surjectivité de ¢. Enfin, soit (a;)ic[1;n] € Z" tel que
(@)ic[1;n] € Ker ¢. Supposons ay, impair avec ig € [1; n]. Il vient par commutativité
Lig = H x?i
€[ 1;n]~{io}

Ceci contredirait la minimalité de n, cardinal d’une famille génératrice minimale. On en déduit
que tous les a; sont pairs d’ou



Ker ¢ = {(0,...,0)}

Le morphisme de groupes ¢ est donc un isomorphisme et on conclut

G~ (z2/)27)"

Remarque : On peut observer que le cardinal d’une famille génératrice minimale vérifie n =

log, Card G.

Exercice 2 (***)

Soient p et ¢ des entiers non nuls premiers entre eux. Montrer que 'application ¢ : U, x U, —
U,g, (z,y) — xy est un isomorphisme de groupes.

Corrigé : L’application est bien définie puisque pour (z,y) € U, xU,, on a (zy)P? = (aP)4(y?)? =
1 et est clairement un morphisme puisque

V(z,2") e U2 VY(y,y)eU: o2, yy) =ax'yy = zyx'y = o(z,y)e(',y)

2im 2im 2im

On pose a=¢r B=ea v =er
L’application ¢ réalise la transformation suivante :

V(k,0) € 2 p(ak, ) = 42+

7? — 7
Posons (K
(k,0) — qk + pl

L’application ¢ est clairement un morphisme de groupes donc Im 1) est un sous-groupe de Z.
Or, d’apres le théoréme de Bézout, comme p A ¢ = 1, il s’ensuit que 1 € Im ¢ d’ott Im ¢ = Z et
la surjectivité de ¢ s’ensuit. On a donc une surjection entre deux ensembles de méme cardinaux
d’out la bijectivité de ¢ et on conclut

’L’application © est un morphisme de groupes.‘

Variante : Déterminons Ker ¢, ou de maniére équivalente les couples (k,¢) € Z? tels que
gk + pl = 0 [qp], c’est-a-dire gk + pl = rpq avec r € Z. En isolant les facteurs en ¢ puis les
facteurs en p, on en déduit a 'aide du théoréme de Gauss que p|gk donc p|k puis ¢|pl donc g|¢
et par conséquent of = 1 et B¢ = 1, autrement dit

Ker o = {(1,1)}

d’ou l'injectivité de ¢ entre deux ensembles de méme cardinal et on conclut comme précédem-
ment. On peut aussi utiliser la relation de Bézout pour établir la surjectivité plutot que passer
par Pargument sur les cardinaux. Enfin, cet exercice est un jumeau du théoréme chinois qui

fournit directement
gk +pl =0 [p]
gk +pl =0 [pq] <~ {
gk +pl =0 [q]

avec 'isomorphisme d’anneaux Z/pqZ ~ 7. /pZ X 7./ qZ.



Exercice 3 (***)
Soit ¢ un morphisme d’un groupe fini (G, x) vers un autre groupe. Etablir
Card G = Card Ker ¢ x Card Im ¢
Corrigé : On définit la relation binaire R par
V(z,y) €G*  aRy <= o(z) =¢(y)

On vérifie sans difficulté que R est une relation d’équivalence. L’ensemble des classes d’équi-
valence est exactement le cardinal de Im ¢. Pour (z,y) € G?, par propriété de morphisme de
groupes, on a

2Ry = p(z) = ¢(y) <= ¢y) o) =1
— oy lr)=1 <= slyeKer p & yezKerp
Alinsi, une classe d’équivalence pour R est de la forme x Ker . Or, 'application G — G, u — xu
est une permutation de G ce qui prouve que les classes d’équivalence sont toutes en bijection

avec Ker . Notant xy,...,x, des représentants des classes d’équivalence, la famille z7,...,7,
est une partition de G d’ou

p P

Card G = Card |_|x7 = > Card 7; = pCard Ker ¢

i=1 =1

On conclut ’Card G = Card Ker ¢ x Card Im ¢

Remarque : C’est exactement la démonstration du théoréme de Lagrange.

Exercice 4 (***)

Soit (G, x) un groupe fini d’ordre n. Montrer que
1. G est isomorphe & un sous-groupe de S, ;
2. G est isomorphe est a un sous-groupe de O, (R).

Corrigé : 1. Soit a € G et ¢, : G — G,z — ax. Lapplication ¢, est une permutation de
G (d’application réciproque @,-1). Considérons lapplication ® : G — S(G),a — ¢,. Pour
(a,b) € G* on a

Vee G B(ab)(z) = pulz) = abr = g, 0 po(z) = B(a) 0 B(b)(a)

autrement dit ®(ab) = P(a) o B(b)
ce qui prouve que ¢ est un morphisme de groupes. Puis, pour a € G, on trouve
$(a) =id <= VreG ar =2 <= a=1
d’ou l'injectivité de ®. Par conséquent, on a
G~ ®(G) avec P(G) sous-groupe de S(G)

Comme S(G) est isomorphe a S,,, on obtient

’Le groupe G est isomorphe a un sous-groupe de Sn.‘

Remarque : Ce résultat s’intitule théoréeme de Cayley.

2. On pose Vo €8S, x(o) = (5iﬁg(j))1<i7j<n

3



Pour o € S,,, les colonnes de x(o) forment clairement une base orthonormée :
V(i k) € [1;n]? Zfz',a(j)&,o(k) = do().ok) = Ojik
Soit (0,7) € S2. On a

V(@ j) € [1;n]*  (x(@)x(0):; = ];5i,o<k>5m(j) = dio(v(j)) = X(007)i

Autrement dit V(o,v) € S2 x(eov) =x(o)x(v)

Ainsi, lapplication x est un morphisme du groupe (S,, o) vers le groupe (O, (R), x). Puis, pour
o €S,,on a

X(U) =1, <— v<Z,j) S [[1, n]]Q (Siyg(j) = (SiJ'
< Vje[l;n] j=o0(j) <= o=id

Ainsi, le morphisme x est injectif. Comme le groupe G est isomorphe & un sous-groupe de S,
on conclut

Le groupe G est isomorphe a un sous-groupe de O,(R).

Exercice 5 (***)

Soit (G, x) un groupe cyclique de cardinal n. Montrer que le cardinal de (Aut(G), o) est p(n).

Corrigé : Soit a € G tel que G = (a). Soit f € Aut(G). Comme f est un morphisme de groupes,
ona f(G) = (f(a)) et f(a) € (a) dont f(a) = a’avec £ € [0; n—1]. Cet entier ¢ caractérise f.
L’application ¢ : Z/nZ — G,k — a* est un isomorphisme (voir preuve du théoréme décrivant
les groupes monogénes). Il s’ensuit

F(G)=C < (f(a) = (a) <= (a')=(a) = () =(I)=Z/nZ < (An=1

Ainsi Card Aut(G) =Card {{ € [0; n—1] | L An =1}

Et on conclut Card Aut(G) = ¢(n)

Exercice 6 (***)

Décrire les groupes d’ordre 4.

Corrigé : Si G est monogéne, c’est fini. Supposons qu’il ne le soit pas. Comme l'ordre d’un
élément divise l'ordre du groupe, on en déduit que 2> = e pour tout v € G. Si G contient un
unique élément x d’ordre 2, alors G = {e, x} ce qui est contradictoire. Donc G contient au moins
deux éléments distincts z et y d’ordre 2, d’ot {e, x,y} C G. Si 2y = e, on aurait 2%y =y = x ce
qui est faux. De méme, on n’a pas xy = x ni xy = y. Par stabilité par composition, on a

{e,z,y,zy} C G
et 'inclusion est une égalité pour raison de cardinal. On a

(ry)?P=e < ayzy=e < 1lyry =1 = yry=1 < Yay=yr < 1y =Y

On remarque qu’on peut écrire G = {x"“yg, (k,0) € {0, 1}2}



(2)27)° — G
Enfin, on considére 'application : : _
(k. 0) +— aty’

C’est un morphisme surjectif. Déterminons Ker . Soit (k,£) € {0,1}* tel que @(k,0) = e.
On vérifie alors ¢(k,¢) # e pour (k,£) # (0,0) d’on linjectivité de . Il s’agit donc d’un
isomorphisme et on conclut

CG~Z/AZ ou G~ (Z/2Z)

Exercice 7 (***)

Montrer qu’un groupe est fini si et seulement si ’ensemble de ses sous-groupes est fini.
Corrigé : Si G est fini, 'ensemble P(G) des parties de G est fini (de cardinal égal 2¢2'4 ¢) donc
I’ensemble de ses sous-groupes également. Supposons désormais que I’ensemble des sous-groupes

de G est fini. On a G = U (x) et par hypothése, il existe F une partie finie de G tel que
zeG

G = U (x). Supposons qu'’il existe x € F tel que (z) soit infini. Dans ce cas, on a (x) ~ Z. Or,

zeF
le groupe Z admet une infinité de sous-groupes que sont les nZ avec n entier. Par isomorphisme,

le groupe (z) admet donc une infinité de sous-groupes et par conséquent, G également, ce qui est

absurde. Ainsi, pour tout = € F, on a (z) fini et G = U (x) est donc fini lui-aussi. On conclut
zeF

’Un groupe est fini si et seulement si I’ensemble de ses sous-groupes est fini.

Exercice 8 (***%*)

Montrer que les groupes (Z",+) avec n entier non nul sont deux & deux non isomorphes.

Corrigé : Soit n entier non nul. On note e¢; = (1,0,...,0), e = (0,1,0,...,0), etc.. On a
clairement

Z" = (e1,...,en)

On pose p =min{Card A A fini | (A) =7Z"}

Le minimum est bien défini puisque I'ensemble concerné est une partie non vide (contient
(é1,...,€,)) de N. On a également p < n. Montrons qu'il s’agit d’une égalité. Supposons p < n
(cas n =1 trivial) et soit (z1,...,x,) une famille génératrice de Z". Ainsi

p
VeEe[1;n]  Farg)jeqiip) €Z° | e = on;v;
j=1

Qi1 ... O1p
On pose A= : : € My p(R)
Qn1 ... Qpp
On arg A < min(n,p) = p ce qui signifie que la famille des lignes est liée. On peut donc trouver

un indice kg € [1; n] et des réels (11;)icf1;n]~{ko} tels que Ly, = > 1;L;, autrement dit
i€[1;n]~{ko}



0,..., .1 .,0,...)=ex = > piei= (.., 0 ,...)
’ €[ 1;n]~{ko}

indice kg indice kg
ce qui absurde. On conclut que p = n ce qui signifie que 'entier n est le cardinal minimal d’une
famille génératrice de Z". Soient n,m entier et ¢ : (Z",+) — (Z™,+) un isomorphisme. Par
surjectivité, on voit que "application ¢ envoie une famille génératrice sur une famille génératrice.
On en déduit que m < n et considérant 'isomorphisme réciproque, on obtient n < m. Par
conséquent, le cas n = m est 'unique situation d’isomorphisme et on conclut

Les groupes (Z", +) avec n entier non nul sont deux a deux non isomorphes.
) p

Variante : Soit n entier non nul. Pour (z,y) € (Z")* on définit la relation binaire 2Ry par
x—y € 27". On vérifie sans difficulté qu’il s’agit d’une relation d’équivalence et on note Z" /27"
I’ensemble des classes d’équivalence pour cette relation. On montre aisément 1’isomorphisme
2" 27" ~ (Z/2Z)". Pour m et n entiers non nuls, si Z" ~ Z™ alors il s’ensuit

(Z)27)" ~ 7" 27" ~ 7™ 20 ~ (Z./27)™

En considérant les cardinaux, il vient 2" = 2™ d’oit n = m.



