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Feuille d’exercices n°70

Exercice 1 (*)

L’application exp : 4, (K) — .#,(K) est-elle surjective 7 injective ?

Corrigé : On a exp(#,(K)) C GL,(K) donc I'exponentielle n’est pas surjective. Par ailleurs,

notant A = ( 0 —2m

or 0 ) et M = diag(A,0,...,0), on a eM =1, = e et on conclut

L’exponentielle de .#,,(K) dans .#,,(K) n’est ni injective, ni surjective.

Exercice 2 (**)

Résoudre les systemes différentiels suivants :

. ¥ =2r—y+et 5 ¥ =2r—y+el
"y =z + 2y + 2t W =2yt

Corrigé : 1. Etudions le cas d'une solution particuliére évidente de la forme x(t) = ae™ et
y(t) = be " pour ¢ réel. Il vient

—ge~t = 2ae ' —be~t + et “Ba+b=1 1
vt € R ae ac ¢ te ot = (a,b) = —=(5,7)
—be Pt = —qae t 4+ 2be "t + 27t a—3b= -2 8

La stratégie est payante. Il ne reste plus qu’a résoudre le systéme homogéne

¥ =2 —y <x’> ( 2 —1) <x>
— 7, )=
y/ = —x+2y Y -1 2 Y
—A
Réduisons A. On a
X—-2 1
=% Ly m D= e s =13

On trouve une matrice de passage P = G _11> telle que P~YAP = diag(1, 3). Ainsi

XeSy <= VteR X(t) = aet G) + Be3t (_11> avec  «, [ réels

t) = t 3t _ 5,—t
On conclut El(a,ﬁ) c R2? | Vt € R {x( ) ae’ + fe ge
8

y(t) = ae! — fed — Lo~
Remarque : On peut aussi résoudre le systéme réduit avec second membre

X' = AX + B(t) <= Y' =P~ 'APY + P~'B(t)

qui requiert le calcul de P~!. L’effort calculatoire est équivalent & celui de la méthode présentée
ci-avant.



2. Le systéme homogéne associé est le méme que celui de la question précédente. La recherche
d’une solution particuliére évidente de la forme z(t) = ae® et y(t) = be’ pour t réel donne

vt e R ael = 2ae? — bet + et — a—b=—1
be! = —ael + 2bet + et a—b=1

qui est évidemment incompatible. Procédons a une variation de la constante. Soient A\, yp : R — R
dérivables et X de la forme

VieR  X(t) = A(t) G) el + u(t) (_11> e3t

On résout pour t réel N(t) (;) el + 1/ (t) G) edt = (_e(;>
ton (i) =30 1) () =)
puis vt € R {28 Z ;‘f' a

avec a, [ réels. On conclut

z(t) = te' + ael + Be

(o, B) € R? VteR
(@,5) | {y(t) =te' + e’ — Be¥

Remarque : La méme variante que celle précédemment mentionnée fonctionne. Sa mise en
ceuvre requiert également une variation de la constante mais sur deux équations différentielles
linéaires d’ordre 1.

Exercice 3 (*)

Soit E un K-evn de dimension finie et s une symétrie de E. Expliciter exp(s) puis calculer
det(exp(s)) et Tr (exp(s)).

Corrigé : On a

exp(s) = (g%) id + (gﬁ) s=ch(l)id +sh(1)s

Dans % base adaptée a s, on trouve

el, 0

0 el > avec r = dimKer (s —id)

matg(ch (1)id +sh(1)s) = (

D’ou

det(exp(s)) = edimKer(s—id)=dimKer(s+id) ot Ty (exp(s)) = e dim Ker (s 4+ id ) — e "' dim Ker (s — id )

Exercice 4 (*)

Soit E un K-evn de dimension finie et p et ¢ deux projecteurs associés. Pour (o, 8) € K2, calculer
exp(ap + Bq).



Corrigé : On a p* = p pour tout k£ > 1 d’oul

) +00ak k ) +ooo/€ .
e =id —i—Z—I') =id —I-Z—'p:ld +(e*=1)p
=1 k! =1 k!

Comme pog=qgop=0, il vient
exp(ap + Bq) = e = (id + (e* — 1) p) (id + (¢ = 1) ¢) =id + (e® = 1)p+ (e’ = 1) ¢

Comme p + ¢ = id, on conclut

exp(ap + Bg) = ep +e’q|

Exercice 5 (**)

Calculer e dans les cas suivants :

11 0 1 2 11
1.A=(0 1 2'A_<—1 2) 3.A=11 2 1
0 0 11 2

P )

Corrigé : 1 . On décompose A = I3+ N avec N = E; 5+ Eg 3. On trouve N? = E; 3 puis N* = 0.
Comme les matrices I3 et N commutent, il vient

N2
e =ebtN —elieN —¢ <13+N+7) avec N=A—1;

A2 + 1.
Ainsi e =¢e ;_ 3

2. On trouve xx = (X — 1)? qui est annulateur de A d’aprés le théoréme de Cayley-Hamilton.
On a ma = (X — 2)? car A n’est pas I,. Le reste de la division euclidienne de X" par (X — 1)?
(substitution de X par 1 suivi d’une dérivation puis substitution de X par 1 ou utilisation de la
formule de Taylor) est

R=nX+(1—-n)

d’on VneN  A"=nA+ (1 —n)l,

Par suite e =eA

Variantes : (a) On décompose A = I, + A — I, puis, par propriété de Pexponentielle matricielle
comme les matrices I et A — Iy commutent avec (A — I5)? = 0 (d’aprés le théoréme de Cayley-
Hamilton), il vient

eh =elef 2=¢ (I, +A—-1) =cA

(b) On trigonalise A et on trouve

A=PTP ! avec T= <(1) 1) et P e GLy(R)
. A Tp—1 T L1
Puis e =Pe'P avec e =e 01) "= eT

On retrouve alors le résultat précédent.



3. D’aprés le théoréme spectral, comme la matrice A est symétrique réelle, elle est diagonalisable

et par conséquent ma est scindé a racines simples dans R[X]. On peut décomposer A = I3+ J
3

avec J la matrice constituée de 1 ou procéder directement au calcul de x5 avec C; < > C; puis
i=1

C; + C; —Cy. On trouve xa = (X —1)*(X —4) puis ma = (X —1)(X —4). Le reste de la division

euclidienne de X" par (X — 1)(X —4) est

4TL_1 4_4TL

R = X
3 * 3
4m — 1 4 —4n
D’ou Vn € N A" = A+ I3

3 3

et—e 4e — et

Ainsi A— A I
1nsi1 e 3 + 3 3

Variante : On décompose A = I3+ J avec J la matrice constituée de 1. Comme les matrices I3
et J commutent, il vient

et =ebel =ce’
On observe J? = 3J puis J¥ = 3#71J = 3*71(A — I3) pour tout k entier nul. On obtient
5 ed—1
e” = 13 + (A - 13)

et on retrouve le résultat précédent.

Exercice 6 (**)

On considére 'équation différentielle linéaire d’ordre 3
2@ — 2 — ' —2x =0 (H)
1. Ecrire le systéme différentiel associé a I'équation différentielle (H).
2. Déterminer une expression réelle des solutions de I'équation différentielle (H).

3. Déterminer une condition nécessaire et suffisante sur le triplet (x(0),2'(0),2"(0)) pour
avoir une solution ¢ — x(t) bornée sur R,.

Xz

Corrigé : 1. Soit x solution de (H). On pose X = [ 2’ |. Ainsi, avec 23 = 2" + 2/ + 22, on
l1.//
obtient
x 010 x
X =1 2" =10 0 1 x
z® 2 11 4
010
Le systéme différentiel associé a (H) s’écrit X’ = AX avec A= (0 0 1
2 11
3
2. Réduisons A. Avec Ly < Y _L; puis Ls < L3 + 2Ly, on trouve
i=1
X -1 0 1 1 1 1 1 1
xa=[0 X -1 |=X-2]0 X -1|=X-2[0 X -1
-2 -1 X-1 -2 -1 X-1 0 1 X+1

4



Ainsi xa=X=-2)(X(X+1)+1)

= (X=2)X+X+1) = (X=2)(X=j)(X - )

et par conséquent Sp (A) = {1,7,j}. Ainsi, la matrice A de .#3(C) admet 3 valeurs propres
distinctes dans C et est donc diagonalisable dans C par condition suffisante. On en déduit que
(t — e? t — et t — e7') forme un base de 'ensemble des solutions vu comme C-ev. Or, si une
fonction x vérifie I’équation différentielle, passant a la partie réelle et imaginaire, on trouve que
Re z et Im z sont solutions. Ainsi, la famille (¢ — e ¢ — Re e’! ¢+ Im e’') est une famille

réelle de solutions, clairement libre et par conséquent

aB,7) €R® | VEER x(t):ae%we—scos(%)

¢ tv3
+ ve "2z sin (i

)

— 0 et et — +00
t—+o00 t—+o00

ol

3.0n a e”

Ainsi, pour z solution de (H), on a
x bornée sur R, <— a =0
Puis, avec les formules d’Euler, on obtient
f—iy
2

VtER  a(t) = ae® + el + pelt avec A\ =

z(t) = ae® + Nelt + pe’t
et par dérivation Vi e R 2/ (t) = 20e? + jhedt + juelt
ZE”(t) — 40{62t +])\ejt ‘I—‘}Zﬂe‘;t
En utilisant les égalités 1+ j + 52 =1+ j + 52 = 0, on trouve
z(0) + 2'(0) + 2" (0) = T«

d’on a=0 < z(0)+2'(0) +2"(0) =0

Ainsi | Une solution = € Sy bornée sur R, si et seulement si x(0) +

2/(0) +2"(0) = 0.

Exercice 7 (*)

Soit M € 4, (K) avec rg M = 1. Calculer eM.

Corrigé : On a la relation M? = Tr (M)M puis M* = Tr (M)*~M pour k entier non nul. Ainsi

+oo M +00 Ty (M)k—l
EH R TATH
eTr(M) -1
On conclut eM=T,+MsiTr(M)=0eteM=1, + WM sinon.




Exercice 8 (*)

Soient A, B dans ., (K). Montrer
1
e —eB = / e*M(A —B)e(=)B ds
0

Corrigé : Soit (A, B) € E2. On observe

% [ tAe(l—t)B} — etAAe(l—t)B T etA(_B>e(1—t)B — etA(A _ B)e(l—t)B

1
Ainsi V(A, B) c E2 eA _ B — / etA(A _ B)e(l—t)B dt
0

Exercice 9 (*)

Soit A € ., (K). Montrer qu’il existe N € N tel que
p Ak
o k!
Corrigé : Par continuité du déterminant (polynomial en les coefficients de la matrice), on a
et ($2) e 40
et ];::(]F p—— ete” #
Par conséquent, on dispose d'un seuil N entier tel que, pour p > N

p AP dete?
det<z—)—deteA gw
=0 k! 2

Par inégalité triangulaire inverse, il vient

P AF dete?
Vp >N det(Z—)‘>u>0
=0 k! 2
P AF
Ainsi Il existe un seuil N tel que pour p > N, la matrice ) T est inversible.
k=0 K

Variante : On a e® € GL,(K) ouvert de ., (K). On dispose donc de r > 0 tel que B(e®,r) C
GL,(K). Or, on a
P

Ak
> o e
k=0 k! p—00

p Ak
ce qui prouve que la suite <Z ﬁ) est & valeurs dans B(e®,r) donc dans GL,(K) & partir d’'un
k=0 k' /
certain rang.
Exercice 10 (*%*)
Soit A € 4, (K). Montrer et € K[A]

Corrigé : L’ensemble K[A] est un sev de ., (K) donc de dimension finie et ¢’est par conséquent



k

N
un fermé de 4, (K). Or, la suite (Z ) est convergente a valeurs dans K[A] donc sa limite

ok
est dans K[A], autrement dit
A e K[A]
Exercice 11 (**)
Montrer VA € #,(K) det(e?) = exp(Tr (A))

L’exponentielle est-elle surjective de .#,,(R) sur GL,(R)?

Corrigé : Soit A € #,,(K). On se place dans C. 1l existe P € GL,(C), D = diag(A1,...,\,) et
T triangulaire supérieure stricte telles que P~'AP = D + T. Il s’ensuit

P~leAP = diag(e™,...,e*) +Q

avec (Q triangulaire supérieure stricte. Par conséquent

det(e?) = H et = exp (Z)\ ) o Tr(A)

On a det(e®) > 0 pour tout A € .#,(R). Par conséquent, la matrice D = —E;; + >_E;; vérifiant
i=2
det(D) = —1 appartient & GL, (R) \ exp .#,(R). Ainsi

) & GL,(R)

n(R
Remarque : Dans C, on a 'égalité exp (#,(C)) = GL,(C) mais la démonstration est plus
délicate.

exp(A,

Exercice 12 (*)

Soit A € .7 F(R) et le systéme différentiel (H) : X’ = AX. On munit ., (R) de sa structure
euclidienne canonique. Montrer que ¢ — ||X(¢)||* croit.

Corrigé : On pose VieR  o(t) = [|X(1)]]? = (X(t),X(t))
La fonction ¢ est dérivable comme composée de telles fonctions. Par dérivation, on trouve
vVt e R O'(t) = 2(X(t),X'(t)) = 2(X(t), AX(¢))
Par définition d'une matrice symétrique positive, on a
VY € 4,1 (R) (Y,AY) >0

On en déduit que ¢’ est positive et par conséquent

La fonction ¢ est croissante. ‘




Exercice 13 (**)
Soit A : t — A(t) continue de R dans <7, (R). Soit X : R — ., (R) dérivable telle que
VieR  X'(t) = A(t)X(t)
1. Montrer X(0) € O, (R) = VteR X(t) € O,(R)

2. Montrer X(0) eSO, R) = ViteR X(t)eSO,R)
Corrigé : 1. Posons Y(t) = X(t)"X(t) pour ¢ réel. La fonction Y est dérivable et on trouve
VieR  Y'(t) =X/(1)X(t) + X(t) X'(t) = X(t)" (A1) + A1) X(t) =0
Par suite, la fonction Y est constante et Y(0) = X(0)' X(0) = I,,. On en déduit
VieR  X(t) € O,(R)

2. L’application det oX est continue par composition et par conséquent I'image det oX(RR) est un
connexe par arcs. D’aprés le résultat de la question précédente, on a det oX(R) C {—1,1} et on
sait aussi det oX(0) = 1. On en déduit det oX(R) = {1}, autrement dit

VvieR  X(t) € SO,(R)

Exercice 14 (**)

Soit A € ., (R) non inversible et X solution de X’ = AX. Montrer que X prend ses valeurs dans
un hyperplan affine.

Corrigé : On a par continuité du produit matriciel (bilinéaire en dimension finie)

+ootkAk—1
VteR  X(t) =e"Xo=Xo+B(t) avec B(t)=A (Z X ) Xo
k=1 :

et VieR  B({f)elmA avec rgA<n—1

Ainsi ’La solution X prend ses valeurs dans un hyperplan affine. ‘

Exercice 15 (**)

Soit A € A#,(R). On munit .4, ;(R) de sa structure euclidienne canonique. Montrer que les
assertions suivantes sont équivalentes :

1. Ae 4,(R);
2. Toute solution de X’ = AX est de norme || - || constante.
Corrigé : Soit X solution de X’ = AX. On pose
VEER  p(t) = |IXO))7 = X(1) " X(1)
La fonction ¢ est dérivable comme composée de telles fonctions. Par dérivation, on trouve
VieR  (t) = X(t) X(t) + X(t) T X(t)
= (AX())"X(t) + X(t) TAX(t) = X(t) " (AT + A) X(t)
Si A € ,(R), alors ¢’ est nulle donc ¢ constante et donc 'application ¢ — X(t) est de norme

constante. Réciproquement, supposons que toute solution de X’ = AX est de norme constante.
Soit Xy € A,,1(R) et X la solution du probléme de Cauchy

8



X' =AX
X(0) = Xq
On considére 'application ¢ comme définie précédemment. On a

VEER  (t)=X(t) (AT +A)X(t) =0

En particulier ¢(0)=Xo (AT+A)X,=0
La matrice AT+ A est symétrique réelle donc diagonalisable d’aprés le théoréme spectral. Comme
Xy est quelconque, on peut choisir en particulier Xg # 0 tel que (AT + A) Xo = XXy avec \ réel
et par suite
Xo' (AT+A)Xo=A|IXo[*=0
0
>

On en déduit A = 0, autrement dit Sp (AT +A) = {0} d’out AT + A semblable a la matrice nulle
et donc égale a la matrice nulle. on conclut

’Les deux assertions sont équivalentes.‘

Remarque : On peut procéder sans recours au théoréme spectral pour la réciproque. On pose
S=AT+ A avecS = (Si,j) € .7, (R). Par une technique de polarisation, on constate

1<i,g<n

V(i,j) € [1;n]*  si;= }L ((Ei + Ej, S(E; + Ej)) — (E; — Ej, S(E; — Ej)))

et on peut choisir Xg = E; + E; ou E; — E; avec (i,5) € [1; n]? dans I'égalité X,"SXy = 0. On
en déduit la nullité de S.



