
ISM MP, Mathématiques
Année 2025/2026

Feuille d'exercices n°70

Exercice 1 (*)

L'application exp : Mn(K)→Mn(K) est-elle surjective ? injective ?

Corrigé : On a exp(Mn(K)) ⊂ GLn(K) donc l'exponentielle n'est pas surjective. Par ailleurs,

notant A =

Å
0 −2π
2π 0

ã
et M = diag(A, 0, . . . , 0), on a eM = In = e 0 et on conclut

L'exponentielle de Mn(K) dans Mn(K) n'est ni injective, ni surjective.

Exercice 2 (**)

Résoudre les systèmes di�érentiels suivants :

1.

®
x′ = 2x− y + e−t

y′ = −x+ 2y + 2e−t
2.

®
x′ = 2x− y + e t

y′ = −x+ 2y + e t

Corrigé : 1. Étudions le cas d'une solution particulière évidente de la forme x(t) = ae−t et
y(t) = be−t pour t réel. Il vient

∀t ∈ R
®
−ae−t = 2ae−t − be−t + e−t

−be−t = −ae−t + 2be−t + 2e−t
⇐⇒

®
−3a+ b = 1

a− 3b = −2
⇐⇒ (a, b) = −1

8
(5, 7)

La stratégie est payante. Il ne reste plus qu'à résoudre le système homogène®
x′ = 2x− y

y′ = −x+ 2y
⇐⇒

Å
x′

y′

ã
=

Å
2 −1
−1 2

ã
︸ ︷︷ ︸

=A

Å
x
y

ã
Réduisons A. On a

χA =

∣∣∣∣X− 2 1
1 X− 2

∣∣∣∣ = (X− 1)(X− 3) et Sp (A) = {1, 3}

On trouve une matrice de passage P =

Å
1 1
1 −1

ã
telle que P−1AP = diag(1, 3). Ainsi

X ∈ SH ⇐⇒ ∀t ∈ R X(t) = αe t

Å
1
1

ã
+ βe 3t

Å
1
−1

ã
avec α, β réels

On conclut ∃(α, β) ∈ R2 | ∀t ∈ R
®
x(t) = αe t + βe 3t − 5

8
e−t

y(t) = αe t − βe 3t − 7
8
e−t

Remarque : On peut aussi résoudre le système réduit avec second membre

X′ = AX+ B(t) ⇐⇒ Y′ = P−1APY + P−1B(t)

qui requiert le calcul de P−1. L'e�ort calculatoire est équivalent à celui de la méthode présentée
ci-avant.
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2. Le système homogène associé est le même que celui de la question précédente. La recherche
d'une solution particulière évidente de la forme x(t) = ae t et y(t) = be t pour t réel donne

∀t ∈ R
®
ae t = 2ae t − be t + e t

be t = −ae t + 2be t + e t
⇐⇒

®
a− b = −1
a− b = 1

qui est évidemment incompatible. Procédons à une variation de la constante. Soient λ, µ : R→ R
dérivables et X de la forme

∀t ∈ R X(t) = λ(t)

Å
1
1

ã
e t + µ(t)

Å
1
−1

ã
e 3t

On résout pour t réel λ′(t)

Å
1
2

ã
e t + µ′(t)

Å
1
1

ã
e 3t =

Å
e t

−e t

ã
d'où

Å
λ′(t)

µ′(t)e 2t

ã
=

1

2

Å
1 1
1 −1

ãÅ
1
1

ã
=

Å
1
0

ã
puis ∀t ∈ R

®
λ(t) = t+ α

µ(t) = β

avec α, β réels. On conclut

∃(α, β) ∈ R2 | ∀t ∈ R
®
x(t) = te t + αe t + βe 3t

y(t) = te t + αe t − βe 3t

Remarque : La même variante que celle précédemment mentionnée fonctionne. Sa mise en
÷uvre requiert également une variation de la constante mais sur deux équations di�érentielles
linéaires d'ordre 1.

Exercice 3 (*)

Soit E un K-evn de dimension �nie et s une symétrie de E. Expliciter exp(s) puis calculer
det(exp(s)) et Tr (exp(s)).

Corrigé : On a

exp(s) =

Å
+∞∑
n=0

1

(2n)!

ã
id +

Å
+∞∑
n=0

1

(2n+ 1)!

ã
s = ch (1) id + sh (1)s

Dans B base adaptée à s, on trouve

matB(ch (1) id + sh (1)s) =

Å
e Ir 0
0 e−1In−r

ã
avec r = dimKer (s− id )

D'où

det(exp(s)) = edimKer (s−id )−dimKer (s+id ) et Tr (exp(s)) = e dimKer (s+ id )− e−1 dimKer (s− id )

Exercice 4 (*)

Soit E un K-evn de dimension �nie et p et q deux projecteurs associés. Pour (α, β) ∈ K2, calculer
exp(αp+ βq).

2



Corrigé : On a pk = p pour tout k ⩾ 1 d'où

eαp = id +
+∞∑
k=1

αkpk

k!
= id +

+∞∑
k=1

αk

k!
p = id + (eα − 1) p

Comme p ◦ q = q ◦ p = 0, il vient

exp(αp+ βq) = eαpeβq = (id + (eα − 1) p)
(
id +

(
eβ − 1

)
q
)
= id + (eα − 1) p+

(
eβ − 1

)
q

Comme p+ q = id , on conclut

exp(αp+ βq) = eαp+ eβq

Exercice 5 (**)

Calculer eA dans les cas suivants :

1. A =

Ñ
1 1 0
0 1 1
0 0 1

é
2. A =

Å
0 1
−1 2

ã
3. A =

Ñ
2 1 1
1 2 1
1 1 2

é
Corrigé : 1 . On décompose A = I3 +N avec N = E1,2 +E2,3. On trouve N2 = E1,3 puis N3 = 0.
Comme les matrices I3 et N commutent, il vient

eA = e I3+N = e I3eN = e

Å
I3 +N+

N2

2

ã
avec N = A− I3

Ainsi eA = e
A2 + I3

2

2. On trouve χA = (X − 1)2 qui est annulateur de A d'après le théorème de Cayley-Hamilton.
On a πA = (X − 2)2 car A n'est pas I2. Le reste de la division euclidienne de Xn par (X − 1)2

(substitution de X par 1 suivi d'une dérivation puis substitution de X par 1 ou utilisation de la
formule de Taylor) est

R = nX+ (1− n)

d'où ∀n ∈ N An = nA+ (1− n)I2

Par suite eA = eA

Variantes : (a) On décompose A = I2 +A− I2 puis, par propriété de l'exponentielle matricielle
comme les matrices I2 et A− I2 commutent avec (A− I2)

2 = 0 (d'après le théorème de Cayley-
Hamilton), il vient

eA = e I2eA−I2 = e (I2 +A− I2) = eA

(b) On trigonalise A et on trouve

A = PTP−1 avec T =

Å
1 1
0 1

ã
et P ∈ GL2(R)

Puis eA = PeTP−1 avec eT = e

Å
1 1
0 1

ã
= eT

On retrouve alors le résultat précédent.
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3. D'après le théorème spectral, comme la matrice A est symétrique réelle, elle est diagonalisable
et par conséquent πA est scindé à racines simples dans R[X]. On peut décomposer A = I3 + J

avec J la matrice constituée de 1 ou procéder directement au calcul de χA avec C1 ←
3∑

i=1

Ci puis

Cj ← Cj−C1. On trouve χA = (X− 1)2(X− 4) puis πA = (X− 1)(X− 4). Le reste de la division
euclidienne de Xn par (X− 1)(X− 4) est

R =
4n − 1

3
X +

4− 4n

3

D'où ∀n ∈ N An =
4n − 1

3
A +

4− 4n

3
I3

Ainsi eA =
e 4 − e

3
A +

4e − e 4

3
I3

Variante : On décompose A = I3 + J avec J la matrice constituée de 1. Comme les matrices I3
et J commutent, il vient

eA = e I3e J = e e J

On observe J2 = 3J puis Jk = 3k−1J = 3k−1(A− I3) pour tout k entier nul. On obtient

e J = I3 +
e 3 − 1

3
(A− I3)

et on retrouve le résultat précédent.

Exercice 6 (**)

On considère l'équation di�érentielle linéaire d'ordre 3

x(3) − x′′ − x′ − 2x = 0 (H)

1. Écrire le système di�érentiel associé à l'équation di�érentielle (H).

2. Déterminer une expression réelle des solutions de l'équation di�érentielle (H).

3. Déterminer une condition nécessaire et su�sante sur le triplet (x(0), x′(0), x′′(0)) pour
avoir une solution t 7→ x(t) bornée sur R+.

Corrigé : 1. Soit x solution de (H). On pose X =

Ñ
x
x′

x′′

é
. Ainsi, avec x(3) = x′′ + x′ + 2x, on

obtient

X′ =

Ñ
x′

x′′

x(3)

é
=

Ñ
0 1 0
0 0 1
2 1 1

éÑ
x
x′

x′′

é
Le système di�érentiel associé à (H) s'écrit X′ = AX avec A =

Ñ
0 1 0
0 0 1
2 1 1

é
.

2. Réduisons A. Avec L1 ←
3∑

i=1

Li puis L3 ← L3 + 2L1, on trouve

χA =

∣∣∣∣∣∣
X −1 0
0 X −1
−2 −1 X− 1

∣∣∣∣∣∣ = (X− 2)

∣∣∣∣∣∣
1 1 1
0 X −1
−2 −1 X− 1

∣∣∣∣∣∣ = (X− 2)

∣∣∣∣∣∣
1 1 1
0 X −1
0 1 X + 1

∣∣∣∣∣∣
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Ainsi χA = (X− 2)(X(X + 1) + 1)

= (X− 2)(X2 +X+ 1) = (X− 2)(X− j)(X− j̄)

et par conséquent Sp (A) = {1, j, j̄}. Ainsi, la matrice A de M3(C) admet 3 valeurs propres
distinctes dans C et est donc diagonalisable dans C par condition su�sante. On en déduit que
(t 7→ e 2t, t 7→ e jt, t 7→ e j̄t) forme un base de l'ensemble des solutions vu comme C-ev. Or, si une
fonction x véri�e l'équation di�érentielle, passant à la partie réelle et imaginaire, on trouve que
Re x et Im x sont solutions. Ainsi, la famille (t 7→ e 2t, t 7→ Re e jt, t 7→ Im e jt) est une famille
réelle de solutions, clairement libre et par conséquent

∃(α, β, γ) ∈ R3 | ∀t ∈ R x(t) = αe 2t + βe− t
2 cos

Ç
t
√
3

2

å
+ γe− t

2 sin

Ç
t
√
3

2

å
3. On a e− t

2 −−−−→
t→+∞

0 et e t −−−−→
t→+∞

+∞

Ainsi, pour x solution de (H), on a

x bornée sur R+ ⇐⇒ α = 0

Puis, avec les formules d'Euler, on obtient

∀t ∈ R x(t) = αe 2t + λe jt + µe j̄t avec λ =
β − iγ

2
µ =

β + iγ

2

et par dérivation ∀t ∈ R


x(t) = αe 2t + λe jt + µe j̄t

x′(t) = 2αe 2t + jλe jt + j̄µe j̄t

x′′(t) = 4αe 2t + jλe jt + j̄2µe j̄t

En utilisant les égalités 1 + j + j2 = 1 + j̄ + j̄2 = 0, on trouve

x(0) + x′(0) + x′′(0) = 7α

d'où α = 0 ⇐⇒ x(0) + x′(0) + x′′(0) = 0

Ainsi Une solution x ∈ SH bornée sur R+ si et seulement si x(0) + x′(0) + x′′(0) = 0.

Exercice 7 (*)

Soit M ∈Mn(K) avec rg M = 1. Calculer eM.

Corrigé : On a la relation M2 = Tr (M)M puis Mk = Tr (M)k−1M pour k entier non nul. Ainsi

eM = In +
+∞∑
k=1

Mk

k!
= In +

+∞∑
k=1

Tr (M)k−1

k!
M

On conclut eM = In +M si Tr (M) = 0 et eM = In +
eTr (M) − 1

Tr (M)
M sinon.
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Exercice 8 (*)

Soient A, B dans Mn(K). Montrer

eA − eB =

∫ 1

0

e sA(A− B)e (1−s)B ds

Corrigé : Soit (A,B) ∈ E2. On observe

d

dt

[
e tAe (1−t)B

]
= e tAAe (1−t)B + e tA(−B)e (1−t)B = e tA(A− B)e (1−t)B

Ainsi ∀(A,B) ∈ E2 eA − eB =

∫ 1

0

e tA(A− B)e (1−t)B dt

Exercice 9 (*)

Soit A ∈Mn(K). Montrer qu'il existe N ∈ N tel que

∀p ⩾ N
p∑

k=0

Ak

k!
∈ GLn(K)

Corrigé : Par continuité du déterminant (polynomial en les coe�cients de la matrice), on a

det

Å
p∑

k=0

Ak

k!

ã
−−−−→
p→+∞

det eA ̸= 0

Par conséquent, on dispose d'un seuil N entier tel que, pour p ⩾ N∣∣∣∣detÅ p∑
k=0

Ak

k!

ã
− det eA

∣∣∣∣ ⩽
∣∣det eA

∣∣
2

Par inégalité triangulaire inverse, il vient

∀p ⩾ N

∣∣∣∣detÅ p∑
k=0

Ak

k!

ã∣∣∣∣ ⩾ ∣∣det eA
∣∣

2
> 0

Ainsi Il existe un seuil N tel que pour p ⩾ N, la matrice
p∑

k=0

Ak

k!
est inversible.

Variante : On a eA ∈ GLn(K) ouvert de Mn(K). On dispose donc de r > 0 tel que B(eA, r) ⊂
GLn(K). Or, on a

p∑
k=0

Ak

k!
−−−→
p→∞

eA

ce qui prouve que la suite
Å

p∑
k=0

Ak

k!

ã
p

est à valeurs dans B(eA, r) donc dans GLn(K) à partir d'un

certain rang.

Exercice 10 (**)

Soit A ∈Mn(K). Montrer eA ∈ K[A]

Corrigé : L'ensemble K[A] est un sev de Mn(K) donc de dimension �nie et c'est par conséquent
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un fermé de Mn(K). Or, la suite
Å

N∑
k=0

Ak

k!

ã
N

est convergente à valeurs dans K[A] donc sa limite

est dans K[A], autrement dit

eA ∈ K[A]

Exercice 11 (**)

Montrer ∀A ∈Mn(K) det(eA) = exp(Tr (A))

L'exponentielle est-elle surjective de Mn(R) sur GLn(R) ?

Corrigé : Soit A ∈Mn(K). On se place dans C. Il existe P ∈ GLn(C), D = diag(λ1, . . . , λn) et
T triangulaire supérieure stricte telles que P−1AP = D+ T. Il s'ensuit

P−1eAP = diag(eλ1 , . . . , eλn) + Q

avec Q triangulaire supérieure stricte. Par conséquent

det(eA) =
n∏

i=1

eλi = exp

Å
n∑

i=1

λi

ã
= eTr (A)

On a det(eA) > 0 pour tout A ∈Mn(R). Par conséquent, la matrice D = −E1,1+
n∑

i=2

Ei,i véri�ant

det(D) = −1 appartient à GLn(R)∖ expMn(R). Ainsi

exp(Mn(R)) ⊊ GLn(R)

Remarque : Dans C, on a l'égalité exp (Mn(C)) = GLn(C) mais la démonstration est plus
délicate.

Exercice 12 (*)

Soit A ∈ S +
n (R) et le système di�érentiel (H) : X′ = AX. On munit Mn,1(R) de sa structure

euclidienne canonique. Montrer que t 7→ ∥X(t)∥2 croît.

Corrigé : On pose ∀t ∈ R φ(t) = ∥X(t)∥2 = ⟨X(t),X(t)⟩

La fonction φ est dérivable comme composée de telles fonctions. Par dérivation, on trouve

∀t ∈ R φ′(t) = 2 ⟨X(t),X′(t)⟩ = 2 ⟨X(t),AX(t)⟩

Par dé�nition d'une matrice symétrique positive, on a

∀Y ∈Mn,1(R) ⟨Y,AY⟩ ⩾ 0

On en déduit que φ′ est positive et par conséquent

La fonction φ est croissante.
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Exercice 13 (**)

Soit A : t 7→ A(t) continue de R dans An(R). Soit X : R→Mn(R) dérivable telle que

∀t ∈ R X′(t) = A(t)X(t)

1. Montrer X(0) ∈ On(R) =⇒ ∀t ∈ R X(t) ∈ On(R)

2. Montrer X(0) ∈ SOn(R) =⇒ ∀t ∈ R X(t) ∈ SOn(R)

Corrigé : 1. Posons Y(t) = X(t)⊤X(t) pour t réel. La fonction Y est dérivable et on trouve

∀t ∈ R Y′(t) = X′(t)⊤X(t) + X(t)⊤X′(t) = X(t)⊤
Ä
A(t)⊤ +A(t)

ä
X(t) = 0

Par suite, la fonction Y est constante et Y(0) = X(0)⊤X(0) = In. On en déduit

∀t ∈ R X(t) ∈ On(R)

2. L'application det ◦X est continue par composition et par conséquent l'image det ◦X(R) est un
connexe par arcs. D'après le résultat de la question précédente, on a det ◦X(R) ⊂ {−1, 1} et on
sait aussi det ◦X(0) = 1. On en déduit det ◦X(R) = {1}, autrement dit

∀t ∈ R X(t) ∈ SOn(R)

Exercice 14 (**)

Soit A ∈Mn(R) non inversible et X solution de X′ = AX. Montrer que X prend ses valeurs dans
un hyperplan a�ne.

Corrigé : On a par continuité du produit matriciel (bilinéaire en dimension �nie)

∀t ∈ R X(t) = e tAX0 = X0 + B(t) avec B(t) = A

Å
+∞∑
k=1

tkAk−1

k!

ã
X0

et ∀t ∈ R B(t) ∈ Im A avec rg A ⩽ n− 1

Ainsi La solution X prend ses valeurs dans un hyperplan a�ne.

Exercice 15 (**)

Soit A ∈ Mn(R). On munit Mn,1(R) de sa structure euclidienne canonique. Montrer que les
assertions suivantes sont équivalentes :

1. A ∈ An(R) ;
2. Toute solution de X′ = AX est de norme ∥ · ∥ constante.

Corrigé : Soit X solution de X′ = AX. On pose

∀t ∈ R φ(t) = ∥X(t)∥2 = X(t)⊤X(t)

La fonction φ est dérivable comme composée de telles fonctions. Par dérivation, on trouve

∀t ∈ R φ′(t) = X′(t)⊤X(t) + X(t)⊤X′(t)

= (AX(t))⊤X(t) + X(t)⊤AX(t) = X(t)⊤
(
A⊤ +A

)
X(t)

Si A ∈ An(R), alors φ′ est nulle donc φ constante et donc l'application t 7→ X(t) est de norme
constante. Réciproquement, supposons que toute solution de X′ = AX est de norme constante.
Soit X0 ∈Mn,1(R) et X la solution du problème de Cauchy
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®
X′ = AX

X(0) = X0

On considère l'application φ comme dé�nie précédemment. On a

∀t ∈ R φ′(t) = X(t)⊤
(
A⊤ +A

)
X(t) = 0

En particulier φ′(0) = X0
⊤ (

A⊤ +A
)
X0 = 0

La matrice A⊤+A est symétrique réelle donc diagonalisable d'après le théorème spectral. Comme
X0 est quelconque, on peut choisir en particulier X0 ̸= 0 tel que

(
A⊤ +A

)
X0 = λX0 avec λ réel

et par suite

X0
⊤ (

A⊤ +A
)
X0 = λ ∥X0∥2︸ ︷︷ ︸

>0

= 0

On en déduit λ = 0, autrement dit Sp (A⊤ +A) = {0} d'où A⊤ +A semblable à la matrice nulle
et donc égale à la matrice nulle. on conclut

Les deux assertions sont équivalentes.

Remarque : On peut procéder sans recours au théorème spectral pour la réciproque. On pose
S = A⊤ +A avec S =

(
si,j

)
1⩽i,j⩽n

∈ Sn(R). Par une technique de polarisation, on constate

∀(i, j) ∈ [[ 1 ; n ]]2 si,j =
1

4
(⟨Ei + Ej, S(Ei + Ej)⟩ − ⟨Ei − Ej, S(Ei − Ej)⟩)

et on peut choisir X0 = Ei + Ej ou Ei − Ej avec (i, j) ∈ [[ 1 ; n ]]2 dans l'égalité X0
⊤SX0 = 0. On

en déduit la nullité de S.
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