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Feuille d'exercices n°71

Exercice 1 (**)

Soient A,B dans Mn(K). Établir

AB = BA ⇐⇒ ∀t ∈ R e t(A+B) = e tAe tB

Corrigé : L'implication directe découle de la propriété de l'exponentielle matricielle. On pose

∀t ∈ R φ(t) = e t(A+B) − e tAe tB

Supposons que φ est la fonction nulle. On a φ ∈ C ∞(R,R) et par dérivation, il vient pour t réel

φ′(t) = (A + B)e t(A+B) − Ae tAe tB − e tAe tBB

et φ′′(t) = (A + B)e t(A+B)(A + B)− A2e tAe tB − e tAe tBB2

Or, on a φ′′(0) = 0 d'où (A + B)2 − A2 − B2 = 0

On conclut AB = BA ⇐⇒ ∀t ∈ R e t(A+B) = e tAe tB

Exercice 2 (***)

Soit E = Mp(C) muni d'une norme sous-multiplicative.

1. Montrer ∀A ∈ E

Å
Ip +

A

n

ãn

−−−→
n→∞

eA

2. Soit A ∈ E et (An)n ∈ EN telle que An −−−→
n→∞

A. ÉtablirÅ
Ip +

An

n

ãn

−−−→
n→∞

eA

3. Montrer ∀(A,B) ∈ E2
(
eA/neB/n

)n −−−→
n→∞

eA+B

Corrigé : 1. Avec la convention
(
n
k

)
= 0 si k > n, on peut écrireÅ
Ip +

A

n

ãn
=

+∞∑
k=0

fk(n)

avec ∀(k, n) ∈ N× N∗ fk(n) =

(
n
k

)
nk

Ak =
n(n− 1) . . . (n− k + 1)

nk

Ak

k!

On a

∀(k, n)2 ∈ N× N∗ 0 ⩽
n(n− 1) . . . (n− k + 1)

nk
⩽ 1 et

n(n− 1) . . . (n− k + 1)

nk
−−−→
n→∞

1

Ainsi ∀k ∈ N fk(n) −−−→
n→∞

Ak

k!

et comme l'espace E est muni d'une norme sous-multiplicative, on obtient par récurrence immé-
diate
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∀(k, n) ∈ (N∗)2 ∥fk(n)∥ ⩽
∥A∥k

k!
Par convergence normale et donc uniforme de la série

∑
fk, il vient par double limiteÅ

Ip +
A

n

ãn
=

+∞∑
k=0

fk(n) −−−→
n→∞

+∞∑
k=0

Ak

k!
= eA

Remarque : On majore ∥fk(n)∥ pour k entier non nul car on ne sait pas a priori si ∥In∥ ⩽ 1.
L'inégalité a lieu pour une norme subordonnée mais pas pour la norme ∥ · ∥1 par exemple.

Variantes : (a) Soit A ∈ E. Comme l'espace E est muni d'une norme sous-multiplicative, on a
∥Ak∥ ⩽ ∥A∥k pour tout entier k non nul. Puis, pour n entier non nul

eA −
Å
Ip +

A

n

ãn
=

n∑
k=0

ï
1− n!

nk(n− k)!

ò
Ak

k!
+

+∞∑
k=n+1

Ak

k!

On peut faire démarrer la première somme en k = 1 puisque le premier terme est nul. Par
ailleurs, on observe l'inégalité

n!

nk(n− k)!
=

n× (n− 1)× . . .× (n− k + 1)

n× n× . . .× n
⩽ 1

Par suite ∥eA −
Å
Ip +

A

n

ãn
∥ ⩽

n∑
k=1

ï
1− n!

nk(n− k)!

ò ∥A∥k
k!

+
+∞∑

k=n+1

∥A∥k

k!

Autrement dit ∥eA −
Å
Ip +

A

n

ãn
∥ ⩽ e ∥A∥ −

Å
1 +

∥A∥
n

ãn
(∗)

Par encadrement ∀A ∈ E

Å
Ip +

A

n

ãn

−−−→
n→∞

eA

(b) On munit E d'une norme sous-multiplicative véri�ant ∥Ip∥ = 1 (par exemple, une norme

d'opérateur). Pour n entier non nul, on a
Ä
e

A
n

än
= eA par propriété fondamentale de l'exponen-

tielle puis par factorisation de Bernoulli car commutation

eA −
Å
Ip +

A

n

ãn

=
Ä
e

A
n

än
−
Å
Ip +

A

n

ãn
=

Å
e

A
n − Ip −

A

n

ã
n−1∑
k=0

Ä
e

A
n

äk Å
Ip +

A

n

ãn−1−k

Ainsi, par inégalité triangulaire et en utilisant le caractère sous-multiplicatif, on obtient

∥eA −
Å
Ip +

A

n

ãn

∥ ⩽ ∥e A
n − Ip −

A

n
∥
n−1∑
k=0

Ä
e

∥A∥
n

äk Å
1 +

∥A∥
n

ãn−1−k

⩽ ∥e A
n − Ip −

A

n
∥
n−1∑
k=0

Ä
e

∥A∥
n

äk Ä
e

∥A∥
n

än−1−k

∥eA −
Å
Ip +

A

n

ãn

∥ ⩽ ne
∥A∥(n−1)

n

+∞∑
k=2

∥A∥k

nkk!
⩽ ne ∥A∥

+∞∑
k=2

∥A∥k

n2k!
⩽

e 2∥A∥

n

Le résultat suit.

2. Comme précédemment, on écritÅ
Ip +

An

n

ãn
=

+∞∑
k=0

gk(n) avec ∀(k, n) ∈ N× N∗ gk(n) =

(
n
k

)
nk

Ak
n

On a ∀k ∈ N gk(n) −−−→
n→∞

Ak

k!
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et ∀(k, n) ∈ (N∗)2 ∥gk(n)∥ ⩽
Mk

k!
avec M = Sup

n∈N
∥An∥

Par convergence normale et donc uniforme de la série
∑

gk, il vient par double limiteÅ
Ip +

An

n

ãn
=

+∞∑
k=0

gk(n) −−−→
n→∞

+∞∑
k=0

Ak

k!
= eA

Variantes : (a) En appliquant (∗) à An, on obtient

eAn −
Å
Ip +

An

n

ãn

−−−→
n→∞

0

Par ailleurs, on sait que l'exponentielle est continue. Par suite

eA −
Å
Ip +

An

n

ãn
= eA − eAn + eAn −

Å
Ip +

An

n

ãn
−−−→
n→∞

0

C'est-à-dire
Å
Ip +

An

n

ãn

−−−→
n→∞

eA

(b) On peut aussi reprendre le résultat de la deuxième variante de la première question qui donne
pour n entier non nul

∥eAn −
Å
Ip +

An

n

ãn
∥ ⩽

2e ∥An∥

n

et on conclut comme précédemment.

3. Soit (A,B) ∈ E2. On a eA/n = Ip +
A

n
+

+∞∑
k=2

Ak

nkk!

Par inégalité triangulaire généralisée, la convergence absolue ayant lieu, il vient

∥
+∞∑
k=2

Ak

nkk!
∥ ⩽

+∞∑
k=2

∥A∥k

nkk!
⩽

1

n2

+∞∑
k=2

∥A∥k

k!
= o
Å
1

n

ã
Ainsi eA/n = Ip +

A

n
+ o
Å
1

n

ã
et eB/n = Ip +

B

n
+ o
Å
1

n

ã
d'où eA/neB/n = Ip +

1

n
(A + B + o(1))

D'après le résultat de la question précédente, on conclut

∀(A,B) ∈ E2
(
eA/neB/n

)n −−−→
n→∞

eA+B

Remarque : Ce dernier résultat est connu sous le nom de formule du produit de Lie. On peut
souligner le fait que le résultat a lieu pour tout couple de matrices (A,B) dans E, même si A et
B ne commutent pas.

Exercice 3 (***)

Soit A ∈ Mn(R) tel que deg πA = 2. Montrer que les solutions de X′ = AX sont à valeurs dans
un plan vectoriel.

Corrigé : Comme deg πA = 2, la famille (In,A) est une base de R[A]. Par conséquent
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∀N ∈ N
Å

N∑
k=0

Aktk

k!

ã
X0 ∈ Vect (X0,AX0)

Pour X solution de X′ = AX, on a X(t) = e tAX0 pour t réel avec X0 ∈ Mn,1(R). L'espace
Vect (X0,AX0) est de dimension �nie et est donc un fermé de Mn,1(R). Ainsi, pour t réel, faisant
tendre N → +∞, on trouve par continuité du produit matricielÅ

N∑
k=0

Aktk

k!

ã
X0 −−−−→

N→+∞
e tAX0 ∈ Vect (X0,AX0)

On conclut Les solutions de X′ = AX sont à valeurs dans un plan vectoriel.

Exercice 4 (***)

Soit n entier non nul et N ∈ Mn(C) nilpotente. Comparer Ker N et Ker (eN − In).

Corrigé : On a clairement Ker N ⊂ Ker (eN − In). En e�et, pour X ∈ Ker N, on a NkX = 0
d'où, par continuité du produit matriciel

(eN − In)X =

Å
+∞∑
k=1

Nk

k!

ã
X =

+∞∑
k=1

1

k!
NkX = 0

Cette égalité a lieu indépendamment de l'hypothèse de nilpotence. Puis, comme l'indice de
nilpotence de N est majoré par n, on a

eN − In =

Å
n−1∑
k=1

Nk−1

k!

ã
N

On dispose de P ∈ GLn(C) telle que P−1NP = T triangulaire supérieure stricte. Puis, on a

P−1

Å
n−1∑
k=1

Nk−1

k!

ã
P = In + T′ avec T′ =

n−1∑
k=2

Tk−1

k!
triangulaire supérieure stricte

On en déduit l'inversibilité de In + T′ et donc de
n−1∑
k=1

Nk−1

k!
d'oùÅ

n−1∑
k=1

Nk−1

k!

ã−1 (
eN − In

)
= N

Ainsi Ker (eN − In) ⊂ Ker N

On conclut Ker N = Ker (eN − In)

Remarques : (a) Sur la somme
n−1∑
k=1

Nk−1

k!
= In+N′ avec N′ = N

n−1∑
k=2

Nk−2

k!
, on peut aussi observer

que N′ est nilpotente puisque par commutation, on a N′n = Nn(. . .)n = 0. Avec l'identité de
Bernoulli, on a

In = Inn − (−N′)n = (In +N′)
n−1∑
k=0

(−N′)n−1−k

d'où l'inversibilité de In +N′ sans passer par un argument de réduction.

(b) On pouvait s'épargner le détail de la première inclusion puisqu'on a par continuité du produit
matriciel
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eN − In =

Å
+∞∑
k=1

Nk−1

k!

ã
N = N

Å
+∞∑
k=1

Nk−1

k!

ã
qui implique Ker N ⊂ Ker (eN − In) et Im (eN − In) ⊂ Im N. Avec l'hypothèse de nilpotence, on
a eN− In = N(In+N′) d'où N = (eN− In)(In+N′)−1 ce qui prouve Im N ⊂ Im (eN− In) et donc
l'égalité des images et aussi des noyaux pour raison de dimension.

Variante : Soit f ∈ L (Cn) canoniquement associé à N. Les endomorphismes e f − id et f

commutent d'où la stabilité de Ker (e f − id ). On note f̃ l'induit par f sur Ker (e f − id ). On a

f̃ nilpotent et
n−1∑
k=0

Xk

k!
annulateur de f̃ . Notant r son ordre de nilpotence, il s'ensuit que πf̃ = Xr

divise
n−1∑
k=0

Xk

k!
d'où r = 1 et par conséquent f̃ = 0 ce qui prouve Ker (e f − id ) ⊂ Ker f .

Exercice 5 (***)

Montrer que l'exponentielle est injective sur l'ensemble des matrices diagonalisables de Mn(R).
On pourra utiliser le fait que deux matrices diagonalisables qui commutent sont simultanément
diagonalisables.

Corrigé : On utilisera le résultat classique de diagonalisation simultanée : des matrices diago-
nalisables qui commutent sont diagonalisables pour une même matrice de passage. Considérons
A et B dans Mn(R), diagonalisables et telles que eA = eA. Si A et B sont diagonales, le résultat
est immédiat par injectivité de l'exponentielle sur R puisque

∀(d1, . . . , dn) ∈ Rn exp [diag(d1, . . . , dn)] = diag(e d1 , . . . , e dn)

Dans le cas général, soit P ∈ GLn(R) et D = diag(λ1, . . . , λn) telles que B = PDP−1. On a la
propriété

eB =
+∞∑
n=0

1

n!
Bn =

+∞∑
n=0

1

n!
PDnP−1 = PeDP−1

Quitte à réordonner les valeurs propres de B, notons λ1, . . . , λp les valeurs propres distinctes de

B avec p ⩽ n et notons Q =
d∑

i=1

λiLi avec les Li polynômes de Lagrange dé�nis par

∀i ∈ [[ 1 ; d ]] Li =
∏

j∈[[ 1 ; d ]]∖{i}

X− eλj

eλi − eλj

Par construction de Q, on a

Q(eD) = D puis Q(eB) = PQ(eD)P−1 = B

Comme A commute avec eA = eB et comme B = Q(eB) avec Q ∈ R[X], il s'ensuit que A
commute avec B. Ainsi, il existe R ∈ GLn(R) telle que RAR−1 et RBR−1 soient diagonales. Par
suite

eA = eB =⇒ ReAR−1 = exp(RAR−1) = exp(RBR−1) = ReBR−1

ce qui nous ramène au cas de deux matrices diagonales d'où le résultat. Ainsi

L'exponentielle est injective sur l'ensemble des matrices diagonalisables de Mn(R).

Variante : On peut éviter le recours au résultat de diagonalisation simultanée. Le polynôme Q
précédemment construit l'est uniquement à partir du spectre de eB puisqu'en posant µi = eλi

pour i ∈ [[ 1 ; p ]],
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Q =
p∑

i=1

ln(µi)Li avec Sp (eB) = {µi, i ∈ [[ 1 ; p ]]}

et on a montré Q(eB) = B. Comme eA = eB qui ont donc même spectre, pour les mêmes raisons,
on trouve A = Q(eA) et l'égalité A = B s'ensuit.

Exercice 6 (***)

Soit A ∈ Mn(K) avec χA scindé sur K[X]. Montrer

A diagonalisable ⇐⇒ eA diagonalisable

L'équivalence a-t-elle lieu sans l'hypothèse χA scindé ?

Corrigé : Supposons A diagonalisable. Il existe P ∈ GLn(K) et D diagonalisable telles que A =
PDP−1 puis, par continuité du produit matriciel, il vient eA = PeDP−1 avec eD diagonale d'où le
sens direct. Supposons eA diagonalisable. Comme χA est scindé, la matrice A est trigonalisable
donc il existe P ∈ GLn(K), D = diag(λ1Im1 , . . . λrImr) et T = diag(T1, . . . ,Tr) avec les Ti

triangulaires supérieures strictes telles que P−1AP = D + T ce qui équivaut à A = B + N avec
B = PDP−1 et N = PTP−1. On a B diagonalisable, N nilpotente et un produit par blocs montre
que BN = NB. Par propriété de l'exponentielle matricielle, il vient eA = eBeN d'où eN = e−BeA.
On véri�e sans di�culté que AB = BA et par conséquent

e−BeA = e−B+A = eA−B = eAe−B

D'après un résultat classique de réduction, des matrices diagonalisables qui commutent sont
simultanément diagonalisables et par conséquent, leur produit est diagonalisable. On en déduit
que eN est diagonalisable. Par ailleurs, on a

eN = In +NQ(N) avec Q =
n−1∑
k=1

Xk

k!

Les matrices N et Q(N) commutent et il en résulte que NQ(N) est nilpotente donc semblable
à une matrice triangulaire supérieure stricte. Il s'ensuit Sp (eN) = {1} d'où eN semblable à In

donc égale à In et par suite NQ(N) = 0. Le polynôme Q =
n−1∑
k=1

Xk

k!
est annulateur de N est on

sait que πN = Xd avec d entier non nul. Comme πN divise Q, il en résulte que d = 1 d'où N = 0
ce qui prouve P−1AP = D. On conclut

A diagonalisable ⇐⇒ eA diagonalisable

Variante : On peut éviter le recours au polynôme minimal. On observe Q(N) = In +M avec M
nilpotente puis, d'après l'identité de Bernoulli

In = In − (−M)n = (In +M)
n−1∑
k=0

Mn−1−k

ce qui prouve l'inversibilité de In +M et comme N(In +M) = 0, on trouve N = 0.

Le résultat est faux sans l'hypothèse χA scindé : pour A =

Å
0 −2π
2π 0

ã
, on trouve eA = I2 qui

est diagonale et A ne l'est pas puisque χA n'est pas scindé.
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Exercice 7 (****)

Soit A ∈ Mn(C). On considère l'équation di�érentielle

X′ = AX (H)

Montrer que les solutions de (H) sont bornées sur R si et seulement si A est diagonalisable avec
Sp (A) ⊂ iR.

Corrigé : Les solutions de (H) sont de la forme t 7→ e tAX0 avec X0 ∈ Mn,1(C). Si A est
diagonalisable avec Sp (A) ⊂ iR, il existe P ∈ GLn(C) et des réels θ1, . . ., θn tels que P−1AP =
diag(iθ1, . . . , iθn). Puis, on obtient

∀t ∈ R e tAX0 = Pdiag(e iθ1 , . . . , e iθn)P−1X0

Ainsi, les fonctions coordonnées de t 7→ e tAX0 sont combinaisons linéaires de fonctions bornées
et sont donc bornées. Supposons désormais que les solutions de (H) sont bornées. Soit λ ∈ Sp (A)
et X0 ∈ Mn,1(C) non nulle telle que AX0 = λX0. On trouve (tA)kX0 = (tλ)kX0 pour tout k
entier d'où e tAX0 = eλtX0 puis

∀t ∈ R ∥e tAX0∥ = e tRe (λ)∥X0∥

Le caractère borné des solutions sur R impose Re (λ) = 0 d'où Sp (A) ⊂ iR. Soit u ∈ L (Cn)
canoniquement associé à A. Supposons u non diagonalisable. On a πu scindé mais pas à racines
simples d'où l'existence de λ ∈ Sp (u) de multiplicité α ⩾ 2 dans πu. On note πu = (X − λ)αQ
avec Q ∈ C[X]. Sur Fλ = Ker (u− λ id )α stable par u, on note uλ l'induit de u sur cet espace et
on a uλ = λ id Fλ

+nλ avec nλ un endomorphisme de Fλ nilpotent d'indice de nilpotence égal à
α puisque si cet indice était < α, on aurait (X− λ)α−1Q annulateur de u en utilisant la décom-
position résultant du lemme des noyaux E = Fλ ⊕Ker Q(u) ce qui contredirait la minimalité de
πu. On choisit x ∈ Fλ tel que nα−1

λ (x) ̸= 0. Sans di�culté, la famille (nα−2
λ (x), nα−1

λ (x)) est libre
et on a, notant λ = iθ avec θ réel

∀t ∈ R e tu(nα−2
λ (x)) = e tλ id Fλ

+tnλ(nα−2
λ (x)) = e iθt(nα−2

λ (x) + tnα−1
λ (x))

La composante portée par nα−1
λ (x) est non bornée ce qui est impossible. On conclut

Les solutions de (H) sont bornées sur R si et seulement si A est diagonalisable avec Sp (A) ⊂ iR.

Exercice 8 (****)

Soit A ∈ Mn(C). On considère l'équation di�érentielle

X′ = AX (H)

Déterminer une condition nécessaire et su�sante sur A pour avoir

∀X ∈ SH X(t) −−−−→
t→+∞

0

Corrigé : On a X(t) = e tAX0 pour tout t réel avec X0 ∈ Mn,1(R). Soit λ ∈ Sp (A) et X0 ∈
Mn,1(C) avec X0 ̸= 0 tel que AX0 = λX0. Par continuité du produit matriciel, on a

e tAX0 = lim
N→+∞

Å
N∑

k=0

tkAk

k!

ã
X0 = lim

N→+∞

Å
N∑

k=0

tkλkX0

k!

ã
= lim

N→+∞

Å
N∑

k=0

(tλ)k

k!

ã
X0 = e tλX0

Comme une des composantes de X0 est non nulle, on obtient

e tAX0 −−−−→
t→+∞

0 =⇒ e tλ −−−−→
t→+∞

0
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Comme
∣∣e tλ

∣∣ = e tRe (λ) pour t réel, il s'ensuit que Re (λ) < 0. Réciproquement, on suppose
que Re (λ) < 0 pour tout λ ∈ Sp (A). On note E = Mn(C) qu'on munit de la norme ∥M∥1 =∑
1⩽i,j⩽n

|mi,j| pour M ∈ E. Il s'agit d'une norme d'algèbre qui véri�e, à l'instar de la norme

subordonnée, l'inégalité ∥MX∥1 ⩽ ∥M∥1∥X∥1 pour (M,X) ∈ Mn(C) × Mn,1(C). D'après les
théorèmes de d'Alembert-Gauss et de Cayley-Hamilton, le polynôme caractéristique χA est scindé
dans C[X] et annulateur de A. Ainsi, il existe P ∈ GLn(C) telle que P−1AP soit une matrice de
Mn(C) diagonale par blocs de la forme

P−1AP = diag(λ1Im1 + T1, . . . , λrImr + Tr)

avec les Ti ∈ Mni
(C) triangulaires supérieures strictes et donc nilpotentes. Posons

D = diag(λ1Im1 , . . . , λrImr) et N = diag(T1, . . . ,Tr)

On a clairement P−1AP = D + N avec N triangulaire supérieure stricte donc nilpotente et un
produit par blocs montre sans di�culté DN = ND. Par suite, notant p l'indice de nilpotence de
N, on a par commutation

∀t ∈ R e tA = Pe t(D+N)P−1 = Pe tDe tNP−1

avec e tD = diag(e tλ1Im1 , . . . , e
tλrImr) et e tN =

p−1∑
k=0

tkNk

k!

On trouve ∥e tD∥1 =
r∑

k=1

mk

∣∣e tλk
∣∣ = r∑

k=1

mke
tRe (λk) et ∥e tN∥1 ⩽ n+

p−1∑
k=1

tk∥N∥k

k!

Par croissances comparées, on obtient

∥e tD∥1∥e tN∥1 −−−−→
t→+∞

0

Pour X0 ∈ Mn,1(C), on a

∀t ∈ R ∥e tAX0∥1 = ∥Pe tDe tNP−1X0∥1 ⩽ ∥P∥1∥e tD∥1∥e tN∥1∥P−1X0∥1

et on en déduit donc e tAX0 −−−−→
t→+∞

0

Ainsi ∀X ∈ SH X(t) −−−−→
t→+∞

0 ⇐⇒ ∀λ ∈ Sp (M) Re (λ) < 0

Exercice 9 (****)

Soit A ∈ Mn(C). On considère l'équation di�érentielle

X′ = AX (H)

Déterminer une condition nécessaire et su�sante sur A pour avoir

∀X ∈ SH X(t) =
t→+∞

O(1)

Corrigé : On munit Mn(C) de la norme ∥ · ∥1 qui est sous-multiplicative et véri�e ∥MX∥1 ⩽
∥M∥1∥X∥1 pour (M,X) ∈ Mn(C) × Mn,1(C). On a X(t) = e tAX0 pour tout t réel avec X0 ∈
Mn,1(R). Soit λ ∈ Sp (A) et X0 ∈ Mn,1(C) avec X0 ̸= 0 tel que AX0 = λX0. Par continuité du
produit matriciel, on a

e tAX0 = lim
N→+∞

Å
N∑

k=0

tkAk

k!

ã
X0 = lim

N→+∞

Å
N∑

k=0

tkλkX0

k!

ã
= lim

N→+∞

Å
N∑

k=0

(tλ)k

k!

ã
X0 = e tλX0

Comme une des composantes de X0 est non nulle, on obtient
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e tAX0 =
t→+∞

O(1) =⇒ e tλ =
t→+∞

O(1)

Comme
∣∣e tλ

∣∣ = e tRe (λ) pour t réel, il s'ensuit que Re (λ) ⩽ 0. La matrice A est semblable
à une matrice diagonale par blocs avec des blocs de la forme λIm + N où N est triangulaire
supérieure stricte. Un calcul par blocs montre que e tA est semblable à la matrice formée des
blocs eλtIm+tN = eλte tN par commutation. On se contente d'étudier le cas d'un bloc, le cas
général s'en déduisant puisque si A = Pdiag(λImλ

+Nλ)λ∈Sp (A)P
−1, on a

∥A∥1 ⩽ ∥P∥1∥ diag(λImλ
+Nλ)λ∈Sp (A)∥1∥P−1∥1

et ∥ diag(λImλ
+Nλ)λ∈Sp (A)∥1 =

∑
λ∈Sp (A)

∥λImλ
+Nλ∥1

Supposons Re (λ) < 0. Pour une solution X : t 7→ eλte tNX0 avec X0 matrice colonne, on trouve

∀t ∈ R ∥X(t)∥1 = ∥eλte tNX0∥1 ⩽ eRe (λ)t∥e tN∥1∥X0∥1

et e tN =
m−1∑
k=0

tkNk

k!
pour t réel puisque l'indice de nilpotence est majoré par m. Ainsi, par crois-

sances comparées, on trouve

∀t ∈ R ∥X(t)∥1 ⩽ eRe (λ)t
Å

m−1∑
k=0

tk∥N∥k1
k!

ã
∥X0∥1 −−−−→

t→+∞
0

d'où le caractère borné.

Supposons Re (λ) = 0, autrement dit λ = iθ avec θ réel. Soit p l'indice de nilpotence de N. On
a p ⩾ 1. Supposons p ⩾ 2. On dispose de X0 matrice colonne telle que Np−1X0 ̸= 0. On véri�e
sans di�culté que (Np−2X0,N

p−1X0) est libre. On trouve

eλte tNNp−2X0 = e itθ(Np−2X0 + tNp−1X0)

La composante portée par Np−1X0 est non bornée et par conséquent, pour une solution bornée,
si Re (λ) = 0, alors l'indice de nilpotence p est égal à 1, autrement dit N = 0 ce qui prouve que
le bloc en question est diagonalisable. La réciproque ne pose pas de di�culté. On conclut

Les solutions de (H) sont bornées sur R+ si et seulement si pour λ ∈ Sp (A),
on a Re (λ) < 0 ou Re (λ) = 0 et le bloc correspondant diagonalisable.
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