ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°71

Exercice 1 (**)
Soient A, B dans .#,(K). Etablir
AB=BA <= VtcR  c'A+B) = tAetB
Corrigé : L’implication directe découle de la propriété de I'exponentielle matricielle. On pose
Vi € R o(t) = etATE) _ tAqtB
Supposons que ¢ est la fonction nulle. On a p € €°(R,R) et par dérivation, il vient pour ¢ réel

go’(t) — (A+B>et(A+B) — AetAptB _ otAtBR

ot @,/(t) _ (A + B)et(A+B)(A + B) _ A2etAetB _ etAetBB2
Or, on a ¢"(0) = 0 d’on (A+B)?—-A?-B?*=0
On conclut ’AB =BA <= VteR et(AFB) — otAetB

Exercice 2 (**%*)

Soit E = .#,(C) muni d’'une norme sous-multiplicative.

A n
1. Montrer VA € E <Ip + —) ——eh
n n—oo
2. Soit A € E et (A,), € EN telle que A,, — A. Etablir
n—oo
A\"
(Ip + —) —eh
n n—oo
3. Montrer V(A,B) € E? (eA/meB/m)" —— o A+B

n—o0

n

Corrigé : 1. Avec la convention (k

) = 0si k > n, on peut écrire

(Ip + %)” = ]:f:sz(n>

X (M)« nn—=1)...(n—k+1)Ak
avec V(k,n) e Nx N fk(n):FA = oy i
On a

V(k,n)?2 e NxN*  0<

Ak

Ainsi VEeN  fi(n)

et comme ’espace E est muni d’une norme sous-multiplicative, on obtient par récurrence immé-
diate



Wik € 2 () < 1A

Par convergence normale et donc uniforme de la série > fi, il vient par double limite

+00 Ak

(+2) = Sht) — S5 —e?

n—oo

Remarque : On majore || fx(n)| pour k entier non nul car on ne sait pas a priorisi ||I,]] < 1
L’inégalité a lieu pour une norme subordonnée mais pas pour la norme || - ||; par exemple.

Variantes : (a) Soit A € E. Comme 'espace E est muni d’une norme sous-multiplicative, on a
|A*|] < ||A||* pour tout entier & non nul. Puis, pour n entier non nul

A)" n [ n! A’“ oo Ak
A (e 2) = 1
¢ (p i n kz::() nk(n —k)! + Z
On peut faire démarrer la premiére somme en k£ = 1 puisque 1e premier terme est nul. Par
ailleurs, on observe I'inégalité
n! _nx(n—l)x...x(n—k+1)<1
nk(n —k)! nXNX...Xn h
ANY 8 n! IAI® = AL
Par suite A <I —) < {1 — } —
rew le pt n I'< kgl nk(n— k) k! k:Zn:H k!
AN AN
Autrement dit e — (Ip + —> | <ellAl — <1 - u) (%)
n n
A" A
Par encadrement VA e E LL+—) —e
n n—o00
(b) On munit E d’une norme sous-multiplicative vérifiant ||I,|| = 1 (par exemple, une norme

d’opérateur). Pour n entier non nul, on a (e %)n = e” par propriété fondamentale de I’exponen-
tielle puis par factorisation de Bernoulli car commutation

o) ) - DR ()

k=0
Alinsi, par inégalité triangulaire et en utilisant le caractére sous-multiplicatif, on obtient

H€A—<Ip+‘:> I < llew —1, __HZ( HAH) (1+H7;L||>n—1_k
< e -1, ——HZ (e\lgu> (e Hﬁi\\)nflfk

AN” NS 1)+°<>||A|yk SN
HeA—<1p+5> | < ne > lAHZ <

= nkk! n2k! n

Le résultat suit.

2. Comme précédemment, on écrit

An n +00 5
(1+2) = S0 avee Vbm eNxN o) = Has
n k=0 "

Ak;

n—oo k!

On a VEkeN  gi(n)



Mk
et V(kn) € (N7 llgen)ll < 7 avee M= Sup A,
: neN

Par convergence normale et donc uniforme de la série > gy, il vient par double limite

( A )n +00 +o0 Ak N
I on - =
p T o kZ::ng(n) —>n_>oo = €

Variantes : (a) En appliquant (x) & A,,, on obtient

n—00

A n
(e B) g
n
Par ailleurs, on sait que ’exponentielle est continue. Par suite

A\" A\"
eA—<Ip+—> :eA—eA"+eA”—<1p+—) — 0

n n n—00

A\
C’est-a-dire (Ip + —) ——e?
n

n—o0

(b) On peut aussi reprendre le résultat de la deuxiéme variante de la premiére question qui donne

pour n entier non nul
A N\" %¢ Al
Jorr — (1,+22) ) <

n

et on conclut comme précédemment.

At AR
3. Soit (A,B) € E% On a e =T, 4+ =+ > —
n  j=Hnkk!
Par inégalité triangulaire généralisée, la convergence absolue ayant lieu, il vient

FAL AL LA (1)
< < = =
H,ggnkk' | k;? nkk! ~ n? k! ©

k=2 n
A 1 B 1
Ainsi eA/”:Ip+—+o(—> et eB/":Ip+—+o(—>
n n n n
I AN A/n,B/n _ 1
d’ou etmebm =1, + —(A+B+o(1))
n

D’aprés le résultat de la question précédente, on conclut

V(A,B) € E? (eA/”eB/”)n —— eAtB

n—o0

Remarque : Ce dernier résultat est connu sous le nom de formule du produit de Lie. On peut
souligner le fait que le résultat a lieu pour tout couple de matrices (A, B) dans E, méme si A et
B ne commutent pas.

Exercice 3 (***)

Soit A € #,(R) tel que degmy = 2. Montrer que les solutions de X’ = AX sont a valeurs dans
un plan vectoriel.

Corrigé : Comme degmy = 2, la famille (I, A) est une base de R[A]. Par conséquent



N Aktk
VN eN <Z o > X € Vect (Xg, AXp)
k=0 A
Pour X solution de X’ = AX, on a X(t) = e*X, pour t réel avec Xy € .4, 1(R). L'espace
Vect (Xp, AXj) est de dimension finie et est donc un fermé de .4, 1 (R). Ainsi, pour ¢ réel, faisant
tendre N — +00, on trouve par continuité du produit matriciel
N Aktk
<Z ) Xo » et Xg € Vect (Xo, AXp)
k=0 k‘ N—+oo

On conclut ’Les solutions de X’ = AX sont a valeurs dans un plan vectoriel. ‘

Exercice 4 (***)

Soit n entier non nul et N € .#,(C) nilpotente. Comparer Ker N et Ker (eN —1,,).

Corrigé : On a clairement Ker N C Ker (eN —I,,). En effet, pour X € Ker N, on a N*X = 0
d’ou, par continuité du produit matriciel

N +oo Nk +oo ] N
(N L)X = (Y )X =Y ~NX=0
k=1 k! k:1k’-

Cette égalité a lieu indépendamment de I'hypothése de nilpotence. Puis, comme l'indice de
nilpotence de N est majoré par n, on a

n—1 Nk—l
N _
¢ —h(Z m)N

k=1

On dispose de P € GL,(C) telle que P™!NP = T triangulaire supérieure stricte. Puis, on a

n—1Nk-1 n—1Tk-1
p-! (Z > P=1,+T avec T =) triangulaire supérieure stricte
k=1 k‘ k=2 If'
n—1N\k—1
On en déduit Uinversibilité de I, + T' et donc de ) d’ou
k=1
n—1 Nkfl -1
N _
(57r) rom=s
Ainsi Ker (eN —1,,) C Ker N
On conclut Ker N = Ker (e™ —1,,)

n—1Nk—1 n—1Nk—2

Remarques : (a) Sur la somme o [, +N avec N =N} o on peut aussi observer
k=1 K [t

que N’ est nilpotente puisque par commutation, on a N = N™(...)" = 0. Avec l'identité de
Bernoulli, on a

n—1

= I = (2N)" = (I 4+ N') 32 (Nt

k=0

d’ou linversibilité de I,, + N’ sans passer par un argument de réduction.

(b) On pouvait s’épargner le détail de la premiére inclusion puisqu’on a par continuité du produit
matriciel



+oo Nk—1 +oo Nk—1
1= ( IR )
,;1 k! k; k!
qui implique Ker N C Ker (eN —1,,) et Im (eN —1,,) C Im N. Avec I’hypothése de nilpotence, on
aeN—1I, =N(I,+N) dou N = (eN—1,)(I, + N)~! ce qui prouve Im N C Im (eN —1,,) et donc
I’égalité des images et aussi des noyaux pour raison de dimension.

Variante : Soit f € Z(C") canoniquement associ¢ a N. Les endomorphismes e/ —id et f

commutent d’oi la stabilité de Ker (e/ —id). On note f I'induit par f sur Ker (e/ —id). On a
n—1YXk

fnilpotent et > T annulateur de f Notant r son ordre de nilpotence, il s’ensuit que Ty = X"
k=0 K:

n—1Yk ~
divise T d’ott 7 = 1 et par conséquent f = 0 ce qui prouve Ker (e/ —id) C Ker f.
k=0 K!

Exercice 5 (***)

Montrer que I'exponentielle est injective sur 'ensemble des matrices diagonalisables de ., (R).
On pourra utiliser le fait que deux matrices diagonalisables qui commutent sont simultanément
diagonalisables.

Corrigé : On utilisera le résultat classique de diagonalisation simultanée : des matrices diago-
nalisables qui commutent sont diagonalisables pour une méme matrice de passage. Considérons
A et B dans ., (R), diagonalisables et telles que e = e*. Si A et B sont diagonales, le résultat
est immeédiat par injectivité de I’exponentielle sur R puisque

V(dy,...,d,) € R" exp [diag(dy, . .., d,)] = diag(e®, ... e)
Dans le cas général, soit P € GL,(R) et D = diag(\,...,\,) telles que B = PDP~!. On a la
propriété
B +001B +001PD P~! = PePP!
S T
Quitte & réordonner les valeurs propres de B, notons Ay, ..., A, les valeurs propres distinctes de

d
B avec p < n et notons Q = > \L; avec les L; polynomes de Lagrange définis par
i=1

X —eN
Aj

Vie[l;d] L=

jeltajngy e e
Par construction de Q, on a

QEP) =D puis Q(e?) = PQ(eP)P! = B
Comme A commute avec e® = eB et comme B = Q(eP) avec Q € R[X], il s’ensuit que A

commute avec B. Ainsi, il existe R € GL,(R) telle que RAR™! et RBR™! soient diagonales. Par
suite

eA=eP = Re”?R7!=exp(RAR™!) = exp(RBR™!) = ReBPR™!

ce qui nous raméne au cas de deux matrices diagonales d’ou le résultat. Ainsi

L’exponentielle est injective sur 'ensemble des matrices diagonalisables de ., (R).

Variante : On peut éviter le recours au résultat de diagonalisation simultanée. Le polynéme Q
précédemment construit 'est uniquement & partir du spectre de e® puisqu’en posant j; = e
pouri € [1; p],



Q:élnwu avee  Sp(e®) = {ui € [1; pl}

et on a montré Q(eB) = B. Comme e® =eB qui ont donc méme spectre, pour les mémes raisons,

on trouve A = Q(e?) et I'égalité A = B s’ensuit.

Exercice 6 (***)
Soit A € 4, (K) avec xa scindé sur K[X]. Montrer
A diagonalisable <= e diagonalisable

L’équivalence a-t-elle lieu sans ’hypothése xa scindé?

Corrigé : Supposons A diagonalisable. 1l existe P € GL, (K) et D diagonalisable telles que A =
PDP~! puis, par continuité du produit matriciel, il vient e® = PePP~! avec e diagonale d’ot le
sens direct. Supposons e” diagonalisable. Comme 4 est scindé, la matrice A est trigonalisable
donc il existe P € GL,(K), D = diag(MILy,, ... Ay,) et T = diag(Ty,...,T,) avec les T
triangulaires supérieures strictes telles que P~'AP = D + T ce qui équivaut 4 A = B + N avec
B =PDP~!et N=PTP~!. On a B diagonalisable, N nilpotente et un produit par blocs montre

que BN = NB. Par propriété de I'exponentielle matricielle, il vient e = eBeN d’ot1 eN = e "Be?.
On vérifie sans difficulté que AB = BA et par conséquent
e-BeA _ o-B+A _ (A-B _ (A,-B

D’aprés un résultat classique de réduction, des matrices diagonalisables qui commutent sont
simultanément diagonalisables et par conséquent, leur produit est diagonalisable. On en déduit
que e est diagonalisable. Par ailleurs, on a
n—le
eN =1, +NQ(N) avec = >
i=1 k!
Les matrices N et Q(N) commutent et il en résulte que NQ(N) est nilpotente donc semblable

4 une matrice triangulaire supérieure stricte. Il s’ensuit Sp (eN) = {1} d’ot eN semblable a I,
n—1Yk

donc égale a I, et par suite NQ(N) = 0. Le polynéme Q = > T est annulateur de N est on
k=1~

sait que my = X% avec d entier non nul. Comme 7y divise Q, il en résulte que d =1 d’oit N = 0
ce qui prouve P~'AP = D. On conclut

A diagonalisable <= e* diagonalisable

Variante : On peut éviter le recours au polynoéme minimal. On observe Q(N) = I,, + M avec M
nilpotente puis, d’aprés l'identité de Bernoulli

n—1
L=1,— (-M)" = (I, + M) > M1k
k=0
ce qui prouve U'inversibilité de I,, + M et comme N(I,, + M) = 0, on trouve N = 0.

0 —27

A o .
or 0 ), on trouve e = Iy qui

Le résultat est faux sans I'hypothése xa scindé : pour A = <

est diagonale et A ne l’est pas puisque ya n’est pas scindé.



Exercice 7 (***%*)

Soit A € 4, (C). On considére I’équation différentielle
X' = AX (H)

Montrer que les solutions de (H) sont bornées sur R si et seulement si A est diagonalisable avec
Sp (A) CiR.

Corrigé : Les solutions de (H) sont de la forme ¢t +— "X, avec Xy € #,1(C). Si A est
diagonalisable avec Sp (A) C iR, il existe P € GL,,(C) et des réels 64, ..., 6, tels que P—1AP =
diag(ify, .. .,10,). Puis, on obtient

VteR  eXy = Pdiag(e®,... e )P1X,

Ainsi, les fonctions coordonnées de t — e**X, sont combinaisons linéaires de fonctions bornées
et sont donc bornées. Supposons désormais que les solutions de (H) sont bornées. Soit A € Sp (A)
et Xg € A,1(C) non nulle telle que AXy = AXg. On trouve (tA)*X, = (t\)*X, pour tout k
entier d’ott e*AX, = e*X, puis

VEER  [le™ X = et WXy

Le caractére borné des solutions sur R impose Re (A) = 0 d’ou Sp (A) C iR. Soit u € Z(C")
canoniquement associé a A. Supposons u non diagonalisable. On a 7, scindé mais pas a racines
simples d’ou l'existence de A € Sp (u) de multiplicité o > 2 dans 7,. On note m, = (X — \)*Q
avec Q € C[X]. Sur F = Ker (u — Aid )* stable par u, on note uy I'induit de u sur cet espace et
on a uy = Aidp, +ny avec n, un endomorphisme de F) nilpotent d’indice de nilpotence égal a
« puisque si cet indice était < a, on aurait (X — \)*~'Q annulateur de v en utilisant la décom-
position résultant du lemme des noyaux E = F) @ Ker Q(u) ce qui contredirait la minimalité de
. On choisit € F tel que n§™*(x) # 0. Sans difficulté, la famille (n§2(z), n$ "' (x)) est libre
et on a, notant A = if avec 0 réel

VEER  eM(ng () = et (g2 (0) = (]2 () + 10 (2)

La composante portée par ni"l(x) est non bornée ce qui est impossible. On conclut

Les solutions de (H) sont bornées sur R si et seulement si A est diagonalisable avec Sp (A) C iR.

Exercice 8 (***%*)

Soit A € #,(C). On considére ’équation différentielle
X' = AX (H)
Déterminer une condition nécessaire et suffisante sur A pour avoir

VX €Sy  X(t) —— 0

t—+o00

Corrigé : On a X(t) = "X, pour tout t réel avec X, € 4, 1(R). Soit A € Sp(A) et X, €
M1 (C) avec Xg # 0 tel que AXy = AX,. Par continuité du produit matriciel, on a

N ¢k AR §N X ) (ZN (t/\)k>
tA o . Z . . 0 . . . it
© XO - N1~I>+OO (k:O k' ) XO N N]ilzloo <k;:0 k‘ B N]ilzloo k=0 k' XO —° XO

Comme une des composantes de X, est non nulle, on obtient

eh Xy —— 0 = e ——0
t—+o00 t—+o00



Comme ‘et)‘| = e'Be() pour ¢ réel, il s’ensuit que Re (A) < 0. Réciproquement, on suppose
que Re (A) < 0 pour tout A € Sp(A). On note E = #,(C) qu’on munit de la norme ||M||; =

> |ms | pour M € E. Il s’agit d’une norme d’algébre qui vérifie, & 'instar de la norme
1<ij<n
subordonnée, l'inégalité ||[MX|; < [|M]1]|X]|; pour (M,X) € 4, (C) x #,1(C). D’apreés les
théorémes de d’Alembert-Gauss et de Cayley-Hamilton, le polyndme caractéristique xa est scindé
dans C[X] et annulateur de A. Ainsi, il existe P € GL,(C) telle que P~'AP soit une matrice de

M, (C) diagonale par blocs de la forme
P AP = diag(A1 L, + T4, ..., AL, + T)
avec les T; € #,,(C) triangulaires supérieures strictes et donc nilpotentes. Posons
D = diag(MlLn,, -, Avly,,) et N =diag(Ty,...,T,)

On a clairement P7'AP = D + N avec N triangulaire supérieure stricte donc nilpotente et un
produit par blocs montre sans difficulté DN = ND. Par suite, notant p 'indice de nilpotence de
N, on a par commutation

Vt € R etA — Pet(D+N)P—1 — PetDetNP—l

pfltk’Nk
avec el = diag(e™1,,,,...,eM, ) et eN=> ——r
= k!
tD - A - tRe (A tN e RN
On trouve [[e™|ly = Y my [e™| = Smye! B et o™y <n+ X
k=1 k=1 - k!
Par croissances comparées, on obtient
le®[:fle™h ——0
t—+o0
Pour X, € #,,1(C), on a
VteR e Xolls = [[Pe®e™P Xo|ly < [IP[l1[le™ [ le™ 1P~ Xollx
et on en déduit donc etA Xy —— 0
t—+o0
Ainsi VX € Sy X(t) — 0 < VYAeSp(M) Re(\) <0
—+00
Exercice 9 (****)
Soit A € ., (C). On considére I’équation différentielle
X' = AX (H)

Déterminer une condition nécessaire et suffisante sur A pour avoir

VX eSy Xt = O(1)

t—+o00
Corrigé : On munit .#,(C) de la norme || - ||; qui est sous-multiplicative et vérifie ||[MX]|; <
IM||1[|X]l; pour (M,X) € 4,(C) x M, 1(C). On a X(t) = e*X; pour tout t réel avec Xy €
M1 (R). Soit A € Sp (A) et Xg € #,,1(C) avec Xy # 0 tel que AXy = AXp. Par continuité du
produit matriciel, on a

N kAk N 1tk kX N k
¢™X, = lim (zt )xoz lim (z“ 0): lim (z(”) )one”Xo
k! k! N—+o00 k!

N—+00 \Zg N—+00 \1.Zp k=0

Comme une des composantes de X, est non nulle, on obtient

8



e X, = 0O(1) = e = 0(1)
t—+oo t—+oo
Comme !e”} = ¢! pour t réel, il s’ensuit que Re(A\) < 0. La matrice A est semblable
a une matrice diagonale par blocs avec des blocs de la forme A, + N ot N est triangulaire
supérieure stricte. Un calcul par blocs montre que e** est semblable & la matrice formée des
blocs e MmN — eMe!N par commutation. On se contente d’étudier le cas dun bloc, le cas

Al < 1Pl diagXon, +Na)acspcalIP 1
et “ dlag(AImA + N)\))\GSp(A)Hl = Z H>\Im>\ + N)\Hl
AESP (A)

Supposons Re (A\) < 0. Pour une solution X : t = e*e™ X, avec Xy matrice colonne, on trouve

vteR  [X(t)]i = leMe™Xoll < e M e™|1[|Xolh
m—ltka
et e™N = Y o pour t réel puisque l'indice de nilpotence est majoré par m. Ainsi, par crois-
k=0 R
sances comparées, on trouve
wer X <ereo (NI ¢ 0
1€ > il [1Xolly P
k=0 : 0

d’ou le caractére borné.

Supposons Re (\) = 0, autrement dit A\ = i6 avec 6 réel. Soit p I'indice de nilpotence de N. On
a p > 1. Supposons p > 2. On dispose de X, matrice colonne telle que NP~1X, # 0. On vérifie
sans difficulté que (NP~2Xg, NP71Xy) est libre. On trouve

eMe!NNP=2Xy = e (NP=2X, + tNP~1X,)

La composante portée par NP~1X, est non bornée et par conséquent, pour une solution bornée,
si Re (A) = 0, alors l'indice de nilpotence p est égal & 1, autrement dit N = 0 ce qui prouve que
le bloc en question est diagonalisable. La réciproque ne pose pas de difficulté. On conclut

Les solutions de (H) sont bornées sur R, si et seulement si pour A € Sp (A),
on a Re (A) < 0 ou Re(\) =0 et le bloc correspondant diagonalisable.




