ISM MP—+, Mathématiques
Année 2025/2026

Corrigé de la séance 5 - MP—+ - 13/02/26

Exercice 1 (***)

Soit (€2, 7, P) un espace probabilisé et (A, ), une suite d’événements. On note
A = « une infinité d’événements A,, est réalisée »

1. Montrer que A est un événement.

2. Sila série Y P(Ay) converge, montrer que P(A) = 0.

3. Soit (X,)n>1 une suite de variables aléatoires réelles discrétes telles que Y P (|X,| > ¢)
converge pour tout € > 0.

(a) Justifier que {Xn — O} est un événement.

n—o0
(b) Montrer X, —— 0 ps.
n—oo
Corrigé : 1. On a A= ﬂ U A,
NeNn>N

Par stabilité par intersection et union dénombrables, il s’ensuit

| L’ensemble A est un événement. |

2. Par continuité décroissante, on a

P(A) = lim P (U An>

n>N

+00
et d’apres I'inégalité de Boole P (U An> < Y P(A,)
n>N n=N

le majorant étant le reste d’une série convergente donc de limite nulle. Par comparaison, il vient

P(A) = 0

Remarque : Ce résultat est un deuxiéme lemme dit de Borel-Cantells.

3.(a) Soit w € {Xn — O}. On a

n—o0

Ve >0 ANeN | Vn>N X, (w)] <e

ce qui équivaut a écrire w e ﬂ U ﬂ {IX,| < ¢}

e>0NeNn>=N

Le probléme dans cette écriture est que l'intersection sur € > 0 porte sur un ensemble non
dénombrable. On contourne cette difficulté en remarquant qu’il est équivalent d’écrire

1
Vk>1 3NeN | >N  [X,(w)|<-

k
Ainsi X.—=o}=NUN {|X"| < %}

k=21 NeNn>=N

1



Par stabilité par union et intersection dénombrable, on conclut

{Xn—>0}e%

n—o0

3.(b) Soit € > 0. On pose A, = ﬂ U {|X,| = ¢}

NeNn>=N
D’aprés le résultat de la deuxiéme question, on a P(A.) = 0 d’oit A, est presque siir. Il s’ensuit

que l'intersection dénombrable ﬂ Ay est presque sire et avec 'égalité
k=1

{Xo =0} =N A

n—00
k>1

On conclut X, ——0 ps.

n—o0




Exercice 2 (***)

Soit (€2, o7, IP) un espace probabilisé et (X,,),>1 une suite de variables aléatoires réelles discrétes
indépendantes de méme loi dans L?. On note m = E(X;), 0 = 1/V(X;) et on pose

1 n
Vn>1 Y,=—-> Xy —m
Ng=1

1. Montrer Y,2——0 p.s.

n—oo

2. On note p(n) = |y/n| pour n entier. Montrer

2
@\n
( ) ng(n)Q — 0 p.s.

n n—oo

Y, —

1

n;

3. Conclure
n—oo

=1

Corrigé : 1. La variable aléatoire Y,, admet un moment d’ordre 2 comme combinaison linéaire
de variables aléatoires dans L2. Pour € > 0, il vient d’aprés l'inégalité de Bienaymé-Tchebychev
et par indépendance des X,

2

1 o
P(Yal > ) < 5

SV(Y,)
Par suite, la série Y P (|Y,2| > €) converge pour tout € > 0 et, par application de la troisiéme
question du premier exercice, on conclut

e2n

2.Soitn>1.0n a

D’apres I'inégalité de Bienaymé-Tchebychev et I'indépendance des Xi, on obtient pour € > 0
1 " (n = (n)*)0?

! )iy (L, ) - e

k=p(n)2+1 n2e?
Par ailleurs, comme on a p(n) < v/n < ¢(n) + 1, on en déduit v/n — 1 < p(n) d’ou
n—pn)?<2y/n-—1

o] 5)-0(2)

2
v, p(n)
n

v, _ p(n)?

Yoy

Y, —

p(n)
Y
n p(n)?

1l s’ensuit P (

n
Par critére de Riemann, la série ZIP’( > e) converge pour tout € > 0 et

p(n)?

d’aprés le résultat du premier exercice, on conclut

2
@\n
( ) Y(p(n)Q — 0 p.s.

n n—oo

Y, —

3. 0n a ¢(n) < /n < p(n) + 1 pour n entier d’'ott p(n) ~ +/n et par suite (n)?> ~ n.
n—+00

n—+oo
Combiné avec le résultat de la premiére question, on obtient

2
() Yome = O0(1)o(1) —— 0 ps.

n n—o0




En effet, soit w € {Yn2 — 0}. Puis, soit ¢ > 0. On dispose de N entier tel que pour n > N,

n—00
2

on a |Y,z2(w)| < e. Comme p(n)* —— +00, on dispose de p entier tel que pour n > p, on a
n—oo

¢(n)?* = N ce qui implique |Y,(,2| < e. Ceci prouve linclusion
{Yir — 0} < (Yo — 0}
n—00 n—o00

et comme ’événement & gauche est presque sir, celui qui le contient ’est aussi. Avec le résultat
de la question précédente, il vient

n—oo
. 1
Autrement dit — > Xy ——m  ps.

Remarque : Il s’agit de la loi forte des grands nombres. On peut affaiblir I’hypothése L? en
supposant que les variables sont d’espérance finie mais la démonstration est notablement plus
difficile.



Exercice 3 (***%*)

+00 xk
On pose Vo >0 =
n p x f(z) k; PV
1. Montrer flz) = o(e”)

r—r+00

2. Pour x > 0 et Y, variable aléatoire de loi Z(x), montrer

1
Ve >0 P(|Y, —x| Zex) = O(—)

Tr—r+00 €T
. e’
3. En déduire flz) ~ —
T—+00 xr

Corrigé : 1. Pour z > 0 LA (ﬁk)

orrigé : 1. Pour z > 0, on a VR koo o\ 4

et par comparaison a un terme général de série exponentielle convergente, on en déduit que la
fonction f est bien définie. Montrons e ~* f(x) —— 0. Soit n entier, x > 0 et R, (z) le reste

r—r+00
d’ordre n de la série définissant e =% f(x). On a

W= 3 S ]
O0<R,(z)=e"" < ——
k:n+1k!\/E vn+1 = k! vn

< x

On dispose donc d’un controle uniforme du reste d’ot ||R,||.c — 0 et d’aprés le théoréme de
n—oo

double limite, il vient

Ainsi flx) = o(e")
T—++00
2. D’apres l'inégalité de Bienaymé-Tchebychev
1 1
PV ~E(Y.)| > 20) € g VIY) = o
. 1
Ainsi Ve >0 P(|Yy—z|=2ex) = O (—)
T—+00 €T
! iu>0
— siu
3. On pose Yu >0 o(u) =< Vu
0 siu=20

Soit z > 0. Par transfert, la convergence étant assurée par I'existence de f, on a

B (o () = S (5) B0 = = 5 Voo — e 7af@)

=1

Puis e *Vrf(r)—1=E <gp <§> - gp(l))

X

Par inégalité triangulaire dans L!, il vient



s

2(e(3) - o)) <2 (e (5) - w))

On localise avec des fonctions indicatrices et on obtient

E ( © (%) — (1) ) =E ( ® <&> — (1) ]lYg:—I<6ac> +E <'<P (%) - W(l)‘ ﬂYx—I26x>

x
Comme la variable Y, est a valeurs dans N, on observe que

N7 VL <yr siYet
Y,
Y.
Par conséquent '(p (—) — 1' <1+x
x
et par suite
Y,
B(Jo () ~ 00| tymsis) < (Va4 DR, =0l 2 20)_=_ o)

Par continuité de ¢ en 1, pour § > 0, on peut choisir € > 0 tel que
YVu >0 lu—1<e = |pu)—¢(l)]<d
. Y,
Ainsi E (‘gp (—) — go(l)’ ]1|Y1__x|<5x> <4
x

On peut donc rendre la quantité e *\/xf(z) — 1 arbitrairement petite pour z — +o0o et on
conclut




Exercice 4 (***)

Soit (€2, o7, IP) un espace probabilisé, Y une variable aléatoire réelle discréte centrée telle que
Y(Q) C [a;B], X, ..., X, des variables aléatoires réelles discrétes indépendantes a valeurs dans
n

[a;b]. On note S, = > X,.
i=1

1. Soit s réel. Montrer

Vy € [o;B] esy<§:Zesa+§:zesﬁ
En déduire E(e SY) < e’ + pesf
avec = e =
P=5, =5,
2. On pose Vs € R Y(s) = sa+ In (q _|_pes(/5—a))
Justifier que la fonction v est deux fois dérivable puis établir
s(B—a)
qpe
VseR  4"(s)= (8 —a)
(q + pes(5-)”
2
3. En déduire pour s réel P'(s) < w
)22
puiS ]E(QSY> < exp <%>

4. Soient €,s > 0. Montrer

P(S, ~ E(5,) > ©) < exp —se + U2

8
En dédui P(S, —E(S,) > ¢) < ( 2" )
n déduire n—E(S,) >e)<exp| ———
P n(b— a)?
Corrigé : 1. Soit y € [a; 3] et s réel. On a
B—y y—a f-y  y—o B-yy—«
_ =1 et 20
sy B_asoz—i-ﬁ_asﬁ avec B—a+5—04 e s
Par convexité de 'exponentielle, il vient
vy € [a;f] esyééiiesa+z:zesﬁ

On applique cette inégalité avec Y qui est a valeurs dans [« ; ]. Passant a 'espérance, on trouve
par linéarité

E(esY> < qesa +pesﬁ

2. Par croissance de ’espérance, on a



et comme [ > «, on en déduit que p et ¢ sont positifs dont I'un strictement. Par conséquent,
on a q + pe*P=® > 0 pour s réel et il s’ensuit que Papplication v est deux fois dérivable. Par
dérivation, il vient

VseR  of(s) = _pet [
SER - Yl =at(f-o) g =t (B-a) |-
s(B—a)
. " _ _ 2 qpe
Puis Vs e R V'(s) = (B —a) (q + pes(B=))2

3. Pour u et v réels, on a (u + v)? > 4uv puisque (u + v)? — duv = (u —v)? > 0. Avec u = g et
v = pe’B=2) on conclut

(B —a)?
4

D’aprés la formule de Taylor reste intégral, on a pour s réel

666 = w0+ s+ [ -na< CE e

VseR  ¢"(s) <

(8 —a)?s®

c’est-a-dire VseR  9(s) < 2

Passant a ’exponentielle, on trouve pour s réel
— a)?s?
exp(¥(s)) = e (g + pe*"")) = ge** 4 pe*” < exp (—(ﬁ ) )

et avec le résultat de la premiére question, on conclut

Vs e R E(e®Y) < exp (%)

4. Solent e,5 > 0. Ona  {S, —E(S,) > ¢} = {eGrEB > ¢

(Sn—E(S

D’apres l'inégalité de Markov avec la variable e® ) positive et par indépendance des X,

il vient
]P’(Sn—E(Sn)>€) —saE(He s(X; IE(X)> —SEHE< s(X; ]EX)))
=1

Les variables X; — E(X;) sont dans l'intervalle [a — E(X;) ;b — E(X;) ]. Ainsi, par application de
I'inégalité obtenue a la question précédente, on obtient

_ 2.2
P (S, —E(S,) >¢) <exp (—se + n%)

Enfin, on choisit la valeur de s qui minimise le trindome dans ’exponentielle et on conclut

P (S, — E(S,) > ¢) < exp (—n(;—im)

Remarque : Il s’agit de ["inégalité de Hoeffding.



Exercice 5 (***)

Soit (€2, 7, P) un espace probabilisé et Xy,...,X,, des variables aléatoires réelles discrétes indé-

k
pendantes centrées dans L2 On note S, = >_X; pour k € [1; n]. Soit € > 0. On pose
i=1

vhellin] A= ({IS] < {sd >e)

J=1

1. Justifier 'indépendance des variables aléatoires Si1,, et S, — S, pour k € [1; n].

2. Montrer S E(Sila,) <E(S7)
k=1
. 1 =
3. En déduire ]P’( Max ]Sk| > > < —22 (X:)
k€e[1;n i=1

n
Corrigé : 1. Soit k € [1;n]. On a S, — Sy = > X;. La variable Sy et I’évenement Ay sont
i=k+1
définis a partir des variables aléatoire Xy, ..., X;. Il n’y a donc pas de chevauchement d’indice

et par indépendance des X;, on conclut

Pour tout k£ € [1; n], les variables aléatoires Sg1, et S, — Si sont indépendantes.

2. Les événements A, sont incompatibles d’ou

zn:]lAk =1, <1lg=1 avec By = |i|Ak

k=1 k=1
En multipliant par S? et par linéarité de Pespérance, les variables concernées étant d’espérance
finie, il vient

B350 - SEE1L) < EE)
En décomposant S,, = S + S,, — Si, on obtient par linéarité de ’espérance
E(S214,) = E(S2lax) + 2E ((Sn, — Sk)Sila,) + E((Sn — Sk)*1a,)
D’aprés I'indépendance établie a la premiére question puis le caractére centré des X, il vient
E ((Sn — Sk)Sk1a,) = E(Sp, — Sg) E(Sglla,) =0

Enfin, comme E ((S,, — S;)?14,) = 0, on conclut

SO (S21a,) < E(S2)
k=1

3. Soit w € {kl\ﬁllax]] ISk| = 5}. En considérant le plus petit indice k € [1; n] tel que |Sg(w)| = &,
cll;n

on obtient

M A
{ke[[lax |Sk‘ }C |—| F

o
—_

et I'inclusion réciproque est immédiate d’ou

Mo (501> <} =
{ke[[axlk |:|



et par sous-additivité IP< Max [S| > 5) < Y P(Ay)
ke[[l;n] k=1

Or, par définition des A, on a
Vk € [[1, TL]] E(Sz]lAk) = 52E(]1Ak) = €2P(Ak)

Comme les X; sont centrées, on a E(S2) = V(S,,) et par indépendances des X; et I'inégalité
établie & la question précédente, on conclut

1n

ke[1l;n] E%=1

Remarque : Il s’agit de l"inégalité de Kolmogorov. Cette inégalité est un élément clé de la preuve
de Kolmogorov pour établir la loi forte des grands nombres.
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Exercice 6 (****)
1. Montrer que = +— e est limite uniforme sur R, d’une suite de fonctions de la forme
x+— P(x)e ™ avec P € R[X].
2. On considére E I'espace des fonctions de R, dans R, continues et de limite nulle en +oo.
On munit E de la norme || - ||o. Soit f : R, — R, continue & support compact. Soit

—2x

A= 0et (X;:‘));@l une suite de variables aléatoires indépendantes suivant toutes une loi
de Poisson de paramétre A (on généralise pour A = 0). Montrer que la suite de fonctions

(gn)n>1 avec
YAZ0  g.(\) =E (f (%éx@”))

converge uniformément sur R,.
3. Montrer que {z € R, — P(z)e *, P € R[X]} est dense dans E.

n Xk
Corrigé : 1. On pose P, = > (—1)"3? pour n entier et on a
k=0 -
Ve >0 P,(z)e™ —— e
n—oo
D’apres I'inégalité de Taylor-Lagrange, on trouve
xn—i—l
Ve >0 P,(z) —e | <
20 [Pue) - e < gy
) xn—i—l
dou Vn > P, r—e I < hy Ve >0 hp(x) =e™*
ou n>x |P.(z)e e | < hy(z) avec Va > (x)=¢e D)
1 n+1
On trouve |hnlloo = hn(n+1) = e_("“)u
(n+1)!
Avec I'équivalent de Stirling, on trouve
1
thHoo ~ T
n—-+oo 27Tn
Ainsi A(P,), € RIXN | Sup |Pp(z)e ™ —e 2| —— 0
>0 n—oo
2. On pose YA >0 Vn >1 XN — ZX

On note M la borne supérieure du support de f (si f est nulle, le résultat est trivial).
VAZ0 V>0 Ay, = {‘XW —)\‘ 277}
e Supposons A < 2M. Pour n > 0, il vient
\ﬂm—Mﬂ%M\gEQfA—fxww
(‘f (A))’ ]]‘AA ) +E <’f f(XglA)>‘ ]lQ\A)\,n>
Puis, avec I'inégalité de Bienaymé-Tchebycheff, les X2 ayant un moment d’ordre 2, il vient
E (/) = S&D)| 14y, ) <207 1eP (X = 2 2 )
2 flloowr < 2 flloaA 4| fllecM
< Hf2|! V(XY) = [fllocA _ Al
n

~

nmn? nmn?

11



Soit € > 0. D’aprés le théoréme de Heine, la fonction f est uniformément continue sur [0;2M |.
On choisit n € ]0; M| tel que

V(z,y) € [0;2M]° |z —y|<n = |f(z)— f(y)|<e
Ainsi O Ay, C {‘f()\) - f(Xﬁﬁ))‘ < 5}

En effet, si XN e [0;2M], I'inclusion résulte de 'uniforme continuité. Sinon, on a
{Xfﬁ) > 2M

_ — _M+2M < —M+XWY <\
‘X%A)—A)<n<1\/[ + *

d'on FO) = fXM) =0
4| fllseM
Par ailleurs, on dispose d’un seuil N tel que pour n > N, on a M < € et on a donc prouvé
nn
¥e>0 3NeN | Vn>N Sup [ F() — E(F(X))] < 2¢
A€[0;2M ]

e Supposons A > 2M. Il vient
O =EGERON] < E (|00 - 7x))

< (|70 - SO 1) +E (|70~ ) 100, )

_ == n > = >
n remarque ‘Xg\) _ )\‘ < )\/2 92
Ainsi E (’f@‘) - f(Xg\))‘ ]lQ\AA,A/2> =0

De nouveau par inégalité de Bienaymé-Tchebycheff, on obtient

)| < 2oy ooy _ 81l 417l
00 = BUED)| < (s vRD) =S < S

d'on Sup | £(N) ~ E(f(X)| —= 0

A>2M n—o0

On a établit la convergence uniforme et sur [0;2M] et | 2M; +o00 [. On conclut

lgn = flloo ——0
n—00

3. Soit f € E et ¢ > 0. Soit M > 0 tel que |f(z)| < € pour x > M. Soit g coincidant avec f
sur [0; M|, affine sur [M; M + 1] et nulle ensuite. La fonction g est & support compact et vérifie
| f — gllo < 2e. Enfin, on peut choisir g, pour n assez grand tel que ||g — gnlloo < € et la fonction
gn est de la forme souhaitée par transfert. Ainsi, on dispose d’un seuil N tel que, pour n > N

On conclut L’ensemble {z € R, — P(z)e ™, P € R[X]} est dense dans E.
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Exercice 7 (***%*)

Soit (£2,.7,IP) un espace probabilisé et (Xj),., une suite de variables indépendantes de loi
uniforme sur [1;r] avec r > 1 et Zj,...,Z, des variables indépendantes avec Z; = 1 et

— 1 T
Z;~%Y (&) pour tout i € [2; r]. On pose C, = > Z; puis, pour i € [1; r]
T i=1

Yw € Q Ti(w) =inf{n > 1| Card {Xy(w),...,X,(w)} =i}
et Y; =T, — T;_1 avec la convention Ty = 0.

1. Préciser espérance et variance des variables Z;.

2. Montrer que

ro1 r 1
E(C,)=r xH, et V(C,) =—-rH, +r? <Z—) avec H,= > —
=1k =1k
3. Justifier H, ~ Inr
r—+00
. o
4. Etablir Ve >0 P —1lz2e] ——0
rinr r—+00
5. Déterminer la loi de (Yq,...,Y,).
6. En déduire T, ~C,
Corrigé : 1. On a
Vie[l:r] E(Z)=— ¢ V(Z) i_l( r )2
i ;T i)=—"— € i) = :
’ r—i+1 r o \r—i+1

2. Par linéarité de ’espérance, il vient

B(C) = <2Z>:ér—z+1

Les variables Z; étant indépendantes, il vient

V(CJzV(éZi):ii_lx r 2{ L T }

= (r—i+1)2 Sl r—i+1 (r—i+1)

Avec le changement d’indice kK = r — ¢+ 1, on obtient

E(C,)=rxH, et V(C,) =—rH, +r? <i%>

k=1

3. Par comparaison série/intégrale ou en considérant la série téléscopique > (uy11 — u,) avec
u, = H, — Inr, on obtient

H., ~ Inr
r—4+00
4. Soit € > 0. On a l'inclusion
Fe g e (-] Pofi-3
rinr - rinr  Inr|” 2 Inr )

H, 3 . - . . .
et {‘1 2} = @ pour r assez grand. Par suite, en utilisant l'inégalité de Bienaymé-
nr

Tchebycheft, on obtient

13



C, H,

> €
Inr Inr|”~ 2) +o(1)

”
4 C, )

<= 1
EQV(rlnr +o(l)

et V( CT>—0<T2)—O< i )—0(1)

rinr r2In”r In"r
C,
On conclut Ve >0 IP’( —1'26) — 0
rinr r—+400

5. On a clairement Y;(€2) C N* pour tout i € [1; r]. Soit y; = 1 et (ya,...,y.) € (N*)""1. On

pose t; = > yp pour i € [1; r] . Il vient

S (e efaey

puis

P (h Y= yz}> =

Z P (h {th = U(k>7th+1 S O-([[l; k]])? s 7th+1*1 € U([[l; k]])} N {Xtr = J(T>}>

oES, k=1

Ainsi, par indépendance des X;, on obtient

P<O{Yi:yi}) = Z%rnll

P (ﬂ Y= yz}) =P (ﬂ {Z; = yz}>
Ainsi (Y1,...,Y,)~(Z, ..., 7Z,)

Remarque : On a passé sous silence le fait que les fonctions T; et donc aussi les Y; sont bien
des variables aléatoires discrétes. Soit ¢ € [1; r]. On a a priori T;(Q) C N* U {oo} puis pour
t;>1

{T; =t;} = {Card {Xy,...,Xy,} =i} N{Card {Xy,...,X,_1} =1 —1}

et {Ti=o0} ={Ti<oo} et {T;<oo}=|J{Ti=t;}

ti>1
Pour n entier, la quantité Card {Xy,...,X,} (nulle si n = 0) est fonction de (Xy,...,X,,) donc
est une variable aléatoire. Ainsi, I'ensemble {T; = ¢;} est un événement puis {T; < co} égale-
ment par union dénombrable et {T; = oo} par complémentation ce qui prouve que les T; sont

14



des variables aléatoires discrétes et les Y, également.

6. D’apreés le résultat de la question précédente, on conclut

T, =YYi~Y2Z=C,
=1 =1

Commentaire : Le probléme est connu sous 'appellation probléme du collectionneur de vi-
gnettes. La variable X; est la vignette obtenue lors du ¢-éme achat de votre boite de céréales
favorite. La variable T; désigne donc le nombre d’achats a effectuer pour posséder ¢ vignettes
différentes et T, le nombre d’achat pour avoir la collection compléte.
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