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Exercice 1 (***)

Soit (Ω,A ,P) un espace probabilisé et (An)n une suite d'événements. On note

A = � une in�nité d'événements An est réalisée �

1. Montrer que A est un événement.

2. Si la série
∑

P(Ak) converge, montrer que P(A) = 0.

3. Soit (Xn)n⩾1 une suite de variables aléatoires réelles discrètes telles que
∑

P (|Xn| ⩾ ε)
converge pour tout ε > 0.

(a) Justi�er que
{
Xn −−−→

n→∞
0
}
est un événement.

(b) Montrer Xn −−−→
n→∞

0 p.s.

Corrigé : 1. On a A =
⋂
N∈N

⋃
n⩾N

An

Par stabilité par intersection et union dénombrables, il s'ensuit

L'ensemble A est un événement.

2. Par continuité décroissante, on a

P(A) = lim
N→+∞

P

(⋃
n⩾N

An

)

et d'après l'inégalité de Boole P

(⋃
n⩾N

An

)
⩽

+∞∑
n=N

P(An)

le majorant étant le reste d'une série convergente donc de limite nulle. Par comparaison, il vient

P(A) = 0

Remarque : Ce résultat est un deuxième lemme dit de Borel-Cantelli.

3.(a) Soit ω ∈
{
Xn −−−→

n→∞
0
}
. On a

∀ε > 0 ∃N ∈ N | ∀n ⩾ N |Xn(ω)| < ε

ce qui équivaut à écrire ω ∈
⋂
ε>0

⋃
N∈N

⋂
n⩾N

{|Xn| < ε}

Le problème dans cette écriture est que l'intersection sur ε > 0 porte sur un ensemble non
dénombrable. On contourne cette di�culté en remarquant qu'il est équivalent d'écrire

∀k ⩾ 1 ∃N ∈ N | ∀n ⩾ N |Xn(ω)| <
1

k

Ainsi
{
Xn −−−→

n→∞
0
}
=
⋂
k⩾1

⋃
N∈N

⋂
n⩾N

ß
|Xn| <

1

k

™
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Par stabilité par union et intersection dénombrable, on conclut{
Xn −−−→

n→∞
0
}
∈ A

3.(b) Soit ε > 0. On pose Aε =
⋂
N∈N

⋃
n⩾N

{|Xn| ⩾ ε}

D'après le résultat de la deuxième question, on a P(Aε) = 0 d'où Aε est presque sûr. Il s'ensuit

que l'intersection dénombrable
⋂
k⩾1

A1/k est presque sûre et avec l'égalité

{
Xn −−−→

n→∞
0
}
=
⋂
k⩾1

A1/k

On conclut Xn −−−→
n→∞

0 p.s.
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Exercice 2 (***)

Soit (Ω,A ,P) un espace probabilisé et (Xn)n⩾1 une suite de variables aléatoires réelles discrètes
indépendantes de même loi dans L2. On note m = E(X1), σ =

√
V(X1) et on pose

∀n ⩾ 1 Yn =
1

n

n∑
k=1

Xk −m

1. Montrer Yn2 −−−→
n→∞

0 p.s.

2. On note φ(n) = ⌊
√
n⌋ pour n entier. Montrer

Yn −
φ(n)2

n
Yφ(n)2 −−−→

n→∞
0 p.s.

3. Conclure
1

n

n∑
i=1

Xi −−−→
n→∞

E(X1) p.s.

Corrigé : 1. La variable aléatoire Yn admet un moment d'ordre 2 comme combinaison linéaire
de variables aléatoires dans L2. Pour ε > 0, il vient d'après l'inégalité de Bienaymé-Tchebychev
et par indépendance des Xk

P (|Yn| ⩾ ε) ⩽
1

ε2
V(Yn) =

σ2

ε2n

Par suite, la série
∑

P (|Yn2| ⩾ ε) converge pour tout ε > 0 et, par application de la troisième
question du premier exercice, on conclut

Yn2 −−−→
n→∞

0 p.s.

2. Soit n ⩾ 1. On a Yn −
φ(n)2

n
Yφ(n)2 =

1

n

n∑
k=φ(n)2+1

(Xk −m)

D'après l'inégalité de Bienaymé-Tchebychev et l'indépendance des Xk, on obtient pour ε > 0

P
Å∣∣∣∣Yn −

φ(n)2

n
Yφ(n)2

∣∣∣∣ ⩾ ε

ã
⩽

1

n2ε2
V
Ç

n∑
k=φ(n)2+1

Xk

å
=

(n− φ(n)2)σ2

n2ε2

Par ailleurs, comme on a φ(n) ⩽
√
n < φ(n) + 1, on en déduit

√
n− 1 < φ(n) d'où

n− φ(n)2 < 2
√
n− 1

Il s'ensuit P
Å∣∣∣∣Yn −

φ(n)2

n
Yφ(n)2

∣∣∣∣ ⩾ ε

ã
= O
Å

1

n
3
2

ã
Par critère de Riemann, la série

∑
P
Å∣∣∣∣Yn −

φ(n)2

n
Yφ(n)2

∣∣∣∣ ⩾ ε

ã
converge pour tout ε > 0 et

d'après le résultat du premier exercice, on conclut

Yn −
φ(n)2

n
Yφ(n)2 −−−→

n→∞
0 p.s.

3. On a φ(n) ⩽
√
n < φ(n) + 1 pour n entier d'où φ(n) ∼

n→+∞

√
n et par suite φ(n)2 ∼

n→+∞
n.

Combiné avec le résultat de la première question, on obtient

φ(n)2

n
Yφ(n)2 = O(1)o(1) −−−→

n→∞
0 p.s.
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En e�et, soit ω ∈
{
Yn2 −−−→

n→∞
0
}
. Puis, soit ε > 0. On dispose de N entier tel que pour n ⩾ N,

on a |Yn2(ω)| ⩽ ε. Comme φ(n)2 −−−→
n→∞

+∞, on dispose de p entier tel que pour n ⩾ p, on a

φ(n)2 ⩾ N ce qui implique
∣∣Yφ(n)2

∣∣ ⩽ ε. Ceci prouve l'inclusion{
Yn2 −−−→

n→∞
0
}
⊂
{
Yφ(n)2 −−−→

n→∞
0
}

et comme l'événement à gauche est presque sûr, celui qui le contient l'est aussi. Avec le résultat
de la question précédente, il vient

Yn −−−→
n→∞

0 p.s.

Autrement dit
1

n

n∑
k=1

Xk −−−→
n→∞

m p.s.

Remarque : Il s'agit de la loi forte des grands nombres. On peut a�aiblir l'hypothèse L2 en
supposant que les variables sont d'espérance �nie mais la démonstration est notablement plus
di�cile.
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Exercice 3 (****)

On pose ∀x > 0 f(x) =
+∞∑
k=1

xk

k!
√
k

1. Montrer f(x) =
x→+∞

o(ex)

2. Pour x > 0 et Yx variable aléatoire de loi P(x), montrer

∀ε > 0 P (|Yx − x| ⩾ εx) =
x→+∞

O
Å
1

x

ã
3. En déduire f(x) ∼

x→+∞

ex

√
x

Corrigé : 1. Pour x > 0, on a
xk

k!
√
k

=
k→+∞

o
Å
xk

k!

ã
et par comparaison à un terme général de série exponentielle convergente, on en déduit que la
fonction f est bien dé�nie. Montrons e−xf(x) −−−−→

x→+∞
0. Soit n entier, x > 0 et Rn(x) le reste

d'ordre n de la série dé�nissant e−xf(x). On a

0 ⩽ Rn(x) = e−x
+∞∑

k=n+1

xk

k!
√
k
⩽

e−x

√
n+ 1

+∞∑
k=n+1

xk

k!︸ ︷︷ ︸
⩽e x

⩽
1√
n+ 1

On dispose donc d'un contrôle uniforme du reste d'où ∥Rn∥∞ −−−→
n→∞

0 et d'après le théorème de

double limite, il vient

lim
x→+∞

e−xf(x) =
+∞∑
k=1

lim
x→+∞

e−x xk

k!
√
k
= 0

Ainsi f(x) =
x→+∞

o(ex)

2. D'après l'inégalité de Bienaymé-Tchebychev

P (|Yx − E(Yx)| ⩾ εx) ⩽
1

(εx)2
V(Yx) =

1

ε2x

Ainsi ∀ε > 0 P (|Yx − x| ⩾ εx) =
x→+∞

O
Å
1

x

ã
3. On pose ∀u ⩾ 0 φ(u) =


1√
u

si u > 0

0 si u = 0

Soit x > 0. Par transfert, la convergence étant assurée par l'existence de f , on a

E
Å
φ

Å
Yx

x

ãã
=

+∞∑
k=0

φ

Å
k

x

ã
P(Yx = k) =

+∞∑
k=1

√
x√
k
e−xx

k

k!
= e−x

√
xf(x)

Puis e−x
√
xf(x)− 1 = E

Å
φ

Å
Yx

x

ã
− φ(1)

ã
Par inégalité triangulaire dans L1, il vient
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∣∣∣∣EÅφÅYx

x

ã
− φ(1)

ã∣∣∣∣ ⩽ E
Å∣∣∣∣φÅYx

x

ã
− φ(1)

∣∣∣∣ã
On localise avec des fonctions indicatrices et on obtient

E
Å∣∣∣∣φÅYx

x

ã
− φ(1)

∣∣∣∣ã = E
Å∣∣∣∣φÅYx

x

ã
− φ(1)

∣∣∣∣1|Yx−x|<εx

ã
+ E
Å∣∣∣∣φÅYx

x

ã
− φ(1)

∣∣∣∣1|Yx−x|⩾εx

ã
Comme la variable Yx est à valeurs dans N, on observe que

φ

Å
Yx

x

ã
=

0 si Yx = 0…
x

Yx

⩽
√
x si Yx ⩾ 1

Par conséquent

∣∣∣∣φÅYx

x

ã
− 1

∣∣∣∣ ⩽ 1 +
√
x

et par suite

E
Å∣∣∣∣φÅYx

x

ã
− φ(1)

∣∣∣∣1|Yx−x|⩾εx

ã
⩽ (

√
x+ 1)P (|Yx − x| ⩾ εx) =

x→+∞
o(1)

Par continuité de φ en 1, pour δ > 0, on peut choisir ε > 0 tel que

∀u > 0 |u− 1| < ε =⇒ |φ(u)− φ(1)| < δ

Ainsi E
Å∣∣∣∣φÅYx

x

ã
− φ(1)

∣∣∣∣1|Yx−x|<εx

ã
⩽ δ

On peut donc rendre la quantité e−x
√
xf(x) − 1 arbitrairement petite pour x → +∞ et on

conclut

f(x) ∼
x→+∞

ex

√
x
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Exercice 4 (***)

Soit (Ω,A ,P) un espace probabilisé, Y une variable aléatoire réelle discrète centrée telle que
Y(Ω) ⊂ [α ; β ], X1, . . . ,Xn des variables aléatoires réelles discrètes indépendantes à valeurs dans

[ a ; b ]. On note Sn =
n∑

i=1

Xi.

1. Soit s réel. Montrer

∀y ∈ [α ; β ] e sy ⩽
β − y

β − α
e sα +

y − α

β − α
e sβ

En déduire E(e sY) ⩽ qe sα + pe sβ

avec p =
−α
β − α

et q =
β

β − α

2. On pose ∀s ∈ R ψ(s) = sα + ln
(
q + pe s(β−α)

)
Justi�er que la fonction ψ est deux fois dérivable puis établir

∀s ∈ R ψ′′(s) = (β − α)2
qpe s(β−α)

(q + pe s(β−α))
2

3. En déduire pour s réel ψ′′(s) ⩽
(β − α)2

4

puis E(e sY) ⩽ exp

Å
(β − α)2s2

8

ã
4. Soient ε, s > 0. Montrer

P (Sn − E(Sn) ⩾ ε) ⩽ exp

Å
−sε+ n

(b− a)2s2

8

ã
En déduire P (Sn − E(Sn) ⩾ ε) ⩽ exp

Å
− 2ε2

n(b− a)2

ã
Corrigé : 1. Soit y ∈ [α ; β ] et s réel. On a

sy =
β − y

β − α
sα +

y − α

β − α
sβ avec

β − y

β − α
+
y − α

β − α
= 1 et

β − y

β − α

y − α

β − α
⩾ 0

Par convexité de l'exponentielle, il vient

∀y ∈ [α ; β ] e sy ⩽
β − y

β − α
e sα +

y − α

β − α
e sβ

On applique cette inégalité avec Y qui est à valeurs dans [α ; β ]. Passant à l'espérance, on trouve
par linéarité

E(e sY) ⩽ qe sα + pe sβ

2. Par croissance de l'espérance, on a

α ⩽ E(Y) = 0 ⩽ β
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et comme β > α, on en déduit que p et q sont positifs dont l'un strictement. Par conséquent,
on a q + pe s(β−α) > 0 pour s réel et il s'ensuit que l'application ψ est deux fois dérivable. Par
dérivation, il vient

∀s ∈ R ψ′(s) = α + (β − α)
pe s(β−α)

q + pe s(β−α)
= α + (β − α)

ï
1− q

q + pe s(β−α)

ò
Puis ∀s ∈ R ψ′′(s) = (β − α)2

qpe s(β−α)

(q + pe s(β−α))2

3. Pour u et v réels, on a (u + v)2 ⩾ 4uv puisque (u + v)2 − 4uv = (u− v)2 ⩾ 0. Avec u = q et
v = pe s(β−α), on conclut

∀s ∈ R ψ′′(s) ⩽
(β − α)2

4

D'après la formule de Taylor reste intégral, on a pour s réel

ψ(s) = ψ(0) + ψ′(0)s+

∫ s

0

ψ′′(t)(s− t) dt ⩽
(β − α)2

4

∫ s

0

(s− t)2 dt

c'est-à-dire ∀s ∈ R ψ(s) ⩽
(β − α)2s2

8

Passant à l'exponentielle, on trouve pour s réel

exp(ψ(s)) = e sα
(
q + pe s(β−α)

)
= qe sα + pe sβ ⩽ exp

Å
(β − α)2s2

8

ã
et avec le résultat de la première question, on conclut

∀s ∈ R E(e sY) ⩽ exp

Å
(β − α)2s2

8

ã
4. Soient ε, s > 0. On a {Sn − E(Sn) ⩾ ε} =

{
e s(Sn−E(Sn) ⩾ e sε

}
D'après l'inégalité de Markov avec la variable e s(Sn−E(Sn)) positive et par indépendance des Xi,
il vient

P (Sn − E(Sn) ⩾ ε) ⩽ e−sεE
Å

n∏
i=1

e s(Xi−E(Xi))

ã
= e−sε

n∏
i=1

E
(
e s(Xi−E(Xi))

)
Les variables Xi − E(Xi) sont dans l'intervalle [ a− E(Xi) ; b− E(Xi) ]. Ainsi, par application de
l'inégalité obtenue à la question précédente, on obtient

P (Sn − E(Sn) ⩾ ε) ⩽ exp

Å
−sε+ n

(b− a)2s2

8

ã
En�n, on choisit la valeur de s qui minimise le trinôme dans l'exponentielle et on conclut

P (Sn − E(Sn) ⩾ ε) ⩽ exp

Å
− 2ε2

n(b− a)2

ã
Remarque : Il s'agit de l'inégalité de Hoe�ding.
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Exercice 5 (***)

Soit (Ω,A ,P) un espace probabilisé et X1, . . . ,Xn des variables aléatoires réelles discrètes indé-

pendantes centrées dans L2. On note Sk =
k∑

i=1

Xi pour k ∈ [[ 1 ; n ]]. Soit ε > 0. On pose

∀k ∈ [[ 1 ; n ]] Ak =
k−1⋂
j=1

{|Sj| < ε} ∩ {|Sk| ⩾ ε}

1. Justi�er l'indépendance des variables aléatoires Sk1Ak
et Sn − Sk pour k ∈ [[ 1 ; n ]].

2. Montrer
n∑

k=1

E (S2
k1Ak

) ⩽ E(S2
n)

3. En déduire P
Å

Max
k∈[[ 1 ;n ]]

|Sk| ⩾ ε

ã
⩽

1

ε2

n∑
i=1

V(Xi)

Corrigé : 1. Soit k ∈ [[ 1 ; n ]]. On a Sn − Sk =
n∑

i=k+1

Xi. La variable Sk et l'évenement Ak sont

dé�nis à partir des variables aléatoire X1, . . . ,Xk. Il n'y a donc pas de chevauchement d'indice
et par indépendance des Xi, on conclut

Pour tout k ∈ [[ 1 ; n ]], les variables aléatoires Sk1Ak
et Sn − Sk sont indépendantes.

2. Les événements Ak sont incompatibles d'où

n∑
k=1

1Ak
= 1Bk

⩽ 1Ω = 1 avec Bk =
n⊔

k=1

Ak

En multipliant par S2
n et par linéarité de l'espérance, les variables concernées étant d'espérance

�nie, il vient

E
Å

n∑
k=1

S2
n1Ak

ã
=

n∑
k=1

E (S2
n1Ak

) ⩽ E(S2
n)

En décomposant Sn = Sk + Sn − Sk, on obtient par linéarité de l'espérance

E (S2
n1Ak

) = E (S2
k1Ak) + 2E ((Sn − Sk)Sk1Ak

) + E ((Sn − Sk)
21Ak

)

D'après l'indépendance établie à la première question puis le caractère centré des Xi, il vient

E ((Sn − Sk)Sk1Ak
) = E (Sn − Sk)E (Sk1Ak

) = 0

En�n, comme E ((Sn − Sk)
21Ak

) ⩾ 0, on conclut

n∑
k=1

E (S2
k1Ak

) ⩽ E(S2
n)

3. Soit ω ∈
ß

Max
k∈[[ 1 ;n ]]

|Sk| ⩾ ε

™
. En considérant le plus petit indice k ∈ [[ 1 ; n ]] tel que |Sk(ω)| ⩾ ε,

on obtient ß
Max

k∈[[ 1 ;n ]]
|Sk| ⩾ ε

™
⊂

n⊔
k=1

Ak

et l'inclusion réciproque est immédiate d'oùß
Max

k∈[[ 1 ;n ]]
|Sk| ⩾ ε

™
=

n⊔
k=1

Ak
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et par sous-additivité P
Å

Max
k∈[[ 1 ;n ]]

|Sk| ⩾ ε

ã
⩽

n∑
k=1

P(Ak)

Or, par dé�nition des Ak, on a

∀k ∈ [[ 1 ; n ]] E(S2
k1Ak

) ⩾ ε2E(1Ak
) = ε2P(Ak)

Comme les Xi sont centrées, on a E(S2
n) = V(Sn) et par indépendances des Xi et l'inégalité

établie à la question précédente, on conclut

P
Å

Max
k∈[[ 1 ;n ]]

|Sk| ⩾ ε

ã
⩽

1

ε2

n∑
i=1

V(Xi)

Remarque : Il s'agit de l'inégalité de Kolmogorov. Cette inégalité est un élément clé de la preuve
de Kolmogorov pour établir la loi forte des grands nombres.
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Exercice 6 (****)

1. Montrer que x 7→ e−2x est limite uniforme sur R+ d'une suite de fonctions de la forme
x 7→ P(x)e−x avec P ∈ R[X].

2. On considère E l'espace des fonctions de R+ dans R, continues et de limite nulle en +∞.
On munit E de la norme ∥ · ∥∞. Soit f : R+ → R, continue à support compact. Soit
λ ⩾ 0 et (X(λ)

k )k⩾1 une suite de variables aléatoires indépendantes suivant toutes une loi
de Poisson de paramètre λ (on généralise pour λ = 0). Montrer que la suite de fonctions
(gn)n⩾1 avec

∀λ ⩾ 0 gn(λ) = E
Å
f

Å
1

n

n∑
k=1

X
(λ)
k

ãã
converge uniformément sur R+.

3. Montrer que {x ∈ R+ 7→ P(x)e−x,P ∈ R[X]} est dense dans E.

Corrigé : 1. On pose Pn =
n∑

k=0

(−1)k
Xk

k!
pour n entier et on a

∀x ⩾ 0 Pn(x)e
−x −−−→

n→∞
e−2x

D'après l'inégalité de Taylor-Lagrange, on trouve

∀x ⩾ 0 |Pn(x)− e−x| ⩽ xn+1

(n+ 1)!

d'où ∀n ⩾ x |Pn(x)e
−x − e−2x| ⩽ hn(x) avec ∀x ⩾ 0 hn(x) = e−x xn+1

(n+ 1)!

On trouve ∥hn∥∞ = hn(n+ 1) = e−(n+1) (n+ 1)n+1

(n+ 1)!

Avec l'équivalent de Stirling, on trouve

∥hn∥∞ ∼
n→+∞

1√
2πn

Ainsi ∃(Pn)n ∈ R[X]N | Sup
x⩾0

|Pn(x)e
−x − e−2x| −−−→

n→∞
0

2. On pose ∀λ ⩾ 0 ∀n ⩾ 1 X̄
(λ)
n =

1

n

n∑
k=1

X
(λ)
k

On note M la borne supérieure du support de f (si f est nulle, le résultat est trivial).

∀λ ⩾ 0 ∀η > 0 Aλ,η =
{∣∣∣X̄(λ)

n − λ
∣∣∣ ⩾ η

}
• Supposons λ ⩽ 2M. Pour η > 0, il vient∣∣∣f(λ)− E(f(X̄(λ)

n ))
∣∣∣ ⩽ E

(∣∣∣f(λ)− f(X̄
(λ)
n )
∣∣∣)

⩽ E
(∣∣∣f(λ)− f(X̄

(λ)
n )
∣∣∣1Aλ,η

)
+ E

(∣∣∣f(λ)− f(X̄
(λ)
n )
∣∣∣1Ω∖Aλ,η

)
Puis, avec l'inégalité de Bienaymé-Tchebyche�, les Xλ

k ayant un moment d'ordre 2, il vient

E
(∣∣∣f(λ)− f(X̄

(λ)
n )
∣∣∣1Aλ,η

)
⩽ 2∥f∥∞P

(∣∣∣X̄(λ)
n − λ

∣∣∣ ⩾ η
)

⩽
2∥f∥∞
η2

V(X̄λ
n) =

2∥f∥∞λ
nη2

⩽
4∥f∥∞M

nη2
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Soit ε > 0. D'après le théorème de Heine, la fonction f est uniformément continue sur [ 0 ; 2M ].
On choisit η ∈ ] 0 ;M [ tel que

∀(x, y) ∈ [ 0 ; 2M ]2 |x− y| ⩽ η =⇒ |f(x)− f(y)| ⩽ ε

Ainsi Ω∖ Aλ,η ⊂
{∣∣∣f(λ)− f(X̄

(λ)
n )
∣∣∣ ⩽ ε

}
En e�et, si X̄(λ)

n ∈ [ 0 ; 2M ], l'inclusion résulte de l'uniforme continuité. Sinon, on a{
X̄

(λ)
n > 2M∣∣∣X̄(λ)
n − λ

∣∣∣ ⩽ η < M
=⇒ −M+ 2M < −M+ X̄

(λ)
n < λ

d'où f(λ) = f(X̄
(λ)
n ) = 0

Par ailleurs, on dispose d'un seuil N tel que pour n ⩾ N, on a
4∥f∥∞M

nη2
⩽ ε et on a donc prouvé

∀ε > 0 ∃N ∈ N | ∀n ⩾ N Sup
λ∈[ 0 ;2M ]

∣∣∣f(λ)− E(f(X̄(λ)
n ))

∣∣∣ ⩽ 2ε

• Supposons λ > 2M. Il vient∣∣∣f(λ)− E(f(X̄(λ)
n ))

∣∣∣ ⩽ E
(∣∣∣f(λ)− f(X̄

(λ)
n )
∣∣∣)

⩽ E
(∣∣∣f(λ)− f(X̄

(λ)
n )
∣∣∣1Aλ,λ/2

)
+ E

(∣∣∣f(λ)− f(X̄
(λ)
n )
∣∣∣1Ω∖Aλ,λ/2

)

On remarque

{
λ > 2M∣∣∣X̄(λ)

n − λ
∣∣∣ < λ/2

=⇒ X̄
(λ)
n >

λ

2
> M

Ainsi E
(∣∣∣f(λ)− f(X̄

(λ)
n )
∣∣∣1Ω∖Aλ,λ/2

)
= 0

De nouveau par inégalité de Bienaymé-Tchebyche�, on obtient∣∣∣f(λ)− E(f(X̄(λ)
n ))

∣∣∣ ⩽ 2∥f∥∞
(λ/2)2

V(X̄(λ)
n ) =

8∥f∥∞
nλ

⩽
4∥f∥∞
Mn

d'où Sup
λ>2M

∣∣∣f(λ)− E(f(X̄(λ)
n ))

∣∣∣ −−−→
n→∞

0

On a établit la convergence uniforme et sur [ 0 ; 2M ] et ] 2M ; +∞ [. On conclut

∥gn − f∥∞ −−−→
n→∞

0

3. Soit f ∈ E et ε > 0. Soit M ⩾ 0 tel que |f(x)| ⩽ ε pour x ⩾ M. Soit g coincidant avec f
sur [ 0 ;M ], a�ne sur [M ;M + 1 ] et nulle ensuite. La fonction g est à support compact et véri�e
∥f −g∥∞ ⩽ 2ε. En�n, on peut choisir gn pour n assez grand tel que ∥g−gn∥∞ ⩽ ε et la fonction
gn est de la forme souhaitée par transfert. Ainsi, on dispose d'un seuil N tel que, pour n ⩾ N

∥f − gn∥∞ ⩽ ∥f − g∥∞ + ∥g − gn∥∞ ⩽ 3ε

On conclut L'ensemble {x ∈ R+ 7→ P(x)e−x,P ∈ R[X]} est dense dans E.
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Exercice 7 (****)

Soit (Ω,A ,P) un espace probabilisé et (Xk)k⩾1 une suite de variables indépendantes de loi
uniforme sur [[ 1 ; r ]] avec r ⩾ 1 et Z1, . . . ,Zr des variables indépendantes avec Z1 = 1 et

Zi∼G

Å
r − i+ 1

r

ã
pour tout i ∈ [[ 2 ; r ]]. On pose Cr =

r∑
i=1

Zi puis, pour i ∈ [[ 1 ; r ]]

∀ω ∈ Ω Ti(ω) = inf {n ⩾ 1 | Card {X1(ω), . . . ,Xn(ω)} = i}

et Yi = Ti − Ti−1 avec la convention T0 = 0.

1. Préciser espérance et variance des variables Zi.

2. Montrer que

E(Cr) = r × Hr et V(Cr) = −rHr + r2
Å

r∑
k=1

1

k2

ã
avec Hr =

r∑
k=1

1

k

3. Justi�er Hr ∼
r→+∞

ln r

4. Établir ∀ε > 0 P
Å∣∣∣∣ Cr

r ln r
− 1

∣∣∣∣ ⩾ ε

ã
−−−−→
r→+∞

0

5. Déterminer la loi de (Y1, . . . ,Yr).

6. En déduire Tr ∼Cr

Corrigé : 1. On a

∀i ∈ [[ 1 ; r ]] E(Zi) =
r

r − i+ 1
et V(Zi) =

i− 1

r

Å
r

r − i+ 1

ã2
2. Par linéarité de l'espérance, il vient

E(Cr) = E
Å

r∑
i=1

Zi

ã
=

r∑
i=1

r

r − i+ 1

Les variables Zi étant indépendantes, il vient

V(Cr) = V
Å

r∑
i=1

Zi

ã
=

r∑
i=1

i− 1

r
× r2

(r − i+ 1)2
= r

r∑
i=1

ï
− 1

r − i+ 1
+

r

(r − i+ 1)2

ò
Avec le changement d'indice k = r − i+ 1, on obtient

E(Cr) = r × Hr et V(Cr) = −rHr + r2
Å

r∑
k=1

1

k2

ã
3. Par comparaison série/intégrale ou en considérant la série téléscopique

∑
(ur+1 − ur) avec

ur = Hr − ln r, on obtient

Hr ∼
r→+∞

ln r

4. Soit ε > 0. On a l'inclusionß∣∣∣∣ Cr

r ln r
− 1

∣∣∣∣ ⩾ ε

™
⊂
ß ∣∣∣∣ Cr

r ln r
− Hr

ln r

∣∣∣∣ ⩾ ε

2

™
∪
ß∣∣∣∣ Hr

ln r
− 1

∣∣∣∣ ⩾ ε

2

™
et
ß∣∣∣∣ Hr

ln r
− 1

∣∣∣∣ ⩾ ε

2

™
= ∅ pour r assez grand. Par suite, en utilisant l'inégalité de Bienaymé-

Tchebyche�, on obtient
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P
Å∣∣∣∣ Cr

r ln r
− 1

∣∣∣∣ ⩾ ε

ã
⩽ P
Å ∣∣∣∣ Cr

r ln r
− Hr

ln r

∣∣∣∣ ⩾ ε
2

ã
+ o(1)

⩽
4

ε2
V
Å

Cr

r ln r

ã
+ o(1)

et V
Å

Cr

r ln r

ã
=

O(r2)

r2 ln2 r
= O
Å

1

ln2 r

ã
= o(1)

On conclut ∀ε > 0 P
Å∣∣∣∣ Cr

r ln r
− 1

∣∣∣∣ ⩾ ε

ã
−−−−→
r→+∞

0

5. On a clairement Yi(Ω) ⊂ N∗ pour tout i ∈ [[ 1 ; r ]]. Soit y1 = 1 et (y2, . . . , yr) ∈ (N∗)r−1. On

pose ti =
i∑

k=1

yk pour i ∈ [[ 1 ; r ]] . Il vient

P

(
r⋂

i=1

{Yi = yi}

)
= P

(
r⋂

i=1

{Ti = ti}

)
puis

P

(
r⋂

i=1

{Yi = yi}

)
=

∑
σ∈Sr

P

(
r−1⋂
k=1

{
Xtk = σ(k),Xtk+1 ∈ σ([[ 1 ; k ]]), . . . ,Xtk+1−1 ∈ σ([[ 1 ; k ]])

}
∩ {Xtr = σ(r)}

)

Ainsi, par indépendance des Xi, on obtient

P

(
r⋂

i=1

{Yi = yi}

)
=
∑
σ∈Sr

1

r

r−1∏
k=1

ñ
1

r

Å
k

r

ãtk+1−tk−1
ô

=
r!

r

r∏
k=2

ñ
1

r

Å
k − 1

r

ãyk−1
ô

=
r∏

k=2

ñ
r − (k − 1)

r

Å
k − 1

r

ãyk−1
ô

P

(
r⋂

i=1

{Yi = yi}

)
= P

(
r⋂

i=1

{Zi = yi}

)

Ainsi (Y1, . . . ,Yr)∼(Z1, . . . ,Zr)

Remarque : On a passé sous silence le fait que les fonctions Ti et donc aussi les Yi sont bien
des variables aléatoires discrètes. Soit i ∈ [[ 1 ; r ]]. On a a priori Ti(Ω) ⊂ N∗ ∪ {∞} puis pour
ti ⩾ 1

{Ti = ti} = {Card {X1, . . . ,Xti} = i} ∩ {Card {X1, . . . ,Xti−1} = i− 1}

et {Ti = ∞} = {Ti <∞} et {Ti <∞} =
⋃
ti⩾1

{Ti = ti}

Pour n entier, la quantité Card {X1, . . . ,Xn} (nulle si n = 0) est fonction de (X1, . . . ,Xn) donc
est une variable aléatoire. Ainsi, l'ensemble {Ti = ti} est un événement puis {Ti <∞} égale-
ment par union dénombrable et {Ti = ∞} par complémentation ce qui prouve que les Ti sont
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des variables aléatoires discrètes et les Yi également.

6. D'après le résultat de la question précédente, on conclut

Tr =
r∑

i=1

Yi ∼
r∑

i=1

Zi = Cr

Commentaire : Le problème est connu sous l'appellation problème du collectionneur de vi-

gnettes. La variable Xi est la vignette obtenue lors du i-ème achat de votre boîte de céréales
favorite. La variable Ti désigne donc le nombre d'achats à e�ectuer pour posséder i vignettes
di�érentes et Tr le nombre d'achat pour avoir la collection complète.
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