ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°44

Exercice 1 (**)

Soit une suite (f,), € .Z (X, R)N qui converge uniformément vers f. Montrer que

fn cuU f

x
Corrigé : O Ve eR =
orrigé : On pose T () e
La fonction ¢ est dérivable sur R et on trouve
1—2?
Vz e R (@) = ——

I en résulte que |¢'(x)| < 1 pour tout x réel. D’aprés I'inégalité des accroissements finis, la
fonction ¢ est 1-lipschitzienne d’ot

Vn € N oo fo—wof|l<|fu—f]

fn cuU f

Par comparaison, on conclut

Exercice 2 (**)
1
Soit f € €°([0;1],R) telle que / f@)t™ dt = 0 pour tout n entier. Montrer que f = 0.
0

Corrigé : Par linéarité du produit et de l'intégrale, il vient

1
WP € R[X] / FOP) dt =
0
L’idée consiste, d’apreés le théoréme de Weierstrass, a approcher en un certain sens f par P dans

cette égalité pour aboutir & / f2(t) dt = 0. Soit € > 0. D’aprés le théoréme de Weierstrass, il
0
existe P € R[X] tel que ||P — f]|o < e. Puis

/det/f P(t) + P(t) dt/ffP dt+/f

Par hypothése sur f, il s’ensuit

/0 f2(t) dt :/0 FOf =P)t) dt < |[fllocllf = Plloe < ellflloo

Comme ¢ peut étre choisi arbitrairement petit, on a / f2(t) dt = 0 et la fonction f? étant

continue et positive sur [0;1], on conclut

’La fonction f est nulle. ‘




Variante : Soit f € E. D’aprés le théoréme de Weierstrass, il existe une suite (P,,), € R[X]"
telle que P, <, f- On vérifie sans difficulté
n—o0

VneN  [[f? = fPullc < [ flloollf = Palloc = o(1)
ce qui prouve P, v f2. 1l en résulte
n—oo

/ F(0)Pa(t) dt — 01f2< ) dt

n—oo
Or, on a / f(t)P,(t) dt = 0 pour tout n entier. Il s’agit donc d’une suite constante nulle et on
0

1
obtient / f2(t) dt = 0. On conclut comme précédemment.
0

Remarque : Notant E = ¢°([0;1],R), on munit 'espace du produit scalaire (f, g) / f(t)

pour (f,g) € E% Dans un espace préhilbertien réel, on peut montrer que pour F sev de E, on a

F+ = F*. On montre ici que R[X]* = {0g} d’on R[X] ] — {0g}. L’adhérence R[X] s’entend en
sens de la norme euclidienne. D’apreés le théoréme de Weierstrass, on a R[X] dense dans E pour
la norme || - || . Or, la norme || - ||« est plus fine que la norme euclidienne et il s’ensuit que R[X]
est dense dans E pour la norme euclidienne, autrement dit R[X] = E d’ou le résultat obtenu.

Exercice 3 (**)

Soit f € €°([0;1],R) et (P,), € Ry[X]N telle que P, —— f. Montrer
n—o0

CU
P, —

n—0o0

f

Corrigé : On choisit 0 < zg < ... < axy < 1 et £ = (L;)o<i<n la base de polynomes de Lagrange
associée, i.e. on a L; € Ry[X] pour tout ¢ € [0; N] et L;(z;) = d;; pour tout 0 < ¢,j7 < N. La
décomposition de P,, dans & s’écrit

N
VneN P, =3 Pu(z;)L

1=0

Les suites coordonnées de (P,), convergent par convergence simple de (P,),. Ainsi, la suite

N

(P,)n converge vers > f(x;)L; pour la norme || - ||, » et comme celle-ci est équivalente & la
i=0

norme || - [|o,j0;1] sur I'espace de dimension finie Ry[X], on en déduit que

N
1Pn = 22 f @) Lilloo fo:1) = 0

N

La convergence uniforme implique la convergence simple d’ou f = > f(x;)L; par unicité de la
i=0

limite pour la convergence simple. On conclut

cu N
P, —— f avec f=> f(z;,)L;




Exercice 4 (**)

On pose V(n,z) e Nx[0;1] fo(z) = 2™ sin(mz)

Etudier le mode de convergence de la suite (f;,),.

Corrigé : On a f,(1) = 0 pour n entier et f,(x) —— 0 pour tout € [0;1[. Ainsi, la suite
n—oo

(fn)n converge simplement vers la fonction nulle. Par concavité, on a

Vo e [0;1] sin(mz) < 7(1 — x)
Y
y=m(l—x)
y = sin(mx)
> T
Il sensuit  V(n,z) € Nx [0;1] 0< fulz) < gn(x) avec gn(x) =ma™(1l — 2)

Aprés étude de fonction, on trouve

1\ ™" -1
Vn € N* Hgn||oo:gn< n >: T <1+—> ~ I —— 0

n+1 n+1 n n—+oon 4+ 1 n—oo

On conclut La suite (f,), converge uniformément vers la fonction nulle.

Exercice 5 (***)

On pose V(n,z) e Nx R fn(z) = sin(x)™ cos(z)

Etudier le mode de convergence de la suite (f,,),.

70 T

Corrigé : Siz ¢ E—i—ﬂ'Z, ona [sin(z)| < 1d’ou f,(r) —— 0.Siz € §+7TZ, on a cos(x) = 0d’on
n—oo

fa(z) = 0. Ainsi, la suite (f,), converge simplement vers la fonction nulle. Des tentatives pour

établir la non convergence uniforme ne sont pas fructueuses. La fonction |f,| est m-périodique et

on a de plus |f,(z)| = |fu(m — x)| pour = réel. On peut donc restreindre I’étude sur [0 ; g} et

par dérivation
Vo € {O; g] f1(z) = nsin(z)" ! cos(x)? — sin(z)" ™

= sin(z)"! (ncos(z)? — sin(z)?) = sin(z)"~* ((n + 1) cos(z)* — 1)

s 1
d’otl VxE]O;—[ f’(:c):0<:>x:Arccos< )
2 " vn+1

. . . m L1
Comme la fonction |f,| n’atteint pas son maximum en 0 et —, on en déduit



1 1
Sup |fn(2)| = | [ (Arccos ( >>‘ <
J:EIE @) =] vn+1 vn+1
On conclut La suite (f,), converge uniformément vers la fonction nulle.
y,\

="

FIGURE 1 — Suite des graphes de f,

Exercice 6 (***)

On pose V(n,r) € N* xR, fa(z) = (1 - %)nﬂ[O;n](z)

Etudier le mode de convergence de la suite (f,,),.

Corrigé : On a f,(x) —— e~ pour z > 0. L’inégalité de concavité In(1 4+ u) < u pour u réel

n—oo
donne
i — T T\" _ A z+n1n(1—£)
Ve e[0;n] |fulz) — f(x)|=e™*—(1—=) =e*(1l—¢ n
n
x
On pose gn(z) =2 +nln (1 — —)
n
1 / —a:/n .. . , R
Onage € ([0;n][,R)et g (x) = =y pour z € [0;n[. Ainsi, la fonction g, décroit donc
—z/n
1 — expog, croit. On obtient
Vo€ [Vain[ o [falz) = fl@)] <emV"
et Vo€ [05vn]  |falz) = f(@)] 1 eV =o(1)
Enfin Ve >n |fo(z) — f(z)] ="
On conclut La suite (f,), converge uniformément vers z — e % sur R,.




Y

FIGURE 2 — Suite des graphes de f,

Variante : Soit n entier non nul. Notant §,, = |f,, — f|, on trouve

Ve e[0;n] 8 (z) = —e %+ (1_f>n1:e—x (efn@) — 1)

n
avec h(x)—x—l—(n—l)ln(l—E) et h’(x)—l_x
" n " n—x
Aprés étude de variations, on trouve qu’il existe x,, > 1 tel que J,, atteint son maximum en ce
X n—1
point avec §, (z,) =0 d’oit e ™™ = (1 — —n> d’ot
n
T\ T T,e o
O () = €% — <1 — —n> = e on (1 — 1—|——”> ==
n n n
Enfin, la fonction u — ue ™ est bornée sur R, (aprés une étude rapide) par e ™! d’ou
o1
Vn € N* 0< 0p(zy) < —
n

et par encadrement, on retrouve la convergence uniforme de la suite (f,)n.

Exercice 7 (***)

Soit (u,), une suite de fonctions k-lipschitzienne sur [0;1] avec k& > 0. Montre que si (),
converge simplement, alors elle converge uniformément sur [0;1].

Corrigé : Notons u = lim u,. Pour (z,y) € [0;1]% on a
n—+0oo

u(z) —u(y)l = lm fu,(2) —un(y)] et [un(z) —uny)| < klz -yl

n—-+00
dou u(z) = uly)| < ke —yl

Soit € > 0 et (x;)o<icp une subdivision de [0; 1] telle que z;41 —2; < e/k pouri e [0; p—1]. 11
existe N entier tel que pour n > N, on a |u,(z;) — u(z;)| < & pour tout i € [0; p— 1] (nombre
fini de points & controler). Pour z € [0;1], il existe ¢ € [0; p — 1] tel que = € [x;;2;41]. On a
pour n > N

u(@) = un(2)] = |u(z) = w(z:) +w(z:) = un(2:) + un(2:) = un(2)]
< fu@) — (i) + [u(z:) — un(@3)] + [un(2:) = un ()|

lu(z) — up ()| < 2k |z — 2] + |u(z;) — un(z;)| < 3¢



Comme le choix de N ne dépend que de €, on conclut

CU
Uy ——— U

Remarque : On peut remplacer [0;1] par un intervalle borné et le résultat a encore lieu. En
revanche, sur un intervalle non borné, le résultat est faux. On peut considérer par exemple

V(n,r) e NxR  f,(z) = max(0,1 — |z — n])

Yy
Y= fn(eL)
1 /\
| n > X

On a f, =, f=0mais f,(n) =1 —# 0 ce qui prouve qu’il n’y a pas convergence uniforme.
n—00 n—oo

Exercice 8 (***)

Soit (P,), une suite de fonctions définies sur [0; 1] par

Ve e[0;1] Po(z) =0 et VneN Pni1(2) :Pn(x)Jr%(m—Pi(x))

1. Etablir  V(n,z) € Nx [0;1] og\/_—Pn(x)g\/E( _§>"

2. En déduire que (P,),, converge uniformément vers x +— /x sur [0;1].

3. Construire une suite de fonctions polynomiales convergeant uniformément vers x — ||
sur [—1;1].

Corrigé : 1. Soit n entier et z € [0;1]. On observe

VE = Pra(w) = (V5 — Py(a)) (1 Y2E )

On procéde ensuite par récurrence. Pour n entier, on note

Pn): VYrel0;1] og\/—_pn(x)g\/g< _g>

L’initialisation Z2(0) est immédiate. Supposons Z(n) vraie pour n entier fixé. Pour z € [0;1],
on a 0 < P,(z) < /o par hypothése de récurrence et par suite

e S R S e L

d’otl Vo e[0;1] Og\/E—PnH(z)é\/E(

Ainsi V(n,z) € N x [0;1] Og\/_—Pn(:c)g\/E( —gy

u\" : .
2. Posons ¢, (u) = u (1 - 5) pour u € [0;1] et n entier. Aprés étude de fonction, on trouve

6



9 9 1 n 2e71

Avec 'encadrement de la question précédente, on a
V(n,z) e Nx [0;1]  0< vz —Pu(z) < llenlln

Ainsi La suite (Py,), converge uniformément vers la fonction /.

3. Pour n entier, on choisit Q,, défini par Q,,(z) = P,(2?) pour z € [—1;1]. Par récurrence immé-
diate, la suite (P,), est une suite de fonctions polynomiales et par conséquent (Q,,), également.
Puis, on a
Sup |Qn(z) —|z||= Sup |P,(z?) — V2% = Sup |P.(u)—+/u
z€[—1;1] z€[—1;1] u€[0;1]

D’aprés le résultat de la question précédente, on conclut

La suite (Q,), est une suite de fonctions polynomiales
qui converge uniformément vers la fonction |-|.

Remarque : Cet exercice est sans doute inspirée par la méthode de Newton appliquée a la
fonction f:wu > u— 2% On définit la suite (u,), avec ug € [/z;1] et

2
T —u

Vn €N Upy1 = Uy +
Un,

2
On vérifie f([\/x;1]) C [v/2;1]. On en déduit \/z < u, < 1 pour tout n entier et par suite

2 2

xr—Uu r — U

VneN Uy =u,+ >, + ~
2u, 2

ce qui motive I’étude de la suite de fonctions étudiée dans I'exercice.

Exercice 9 (***)

On définit la suite de fonctions (uy,), sur [0;1] par
Ve e [0;1] up(z) =1 et ¥YneN un+1(:c):1+/ un(t — %) dt
0

an+1

1. Montrer V(:E,n) € [O ; 1] x N 0< Un+1(l') — Un(l') < m

2. En déduire la convergence simple de (uy,),.

3. Montrer que (u,), converge uniformément vers u non nulle solution de v'(z) = u(x — 2?).
Corrigé : 1. On remarque tout d’abord qu'on a bien ¢ — > = ¢(1 —¢) € [0;1] pour ¢t € [0;1].
Pour n entier, on note

anrl
Pn): VYrel0;1] Ogunﬂ(x)—un(m)gm
On a ui(z) = 1+ 2z d’o 0 < wy(x) — up(x) = x pour tout = € [0;1] ce qui prouve Z(1).
Supposons Z(n) vraie pour n entier fixé. Pour x € [0;1], on a par linéarité de I'intégrale

() — () = / ta(t — £2) — wn(t — )] dt

G-y e
mr ) St

avec Vte[0;1] 0 < Upyr(t —12) —up(t — %) <



tn+1 n+2

Ainsi 0 < Upyo() — Upy1(z) < /0 m dt = h
ce qui clot la récurrence. On a donc
anrl
V(z,n) € [0;1] x N 0<un+1(x)—un(ac)<m

2. Soit z € [0;1]. La série Zx—' converge (série exponentielle, critére de d’Alembert). Par

comparaison de séries a termes positifs, la série Y [un41(2) — un(x)] converge. Alors, d’aprés le
théoréme sur les séries téléscopiques, on en déduit la convergence de la suite (u,(z)), autrement

La suite de fonctions (u,), converge simplement.

3. D’apreés le théoréme fondamental d’intégration, on vérifie par récurrence que la suite (u,), est
une suite de fonctions de classe €' donc a fortiori continues sur [0;1]. On a pour n entier

Vi e [0:1] f i (2) — u(2)] = u(z) — un(2) < fﬁ — o(1)

On en déduit la convergence uniforme de (u,,), vers u qui est donc continue sur [0;1] comme
limite uniforme de telles fonctions. Pour z € [0;1], comme t — t* € [0;1] pour ¢ € [0;1], il
vient

Vit e [0;z] [, (t —12) — u(t — )] < ||t — oo

Ainsi, par convergence uniforme

n—o0

Vo e [0;1] un+1(x):1+/un(t—t2)dt—>1+/u(t—t2)dt
0 0
Par unicité de la limite, on obtient
Ve e [0;1] u(x):1+/u(t—t2)dt
0

On a u(0) =1 et d’apreés le théoréme fondamental d’intégration, on conclut

‘La suite (u,), converge uniformément vers u non nulle solution de v/(z) = u(z — x?). ‘

Exercice 10 (***)

Soit f € €pm([a;b],R).

b
1. Etudier le comportement asymptotique de / f(t)et dt pour n — +oo.
a

b b
2. En déduire les comportements de de / f(t) cos(nt) dt et / f(t) sin(nt) dt pour n — +o0.

Corrigé : 1. Soit ¢ € &([a;b],R) et (a;)ico,p] une subdivision adaptée a ¢ avec 2, .=
@j5Aj+1
A; scalaire pour tout 7 € [0; p—1]. On a pour n entier

151

b . p—1 aj+1 o
/ QO(t)elnt dt = Z)‘j/ elnt ¢t = - 2/\] [emt} J.+1 0
a Jj=0 a; lnj:[) a;

n—oo
J

Soit f € Cpm([a;b],R) et € > 0. Il existe p € &([a;b],R) telle que ||f — ¢l < e/(b—a). Par
suite



b ) b ) b )
[ rwerad < | [ i) = pnenat] + | [Cover at

b
S (O—-a)llf —ellw+ |/ p(t)e™ dt

/abw( Je™" dt

Il existe N entier tel que < e pour n > N et on a donc

Vn >N Jelnt dt| < 2e
b .
Ainsi / ft)e™ dt —— 0
a n—oo

Remarque : On peut comprendre intuitivement ce résultat. Quand n est trés grand, la période
de t — e'™ est trés courte et la fonction f « semble » constante sur une période trés courte.
L’intégrale d’une fonction constante multipliée par ¢t — e'™ est nulle sur une période ce qui
explique le phénoméne observé. Ce résultat s’intitule lemme de Lebesgue-Riemann. 1l existe une
version « perfusée » de ce résultat oil f est supposée de classe ¢! : la preuve s’obtient alors par
simple intégration par parties.

Variante : On peut établir le résultat par double limite. Soit (@), & valeurs dans &([a;b],R)
telle que @y v, f. On pose
n—oo

W(kn) € N2 wy(n) = / or(t)e dt et v(n) = / F(t)ei dt

Ona V(kn) € N> |up(n) —v(n)| = / [er(t) = f(O)] e™ dt] < (b= a)ller — flls

d’ott uy k—) v. Par double limite, la suite (v(n)), converge avec
— 00

v(n) = lim ug(n) —— lim lim wug(n) = lim lim wug(n) =0

k—+o00 n—00 n—+00 k—+0o k—+00 n—+00

et on retrouve le résultat annoncé.

2. Considérant partie réelle et imaginaire de / f(t)ei"t dt pour n entier, on conclut

/f Jcos(nt) dt —— 0 et /f )sin(nt) dt —— 0

n—o0 n—o0

Remarque : Les résultats qui précédent s’étendent sans difficulté au cas de fonctions a valeurs
dans C.

Exercice 11 (****)
Soit f € €pm([a;b],K). Déterminer

lim / F£(8) [sin(\)] dt

A—+00 a

9



Corrigé : Soit a > 0 et A > 0. Le changement de variable u = A\t donne

e 1 al
/ MMMMd#:—/ sinu| du
0 A 0

La fonction [sin| est m-périodique. On va donc s’efforcer de mettre en valeur une intégrale sur

a
un intervalle de longueur un multiple de 7. On pose n, = L—J On a
s

Ao Ao
— —l<n<— et 0K da—ma<w
T T

D’aprés la relation de Chasles, comme ny est un entier naturel (du fait du choix o > 0), il vient

1 al 17),)\ 1 k—i—l 1 Aa
—/ |sinu| du = / |sinu| du + —/ sinu| du
A 0 )‘ k=0 J km A na\T

On a
(k+1)7 ™ pYes
VkeZ / |sin u| du:/ sinudu =2 et og/ lsinu| du < A —nym <7
km 0 nAT
1o 2n
Ainsi — sinu| du = —= O
9 N s, , . . /\O( ,
D’aprés un encadrement précédemment établi, on a clairement n ot et par conséquent
—+oo T
[ 20
— |sinu| du —— —
A 0 A—=+o00 T
Si a < 0, le changement de variables u = —At permet de se ramener a la situation précédente.

Pour «, f réels, il vient
B B o 9
/ |sin(At)| dt :/ |sin(At)| dt —/ |sin(At)| dt —— — (8 — «)
« 0 0 A—+4oco T
Soit ¢ € &([a;b],K) et (a;)ic[o,n] une subdivision de [a;b] adaptée a la fonction ¢. Pour tout

i €[0;n—1],il existe ; scalaire tel que gph . = Par suite
Q5 3A5+1

b @iyl an—1 9 [b
[ e pinon at =S [ o) dt s 2w —a) = 2 [ a

i=0
Généralisons ce résultat pour toute fonction continue par morceaux. Soit f € € ([a;b],K) et
e > 0. Il existe p € &([a;b],K) tel que ||f — |l < . Il vient par inégalité triangulaire pour
A>0

ﬂ@ﬂﬁﬂ&—%/?@dtg

[ lsmoo) e~ [ o)+

Il existe un seuil A > 0 tel que pour A > A, on ait

b b
[esintn) at-2 [ atf <

10

2 [e-nwa

(f — )(t) [sin(At)| dt| +




Ainsi

!LZQH$MMMdﬁ—%A%uﬁM<x((k+%>w—ay+g

avec un majorant qu’on peut choisir arbitrairement petit. On conclut

/f ) [sin(At)| dt —— /f
A—=+oo T

Variante : On peut établir le résultat par double limite. Soit (,,), a valeurs dans &([a;b],R)

telle que @, <Y, f- On pose
n—oo

¥(n,\) €N x R, 1MM:/@ﬁWMMﬂ&etMM:/ﬂmm@m&
On a

V(n,A) e NX Ry fun(A) —o(N)] = / [on(t) — F(O)] Isin(A)] dt] < (b= a)llpn = flloo

. cu . . .
d’olt u,, —— v. Par double limite, la fonction v admet une limite en +o0o avec
n—oo

o9 rb
v(A) = lim u,(A\) —— lim lim u,(A\) = lim lim w,(\)= lim —/ on(t) dt

n—+oo A—+00  A—+00 n—+00 n—+00 A—+00 n—+o00 T J,

2 [ 2 [
et par convergence uniforme —/ op(t)dt —— — | f(t)dt
T a n—oo U a

On retrouve le résultat annoncé.
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