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Feuille d'exercices n°44

Exercice 1 (**)

Soit une suite (fn)n ∈ F (X,R)N qui converge uniformément vers f . Montrer que

fn
1 + f 2

n

CU−−−→
n→∞

f

1 + f 2

Corrigé : On pose ∀x ∈ R φ(x) =
x

1 + x2

La fonction φ est dérivable sur R et on trouve

∀x ∈ R φ′(x) =
1− x2

(1 + x2)2

Il en résulte que |φ′(x)| ⩽ 1 pour tout x réel. D'après l'inégalité des accroissements �nis, la
fonction φ est 1-lipschitzienne d'où

∀n ∈ N |φ ◦ fn − φ ◦ f | ⩽ |fn − f |

Par comparaison, on conclut
fn

1 + f 2
n

CU−−−→
n→∞

f

1 + f 2

Exercice 2 (**)

Soit f ∈ C 0([ 0 ; 1 ] ,R) telle que
∫ 1

0

f(t)tn dt = 0 pour tout n entier. Montrer que f = 0.

Corrigé : Par linéarité du produit et de l'intégrale, il vient

∀P ∈ R[X]
∫ 1

0

f(t)P(t) dt = 0

L'idée consiste, d'après le théorème de Weierstrass, à approcher en un certain sens f par P dans

cette égalité pour aboutir à
∫ 1

0

f 2(t) dt = 0. Soit ε > 0. D'après le théorème de Weierstrass, il

existe P ∈ R[X] tel que ∥P− f∥∞ ⩽ ε. Puis∫ 1

0

f 2(t) dt =

∫ 1

0

f(t) [f(t)− P(t) + P(t)] dt =

∫ 1

0

f(t)(f − P)(t) dt+

∫ 1

0

f(t)P(t) dt

Par hypothèse sur f , il s'ensuit∫ 1

0

f 2(t) dt =

∫ 1

0

f(t)(f − P)(t) dt ⩽ ∥f∥∞∥f − P∥∞ ⩽ ε∥f∥∞

Comme ε peut être choisi arbitrairement petit, on a
∫ 1

0

f 2(t) dt = 0 et la fonction f 2 étant

continue et positive sur [ 0 ; 1 ], on conclut

La fonction f est nulle.
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Variante : Soit f ∈ E. D'après le théorème de Weierstrass, il existe une suite (Pn)n ∈ R[X]N

telle que Pn
CU−−−→

n→∞
f . On véri�e sans di�culté

∀n ∈ N ∥f 2 − fPn∥∞ ⩽ ∥f∥∞∥f − Pn∥∞ = o(1)

ce qui prouve fPn
CU−−−→

n→∞
f 2. Il en résulte∫ 1

0

f(t)Pn(t) dt −−−→
n→∞

∫ 1

0

f 2(t) dt

Or, on a
∫ 1

0

f(t)Pn(t) dt = 0 pour tout n entier. Il s'agit donc d'une suite constante nulle et on

obtient
∫ 1

0

f 2(t) dt = 0. On conclut comme précédemment.

Remarque :Notant E = C 0([ 0 ; 1 ] ,R), on munit l'espace du produit scalaire ⟨f, g⟩ =
∫ 1

0

f(t)g(t)dt

pour (f, g) ∈ E2. Dans un espace préhilbertien réel, on peut montrer que pour F sev de E, on a

F⊥ = F̄⊥. On montre ici que R[X]⊥ = {0E} d'où R[X]
⊥
= {0E}. L'adhérence R[X] s'entend en

sens de la norme euclidienne. D'après le théorème de Weierstrass, on a R[X] dense dans E pour
la norme ∥ · ∥∞. Or, la norme ∥ · ∥∞ est plus �ne que la norme euclidienne et il s'ensuit que R[X]
est dense dans E pour la norme euclidienne, autrement dit R[X] = E d'où le résultat obtenu.

Exercice 3 (**)

Soit f ∈ C 0([ 0 ; 1 ] ,R) et (Pn)n ∈ RN[X]
N telle que Pn

CS−−−→
n→∞

f . Montrer

Pn
CU−−−→

n→∞
f

Corrigé : On choisit 0 ⩽ x0 < . . . < xN ⩽ 1 et L = (Li)0⩽i⩽N la base de polynômes de Lagrange
associée, i.e. on a Li ∈ RN[X] pour tout i ∈ [[ 0 ; N ]] et Li(xj) = δi,j pour tout 0 ⩽ i, j ⩽ N. La
décomposition de Pn dans L s'écrit

∀n ∈ N Pn =
N∑
i=0

Pn(xi)Li

Les suites coordonnées de (Pn)n convergent par convergence simple de (Pn)n. Ainsi, la suite

(Pn)n converge vers
N∑
i=0

f(xi)Li pour la norme ∥ · ∥∞,L et comme celle-ci est équivalente à la

norme ∥ · ∥∞,[ 0 ;1 ] sur l'espace de dimension �nie RN[X], on en déduit que

∥Pn −
N∑
i=0

f(xi)Li∥∞,[ 0 ;1 ] −−−→
n→∞

0

La convergence uniforme implique la convergence simple d'où f =
N∑
i=0

f(xi)Li par unicité de la

limite pour la convergence simple. On conclut

Pn
CU−−−→

n→∞
f avec f =

N∑
i=0

f(xi)Li
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Exercice 4 (**)

On pose ∀(n, x) ∈ N× [ 0 ; 1 ] fn(x) = xn sin(πx)

Étudier le mode de convergence de la suite (fn)n.

Corrigé : On a fn(1) = 0 pour n entier et fn(x) −−−→
n→∞

0 pour tout x ∈ [ 0 ; 1 [. Ainsi, la suite

(fn)n converge simplement vers la fonction nulle. Par concavité, on a

∀x ∈ [ 0 ; 1 ] sin(πx) ⩽ π(1− x)

x

y
y = π(1− x)

y = sin(πx)

Il s'ensuit ∀(n, x) ∈ N× [ 0 ; 1 ] 0 ⩽ fn(x) ⩽ gn(x) avec gn(x) = πxn(1− x)

Après étude de fonction, on trouve

∀n ∈ N∗ ∥gn∥∞ = gn

Å
n

n+ 1

ã
=

π

n+ 1

Å
1 +

1

n

ã−n

∼
n→+∞

πe−1

n+ 1
−−−→
n→∞

0

On conclut La suite (fn)n converge uniformément vers la fonction nulle.

Exercice 5 (***)

On pose ∀(n, x) ∈ N× R fn(x) = sin(x)n cos(x)

Étudier le mode de convergence de la suite (fn)n.

Corrigé : Si x /∈ π

2
+πZ, on a |sin(x)| < 1 d'où fn(x) −−−→

n→∞
0. Si x ∈ π

2
+πZ, on a cos(x) = 0 d'où

fn(x) = 0. Ainsi, la suite (fn)n converge simplement vers la fonction nulle. Des tentatives pour
établir la non convergence uniforme ne sont pas fructueuses. La fonction |fn| est π-périodique et
on a de plus |fn(x)| = |fn(π − x)| pour x réel. On peut donc restreindre l'étude sur

[
0 ;

π

2

]
et

par dérivation

∀x ∈
[
0 ;

π

2

]
f ′
n(x) = n sin(x)n−1 cos(x)2 − sin(x)n+1

= sin(x)n−1 (n cos(x)2 − sin(x)2) = sin(x)n−1 ((n+ 1) cos(x)2 − 1)

d'où ∀x ∈
]
0 ;

π

2

[
f ′
n(x) = 0 ⇐⇒ x = Arccos

Å
1√
n+ 1

ã
Comme la fonction |fn| n'atteint pas son maximum en 0 et

π

2
, on en déduit

3



Sup
x∈R

|fn(x)| =
∣∣∣∣fn ÅArccos Å 1√

n+ 1

ãã∣∣∣∣ ⩽ 1√
n+ 1

On conclut La suite (fn)n converge uniformément vers la fonction nulle.

x

y

Figure 1 � Suite des graphes de fn

Exercice 6 (***)

On pose ∀(n, x) ∈ N∗ × R+ fn(x) =
(
1− x

n

)n

1[ 0 ;n ](x)

Étudier le mode de convergence de la suite (fn)n.

Corrigé : On a fn(x) −−−→
n→∞

e−x pour x ⩾ 0. L'inégalité de concavité ln(1 + u) ⩽ u pour u réel

donne

∀x ∈ [ 0 ;n [ |fn(x)− f(x)| = e−x −
(
1− x

n

)n

= e−x
(
1− ex+n ln(1− x

n)
)

On pose gn(x) = x+ n ln
(
1− x

n

)
On a g ∈ C 1([ 0 ;n [ ,R) et g′n(x) =

−x/n

1− x/n
pour x ∈ [ 0 ;n [. Ainsi, la fonction gn décroît donc

1− exp ◦gn croît. On obtient

∀x ∈ [
√
n ;n [ |fn(x)− f(x)| ⩽ e−

√
n

et ∀x ∈ [ 0 ;
√
n ] |fn(x)− f(x)| ⩽ 1− e gn(

√
n) = o(1)

En�n ∀x ⩾ n |fn(x)− f(x)| = e−n

On conclut La suite (fn)n converge uniformément vers x 7→ e−x sur R+.
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x

y

Figure 2 � Suite des graphes de fn

Variante : Soit n entier non nul. Notant δn = |fn − f |, on trouve

∀x ∈ [ 0 ;n ] δ′n(x) = −e−x +
(
1− x

n

)n−1

= e−x
(
ehn(x) − 1

)
avec hn(x) = x+ (n− 1) ln

(
1− x

n

)
et h′

n(x) =
1− x

n− x

Après étude de variations, on trouve qu'il existe xn ⩾ 1 tel que δn atteint son maximum en ce

point avec δ′n(xn) = 0 d'où e−xn =
(
1− xn

n

)n−1

d'où

δn(xn) = e−xn −
(
1− xn

n

)n

= e−xn

(
1− 1 +

xn

n

)
=

xne
−xn

n

En�n, la fonction u 7→ ue−u est bornée sur R+ (après une étude rapide) par e−1 d'où

∀n ∈ N∗ 0 ⩽ δn(xn) ⩽
e−1

n

et par encadrement, on retrouve la convergence uniforme de la suite (fn)n.

Exercice 7 (***)

Soit (un)n une suite de fonctions k-lipschitzienne sur [ 0 ; 1 ] avec k > 0. Montre que si (un)n
converge simplement, alors elle converge uniformément sur [ 0 ; 1 ].

Corrigé : Notons u = lim
n→+∞

un. Pour (x, y) ∈ [ 0 ; 1 ]2, on a

|u(x)− u(y)| = lim
n→+∞

|un(x)− un(y)| et |un(x)− un(y)| ⩽ k |x− y|

d'où |u(x)− u(y)| ⩽ k |x− y|

Soit ε > 0 et (xi)0⩽i⩽p une subdivision de [ 0 ; 1 ] telle que xi+1 − xi ⩽ ε/k pour i ∈ [[ 0 ; p− 1 ]]. Il
existe N entier tel que pour n ⩾ N, on a |un(xi)− u(xi)| ⩽ ε pour tout i ∈ [[ 0 ; p− 1 ]] (nombre
�ni de points à contrôler). Pour x ∈ [ 0 ; 1 ], il existe i ∈ [[ 0 ; p− 1 ]] tel que x ∈ [xi ;xi+1 ]. On a
pour n ⩾ N

|u(x)− un(x)| = |u(x)− u(xi) + u(xi)− un(xi) + un(xi)− un(x)|

⩽ |u(x)− u(xi)|+ |u(xi)− un(xi)|+ |un(xi)− un(x)|

|u(x)− un(x)| ⩽ 2k |x− xi|+ |u(xi)− un(xi)| ⩽ 3ε
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Comme le choix de N ne dépend que de ε, on conclut

un
CU−−−→

n→∞
u

Remarque : On peut remplacer [ 0 ; 1 ] par un intervalle borné et le résultat a encore lieu. En
revanche, sur un intervalle non borné, le résultat est faux. On peut considérer par exemple

∀(n, x) ∈ N× R fn(x) = max(0, 1− |x− n|)

x

y

n

1
y = fn(x)

On a fn
CS−−−→

n→∞
f = 0 mais fn(n) = 1 ̸−−−→

n→∞
0 ce qui prouve qu'il n'y a pas convergence uniforme.

Exercice 8 (***)

Soit (Pn)n une suite de fonctions dé�nies sur [ 0 ; 1 ] par

∀x ∈ [ 0 ; 1 ] P0(x) = 0 et ∀n ∈ N Pn+1(x) = Pn(x) +
1

2
(x− P2

n(x))

1. Établir ∀(n, x) ∈ N× [ 0 ; 1 ] 0 ⩽
√
x− Pn(x) ⩽

√
x

Å
1−

√
x

2

ãn
2. En déduire que (Pn)n converge uniformément vers x 7→

√
x sur [ 0 ; 1 ].

3. Construire une suite de fonctions polynomiales convergeant uniformément vers x 7→ |x|
sur [−1 ; 1 ].

Corrigé : 1. Soit n entier et x ∈ [ 0 ; 1 ]. On observe

√
x− Pn+1(x) = (

√
x− Pn(x))

Å
1−

√
x+ Pn(x)

2

ã
On procède ensuite par récurrence. Pour n entier, on note

P(n) : ∀x ∈ [ 0 ; 1 ] 0 ⩽
√
x− Pn(x) ⩽

√
x

Å
1−

√
x

2

ãn
L'initialisation P(0) est immédiate. Supposons P(n) vraie pour n entier �xé. Pour x ∈ [ 0 ; 1 ],
on a 0 ⩽ Pn(x) ⩽

√
x par hypothèse de récurrence et par suite

∀x ∈ [ 0 ; 1 ] 0 ⩽ 1−
√
x ⩽ 1−

√
x+ Pn(x)

2
⩽ 1−

√
x

2

d'où ∀x ∈ [ 0 ; 1 ] 0 ⩽
√
x− Pn+1(x) ⩽

√
x

Å
1−

√
x

2

ãn+1

Ainsi ∀(n, x) ∈ N× [ 0 ; 1 ] 0 ⩽
√
x− Pn(x) ⩽

√
x

Å
1−

√
x

2

ãn
2. Posons φn(u) = u

(
1− u

2

)n

pour u ∈ [ 0 ; 1 ] et n entier. Après étude de fonction, on trouve
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∀n ∈ N ∥φn∥∞ = φn

Å
2

n+ 1

ã
=

2

n+ 1

Å
1− 1

n+ 1

ãn
∼

n→+∞

2e−1

n

Avec l'encadrement de la question précédente, on a

∀(n, x) ∈ N× [ 0 ; 1 ] 0 ⩽
√
x− Pn(x) ⩽ ∥φn∥n

Ainsi La suite (Pn)n converge uniformément vers la fonction √.

3. Pour n entier, on choisit Qn dé�ni par Qn(x) = Pn(x
2) pour x ∈ [−1 ; 1 ]. Par récurrence immé-

diate, la suite (Pn)n est une suite de fonctions polynomiales et par conséquent (Qn)n également.
Puis, on a

Sup
x∈[−1 ;1 ]

|Qn(x)− |x|| = Sup
x∈[−1 ;1 ]

∣∣∣Pn(x
2)−

√
x2
∣∣∣ = Sup

u∈[ 0 ;1 ]
|Pn(u)−

√
u|

D'après le résultat de la question précédente, on conclut

La suite (Qn)n est une suite de fonctions polynomiales
qui converge uniformément vers la fonction |·|.

Remarque : Cet exercice est sans doute inspirée par la méthode de Newton appliquée à la
fonction f : u 7→ u− x2. On dé�nit la suite (un)n avec u0 ∈ [

√
x ; 1 ] et

∀n ∈ N un+1 = un +
x− u2

n

2un

On véri�e f([
√
x ; 1 ]) ⊂ [

√
x ; 1 ]. On en déduit

√
x ⩽ un ⩽ 1 pour tout n entier et par suite

∀n ∈ N un+1 = un +
x− u2

n

2un

⩾ un +
x− u2

n

2

ce qui motive l'étude de la suite de fonctions étudiée dans l'exercice.

Exercice 9 (***)

On dé�nit la suite de fonctions (un)n sur [ 0 ; 1 ] par

∀x ∈ [ 0 ; 1 ] u0(x) = 1 et ∀n ∈ N un+1(x) = 1 +

∫ x

0

un(t− t2) dt

1. Montrer ∀(x, n) ∈ [ 0 ; 1 ]× N 0 ⩽ un+1(x)− un(x) ⩽
xn+1

(n+ 1)!

2. En déduire la convergence simple de (un)n.

3. Montrer que (un)n converge uniformément vers u non nulle solution de u′(x) = u(x−x2).

Corrigé : 1. On remarque tout d'abord qu'on a bien t− t2 = t(1− t) ∈ [ 0 ; 1 ] pour t ∈ [ 0 ; 1 ].
Pour n entier, on note

P(n) : ∀x ∈ [ 0 ; 1 ] 0 ⩽ un+1(x)− un(x) ⩽
xn+1

(n+ 1)!

On a u1(x) = 1 + x d'où 0 ⩽ u1(x) − u0(x) = x pour tout x ∈ [ 0 ; 1 ] ce qui prouve P(1).
Supposons P(n) vraie pour n entier �xé. Pour x ∈ [ 0 ; 1 ], on a par linéarité de l'intégrale

un+2(x)− un+1(x) =

∫ x

0

[un+1(t− t2)− un(t− t2)] dt

avec ∀t ∈ [ 0 ; 1 ] 0 ⩽ un+1(t− t2)− un(t− t2) ⩽
(t(1− t))n+1

(n+ 1)!
⩽

tn+1

(n+ 1)!
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Ainsi 0 ⩽ un+2(x)− un+1(x) ⩽
∫ x

0

tn+1

(n+ 1)!
dt =

xn+2

(n+ 2)!

ce qui clôt la récurrence. On a donc

∀(x, n) ∈ [ 0 ; 1 ]× N 0 ⩽ un+1(x)− un(x) ⩽
xn+1

(n+ 1)!

2. Soit x ∈ [ 0 ; 1 ]. La série
∑xn

n!
converge (série exponentielle, critère de d'Alembert). Par

comparaison de séries à termes positifs, la série
∑

[un+1(x)− un(x)] converge. Alors, d'après le
théorème sur les séries téléscopiques, on en déduit la convergence de la suite (un(x))n autrement

La suite de fonctions (un)n converge simplement.

3. D'après le théorème fondamental d'intégration, on véri�e par récurrence que la suite (un)n est
une suite de fonctions de classe C 1 donc a fortiori continues sur [ 0 ; 1 ]. On a pour n entier

∀x ∈ [ 0 ; 1 ]
+∞∑
k=n

[uk+1(x)− uk(x)] = u(x)− un(x) ⩽
+∞∑
k=n

1

(k + 1)!
= o(1)

On en déduit la convergence uniforme de (un)n vers u qui est donc continue sur [ 0 ; 1 ] comme
limite uniforme de telles fonctions. Pour x ∈ [ 0 ; 1 ], comme t − t2 ∈ [ 0 ; 1 ] pour t ∈ [ 0 ; 1 ], il
vient

∀t ∈ [ 0 ; x ] |un(t− t2)− u(t− t2)| ⩽ ∥un − u∥∞
Ainsi, par convergence uniforme

∀x ∈ [ 0 ; 1 ] un+1(x) = 1 +

∫ x

0

un(t− t2) dt −−−→
n→∞

1 +

∫ x

0

u(t− t2) dt

Par unicité de la limite, on obtient

∀x ∈ [ 0 ; 1 ] u(x) = 1 +

∫ x

0

u(t− t2) dt

On a u(0) = 1 et d'après le théorème fondamental d'intégration, on conclut

La suite (un)n converge uniformément vers u non nulle solution de u′(x) = u(x− x2).

Exercice 10 (***)

Soit f ∈ Cpm([ a ; b ] ,R).

1. Étudier le comportement asymptotique de
∫ b

a

f(t)e int dt pour n → +∞.

2. En déduire les comportements de de
∫ b

a

f(t) cos(nt)dt et
∫ b

a

f(t) sin(nt)dt pour n → +∞.

Corrigé : 1. Soit φ ∈ E ([ a ; b ] ,R) et (ai)i∈[[ 0 ; p ]] une subdivision adaptée à φ avec φ
] aj ;aj+1 [

=

λj scalaire pour tout j ∈ [[ 0 ; p− 1 ]]. On a pour n entier∫ b

a

φ(t)e int dt =
p−1∑
j=0

λj

∫ aj+1

aj

e int dt =
1

in

p−1∑
j=0

λj

[
e int

]aj+1

aj
−−−→
n→∞

0

Soit f ∈ Cpm([ a ; b ] ,R) et ε > 0. Il existe φ ∈ E ([ a ; b ] ,R) telle que ∥f − φ∥∞ ⩽ ε/(b− a). Par
suite

8



∣∣∣∣∣
∫ b

a

f(t)e int dt

∣∣∣∣∣ ⩽
∣∣∣∣∣
∫ b

a

[f(t)− φ(t)] e int dt

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a

φ(t)e int dt

∣∣∣∣∣
⩽ (b− a)∥f − φ∥∞ +

∣∣∣∣∣
∫ b

a

φ(t)e int dt

∣∣∣∣∣
Il existe N entier tel que

∣∣∣∣∣
∫ b

a

φ(t)e int dt

∣∣∣∣∣ ⩽ ε pour n ⩾ N et on a donc

∀n ⩾ N

∣∣∣∣∣
∫ b

a

f(t)e int dt

∣∣∣∣∣ ⩽ 2ε

Ainsi
∫ b

a

f(t)e int dt −−−→
n→∞

0

Remarque : On peut comprendre intuitivement ce résultat. Quand n est très grand, la période
de t 7→ e int est très courte et la fonction f � semble � constante sur une période très courte.
L'intégrale d'une fonction constante multipliée par t 7→ e int est nulle sur une période ce qui
explique le phénomène observé. Ce résultat s'intitule lemme de Lebesgue-Riemann. Il existe une
version � perfusée � de ce résultat où f est supposée de classe C 1 : la preuve s'obtient alors par
simple intégration par parties.

Variante : On peut établir le résultat par double limite. Soit (φk)k à valeurs dans E ([ a ; b ] ,R)
telle que φk

CU−−−→
n→∞

f . On pose

∀(k, n) ∈ N2 uk(n) =

∫ b

a

φk(t)e
int dt et v(n) =

∫ b

a

f(t)e int dt

On a ∀(k, n) ∈ N2 |uk(n)− v(n)| =
∣∣∣∣∣
∫ b

a

[φk(t)− f(t)] e int dt

∣∣∣∣∣ ⩽ (b− a)∥φk − f∥∞

d'où uk
CU−−−→

k→∞
v. Par double limite, la suite (v(n))n converge avec

v(n) = lim
k→+∞

uk(n) −−−→
n→∞

lim
n→+∞

lim
k→+∞

uk(n) = lim
k→+∞

lim
n→+∞

uk(n) = 0

et on retrouve le résultat annoncé.

2. Considérant partie réelle et imaginaire de
∫ b

a

f(t)e int dt pour n entier, on conclut

∫ b

a

f(t) cos(nt) dt −−−→
n→∞

0 et
∫ b

a

f(t) sin(nt) dt −−−→
n→∞

0

Remarque : Les résultats qui précédent s'étendent sans di�culté au cas de fonctions à valeurs
dans C.

Exercice 11 (****)

Soit f ∈ Cpm([ a ; b ] ,K). Déterminer

lim
λ→+∞

∫ b

a

f(t) |sin(λt)| dt
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Corrigé : Soit α ⩾ 0 et λ > 0. Le changement de variable u = λt donne∫ α

0

|sin(λt)| dt = 1

λ

∫ αλ

0

|sinu| du

La fonction |sin| est π-périodique. On va donc s'e�orcer de mettre en valeur une intégrale sur

un intervalle de longueur un multiple de π. On pose nλ =

õ
λα

π

û
. On a

λα

π
− 1 < nλ ⩽

λα

π
et 0 ⩽ λα− nλπ < π

D'après la relation de Chasles, comme nλ est un entier naturel (du fait du choix α ⩾ 0), il vient

1

λ

∫ αλ

0

|sinu| du =
1

λ

nλ−1∑
k=0

∫ (k+1)π

kπ

|sinu| du+
1

λ

∫ λα

nλπ

|sinu| du

On a

∀k ∈ Z
∫ (k+1)π

kπ

|sinu| du =

∫ π

0

sinu du = 2 et 0 ⩽
∫ λα

nλπ

|sinu| du ⩽ λα− nλπ < π

Ainsi
1

λ

∫ αλ

0

|sinu| du =
λ→+∞

2nλ

λ
+

1

λ
O(1)

D'après un encadrement précédemment établi, on a clairement nλ ∼
λ→+∞

λα

π
et par conséquent

1

λ

∫ αλ

0

|sinu| du −−−−→
λ→+∞

2α

π

Si α ⩽ 0, le changement de variables u = −λt permet de se ramener à la situation précédente.
Pour α, β réels, il vient∫ β

α

|sin(λt)| dt =
∫ β

0

|sin(λt)| dt−
∫ α

0

|sin(λt)| dt −−−−→
λ→+∞

2

π
(β − α)

Soit φ ∈ E ([ a ; b ] ,K) et (ai)i∈[[ 0 ;n ]] une subdivision de [ a ; b ] adaptée à la fonction φ. Pour tout
i ∈ [[ 0 ; n− 1 ]], il existe γi scalaire tel que φ

] ai ;ai+1 [
= γi. Par suite∫ b

a

φ(t) |sin(λt)| dt =
n−1∑
i=0

γi

∫ ai+1

ai

|sin(λt)| dt −−−−→
λ→+∞

2

π

n−1∑
i=0

γi(ai+1 − ai) =
2

π

∫ b

a

φ(t) dt

Généralisons ce résultat pour toute fonction continue par morceaux. Soit f ∈ Cpm([ a ; b ] ,K) et
ε > 0. Il existe φ ∈ E ([ a ; b ] ,K) tel que ∥f − φ∥∞ ⩽ ε. Il vient par inégalité triangulaire pour
λ > 0∣∣∣∣∣

∫ b

a

f(t) |sin(λt)| dt− 2

π

∫ b

a

f(t) dt

∣∣∣∣∣ ⩽∣∣∣∣∣
∫ b

a

(f − φ)(t) |sin(λt)| dt
∣∣∣∣∣+

∣∣∣∣∣
∫ b

a

φ(t) |sin(λt)| dt− 2

π

∫ b

a

φ(t) dt

∣∣∣∣∣+
∣∣∣∣∣ 2π

∫ b

a

(φ− f)(t) dt

∣∣∣∣∣
Il existe un seuil Λ ⩾ 0 tel que pour λ ⩾ Λ, on ait∣∣∣∣∣

∫ b

a

φ(t) |sin(λt)| dt− 2

π

∫ b

a

φ(t) dt

∣∣∣∣∣ ⩽ ε
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Ainsi

∣∣∣∣∣
∫ b

a

f(t) |sin(λt)| dt− 2

π

∫ b

a

f(t) dt

∣∣∣∣∣ ⩽ ε

ÅÅ
1 +

2

π

ã
(b− a) + 1

ã
avec un majorant qu'on peut choisir arbitrairement petit. On conclut∫ b

a

f(t) |sin(λt)| dt −−−−→
λ→+∞

2

π

∫ b

a

f(t) dt

Variante : On peut établir le résultat par double limite. Soit (φn)n à valeurs dans E ([ a ; b ] ,R)
telle que φn

CU−−−→
n→∞

f . On pose

∀(n, λ) ∈ N× R+ un(λ) =

∫ b

a

φn(t) |sin(λt)| dt et v(λ) =

∫ b

a

f(t) |sin(λt)| dt

On a

∀(n, λ) ∈ N× R+ |un(λ)− v(λ)| =
∣∣∣∣∣
∫ b

a

[φn(t)− f(t)] |sin(λt)| dt
∣∣∣∣∣ ⩽ (b− a)∥φn − f∥∞

d'où un
CU−−−→

n→∞
v. Par double limite, la fonction v admet une limite en +∞ avec

v(λ) = lim
n→+∞

un(λ) −−−−→
λ→+∞

lim
λ→+∞

lim
n→+∞

un(λ) = lim
n→+∞

lim
λ→+∞

un(λ) = lim
n→+∞

2

π

∫ b

a

φn(t) dt

et par convergence uniforme
2

π

∫ b

a

φn(t) dt −−−→
n→∞

2

π

∫ b

a

f(t) dt

On retrouve le résultat annoncé.
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