- Programme de colle n° 19 : du 24 au 28/03 -

↑ Pas de colle de maths du 17 au 21 mars ↑

Les questions de cours et les exercices portent sur tout ce qui suit.

- Chapitre 22 : Équations différentielles linéaires -

I. Rappels de mpsi.

Équations différentielles linéaires scalaires d'ordre 1.

Équations différentielles linéaires scalaires d'ordre 2.

Exemple d'équations non normalisées : problème de raccord.

II. ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES VECTORIELLES D'ORDRE 1.

II.1. Définitions.

x' = a(t)(x) + b(t) d'inconnue x où $a: I \to \mathcal{L}(E)$ et $b: I \to E$ sont deux fonctions continues. X' = A(t)X + B(t) d'inconnue X où $A: I \to \mathcal{M}_n(\mathbb{K})$ et $B: I \to \mathbb{K}^n$ sont deux fonctions continues.

II.2. Problème de Cauchy.

Mise sous forme intégrale d'un problème de Cauchy.

- II.3. Structure de sous-espace affine de l'ensemble des solutions.
- II.4. Le théorème de Cauchy linéaire.

Théorème de Cauchy linéaire (admis) : Soit $a: I \to \mathcal{L}(E)$ et $b: I \to E$ deux fonctions continues. Pour tout $(t_0, x_0) \in I \times E$, il existe une unique solution définie sur I au problème de Cauchy :

$$\begin{cases} x' = a(t)(x) + b(t) \\ x(t_0) = x_0 \end{cases}$$

Si deux solutions f_1 et f_2 de (E) sur I coïncident en un point t_0 , alors elles sont confondues. Soit S_0 l'espace vectoriel des solution de l'équation homogène x' = a(t)(x). Pour tout $t_0 \in I$, l'application :

$$E_0 : \mathcal{S}_0 \to E$$

$$f \mapsto f(t_0)$$

est un isomorphisme d'espaces vectoriels. En particulier : $\dim \mathcal{S}_0 = \dim E$.

III. ÉQUATIONS DIFFÉRENTIELLES SCALAIRES LINÉAIRES D'ORDRE n.

On s'intéresse aux équations scalaires de la forme : $x^{(n)} + \sum_{k=0}^{n-1} a_k(t) x^{(k)} = b(t)$

\wedge Savoir représenter une équation scalaire linéaire d'ordre n par un système différentiel.

Théorème de Cauchy linéaire. Pour tout $t_0 \in I$ et $(x_0, \ldots, x_{n-1}) \in \mathbb{K}^n$, il existe une unique solution sur I au problème de Cauchy :

$$\begin{cases} x^{(n)} + \sum_{k=0}^{n-1} a_k(t) x^{(k)} &= b(t) \\ \forall k \in [0, n-1], \ x^{(k)}(t_0) &= x_k \end{cases}$$

Pour tout $t_0 \in I$, l'application :

$$E_0: \mathcal{S}_0 \to \mathbb{K}^n$$

 $f \mapsto (f(t_0), f'(t_0), \dots, f^{(n-1)}(t_0))$

est un isomorphisme d'espaces vectoriels. En particulier : dim $S_0 = n$.

IV. ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES SCALAIRES D'ORDRE 2.

 $x'' + a_1(t)x' + a_0(t)x = b(t)$ où a_0, a_1 et b sont des fonctions continues de I dans \mathbb{K} . D'après les résultats de la partie précédente :

- 1. L'espace vectoriel S_0 des solutions de l'équation homogène (E_0) associée à (E) est de dimension 2.
- **2.** Pour toute solution particulière f_p de (E), on a :

$$\mathcal{S} = f_p + \mathcal{S}_0 = \{ f_p + f \mid f \in \mathcal{S}_0 \}.$$

3. D'après, le théorème de Cauchy linéaire il existe une unique solution au problème de Cauchy :

$$\begin{cases} x'' + a_1(t)x' + a_0(t)x & = b(t) \\ x(t_0) & = x_0 \\ x'(t_0) & = x_1 \end{cases}$$

pour tout $(t_0, x_0, x_1) \in I \times \mathbb{K}^2$.

IV.1. Wronskien d'un couple de solutions.

Soit f_1 et f_2 deux solutions de l'équation homogène (E_0) et soit W leur wronskien. Sont équivalentes :

- 1. (f_1, f_2) est une base de S_0 ,
- **2.** $\forall t \in I, \ W(t) \neq 0,$
- **3.** $\exists t \in I, \ W(t) \neq 0.$

IV.2. Méthode de variation des constantes.

Résoudre sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ l'équation : $x''+x=\tan(t)$.

IV.3. Recherche de solutions développables en série entière.

IV.4. Méthode du wronskien.

On souhaite résoudre l'équation homogène : $x'' + a_1(t)x' + a_0(t)x = 0$ (E₀)

On détermine alors le wronskien (à une constante multiplicative près) en résolvant l'équation d'ordre $1: x' + a_1(t)x = 0$.

À l'aide de la solution obtenue à l'exercice précédent, et de la méthode du wronskien, déterminer une base de solutions de (E_0) sur $]0,\pi[:tx''+2x'+tx=0.$

On admet que $f_1: t \mapsto \frac{\sin t}{t}$ est une solution de (E_0) qui ne s'annule pas sur $]0, \pi[$.

Soit f une solution de (E_0) . On a alors :

$$\left(\frac{f}{f_1}\right)' = \frac{W}{f_1^2}.$$

Or W est solution de l'équation d'ordre 1: tx' + 2x = 0.

On obtient l'existence de $\alpha \in \mathbb{R}$ tel que : $W(t) = \frac{\alpha}{t^2},$ d'où :

$$\left(\frac{f}{f_1}\right)' = \frac{\frac{\alpha}{t^2}}{\frac{\sin^2 t}{t^2}} = \frac{\alpha}{\sin^2 t}.$$

En primitivant, on obtient l'existence de $\beta \in \mathbb{R}$ tel que :

$$\frac{f(t)}{f_1(t)} = -\alpha t + \beta = -\alpha \frac{\cos t}{\sin t} + \beta.$$

D'où :
$$f(t) = -\alpha \frac{\cos t}{t} + \beta \frac{\sin t}{t}$$
.

On a donc prouvé : $S_0 \subset \text{Vect } \{f_1, f_2\}$ avec $f_1 : t \mapsto \frac{\sin t}{t}$ et $f_2 : t \mapsto \frac{\cos t}{t}$.

Or, dim $S_0 = 2$. On en déduit que $S_0 = \text{Vect } \{f_1, f_2\}$ et que (f_1, f_2) est une base de S_0

 \wedge Inutile de prouver la liberté de (f_1, f_2) , c'est une conséquence.

V. Exponentielle d'un endomorphisme, d'une matrice.

V.1. Généralités.

V.2. Exponentielle et réduction.

S'il existe $P \in GL_n(\mathbb{K})$ telle que $A = PBP^{-1}$, alors : $\exp(A) = P \exp(B) P^{-1}$.

Exponentielle d'une matrice diagonale, d'une matrice trinagulaire.

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Alors, le spectre de $\exp(A)$ est donné par :

$$\operatorname{sp}(\operatorname{exp}(A)) = \{ e^{\lambda} \mid \lambda \in \operatorname{sp}(A) \}.$$

Plus précisément, si les valeurs propres de A, comptées avec ordre de multiplicité (algébrique), sont $\lambda_1, \ldots, \lambda_n$, alors celles de $\exp(A)$ sont $e^{\lambda_1}, \ldots, e^{\lambda_p}$.

 $\underline{\Lambda}$ La proposition précédente est fausse sur \mathbb{R} . Si $A \in \mathcal{M}_n(\mathbb{R})$, l'inclusion suivante reste vraie : $\{e^{\lambda} \mid \lambda \in \operatorname{sp}_{\mathbb{R}}(A)\} \subset \operatorname{sp}_{\mathbb{R}}(\exp(A))$, mais l'inclusion inverse n'est pas toujours vérifiée.

V.3. Régularité de l'exponentielle.

Soit $a \in \mathcal{L}(E)$. L'application :

$$\varphi : \mathbb{R} \to \mathcal{L}(E)$$

$$t \mapsto \exp(ta)$$

est de classe \mathcal{C}^1 sur \mathbb{R} , et sa dérivée est donnée par : $\forall t \in \mathbb{R}$, $\varphi'(t) = a \circ \exp(ta) = \exp(ta) \circ a$.

V.4. Propriétés algébriques de l'exponentielle.

Si les deux matrices A et B commutent, alors : $\exp(A+B) = \exp(A) \exp(B) = \exp(B) \exp(A)$.

VI. Systèmes différentiels linéaires homogènes à coefficients constants.

VI.1. Généralités.

Résolution du problème de Cauchy. Soit $a \in \mathcal{L}(E)$. Pour tout $(t_0, x_0) \in \mathbb{R} \times E$, l'application :

$$f: \mathbb{R} \to E$$

 $t \mapsto \exp((t-t_0)a)(x_0)$

est l'unique solution sur $\mathbb R$ du problème de Cauchy homogène à coefficients constants :

$$\begin{cases} x' = a(x) \\ x(t_0) = x_0 \end{cases}$$

VI.2. Résolution pratique de l'équation homogène quand A est diagonalisable.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonalisable. Soit (X_1, \ldots, X_n) une base de vecteurs propres de A, et $\lambda_1, \ldots, \lambda_n$ les valeurs propres respectives. Les solutions de l'équation homogène X' = AX sont de la forme :

$$\forall t \in \mathbb{R}, X(t) = \sum_{i=1}^{n} \alpha_i e^{\lambda_i t} X_i \quad \text{avec} \quad (\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n.$$

 \triangle Savoir démontrer ce résultat avec et sans la notion d'exponentielle de matrice.

VI.3. Méthode de variation de la constante.