- TD 1: Calcul asymptotique -

Exercice 1. Calculer les limites suivantes, où a > 0 et b > 0:

$$\lim_{x \to 0} \frac{a^x - b^x}{x} \qquad \lim_{x \to 0} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}} \qquad \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)}\right) \qquad \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}.$$

Exercice 2. Calculer les limites suivantes :

$$\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x \qquad \lim_{x\to +\infty} \left(1+\frac{\ln x}{x}\right)^{\ln x} \qquad \lim_{x\to +\infty} (\ln x)^{\frac{1}{\ln x}}.$$

Exercice 3.

- 1. Montrer qu'il existe un polynôme réel P_n vérifiant $\sqrt{1+x} = P_n(x) + O(x^n)$.
- **2.** Montrer que X^n divise le polynôme $P_n^2 X 1$.

Exercice 4. Soit (u_n) une suite de réels.

- 1. Dans cette question uniquement, on suppose que $u_n \sim \frac{1}{n}$. Montrer que $u_n + u_{n+1} \sim \frac{2}{n}$.
- **2.** On suppose maintenant que (u_n) est décroissante et vérifie : $u_n + u_{n+1} \sim \frac{2}{n}$.
 - **a.** Montrer que (u_n) converge vers 0^+ .
 - **b.** Montrer que $u_n \sim \frac{1}{n}$.

Exercice 5.

- **1.** Soit $n \in \mathbb{N}$. Prouver que : $\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + o(x^n)$.
- 2. Déterminer un développement limité à l'ordre 5 en 0 de la fonction f définie sur \mathbb{R}^* par :

$$f(x) = \frac{\sin x}{\sinh x}$$

Exercice 6. Déterminer le développement limité à l'ordre 4, en 0, de la fonction f définie par $f(x) = \ln(\cos x)$. En déduire le développement limité à l'ordre 4, en 0, de la fonction tan.

Exercice 7. Déterminer le développement limité à l'ordre 2, en 0, de la fonction f définie par

$$f(x) = \frac{\ln(1+x)}{\ln(1-x)}.$$

Exercice 8. Déterminer un équivalent en 0 de $x^x - (\sin x)^x$.

Exercice 9. On admet qu'il existe une unique fonction dérivable sur $\mathbb R$ vérifiant :

$$f' = f - \frac{f^2}{2}$$
 et $f(0) = 1$.

Prouver que f admet un $\mathrm{DL}_3(0)$ puis le déterminer.

Exercice 10. Pour $n \ge 2$, on considère le polynôme : $P_n = X^n - nX + 1$.

- 1. Montrer que P_n admet exactement une racine réelle dans [0,1]. On la note x_n .
- 2. Étudier la convergence de la suite (x_n) , puis un équivalent simple de x_n .

Exercice 11. Déterminer un développement asymptotique à l'ordre 4, au voisinage de 0, de :

$$f(x) = \frac{1}{\sinh x}.$$

Exercice 12. Déterminer un développement asymptotique à l'ordre 1, au voisinage de 0, de :

$$f(x) = \frac{e^x - 1}{\cos x - 1}.$$

Exercice 13. Soit n un entier naturel.

- 1. Montrer que l'équation $x + e^x = n$ admet une unique solution notée x_n .
- 2. Étudier la convergence de la suite (x_n) , puis un équivalent simple de x_n
- 3. Donner un développement asymptotique à trois termes de la suite (x_n) .

Exercice 14. Soit n un entier naturel non nul et soit le polynôme :

$$P_n = X(X-1)\dots(X-n).$$

- 1. Montrer que le polynôme P'_n possède une unique racine dans l'intervalle]0,1[; celle-ci sera noté x_n .
- **2.** Étudier la monotonie de la suite (x_n) .
- 3. Déterminer la décomposition en éléments simples de la fraction rationnelle :

$$F = \frac{P_n'}{P_n}.$$

4. En déduire un équivalent de de la suite (x_n) .

Exercice 15. 1. Montrer que l'équation $\tan x = x$ a une unique solution x_n dans l'intervalle $] - \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi[$.

- **2.** Montrer que $x_n \sim n\pi$ puis que : $x_n n\pi \frac{\pi}{2} \sim -\frac{1}{n\pi}$.
- **3.** Chercher un équivalent de : $x_n n\pi \frac{\pi}{2} + \frac{1}{n\pi}$.
- 4. Conclure que :

$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + \frac{1}{2n^2\pi} + o\left(\frac{1}{n^2}\right).$$

Exercice 16. Soit f la fonction définie $]-\frac{\pi}{2},\frac{\pi}{2}[$ par : $f(x)=2\tan x-x.$

- 1. Montrer que f admet une réciproque impaire de classe \mathcal{C}^{∞} .
- 2. Donner le développement limité de f^{-1} à l'ordre 6 en 0.