- Programme de colle n° 1 : du 15 au 19/09 -

Les étapes de la colle.

- 1. La colle commence par une question de cours simple qui correspond à énoncer une définition, une proposition, ou un théorème
- 2. Ensuite, c'est le tour d'une démonstration parmi celles indiquées par le symbole 🦠

⚠ Évidemment l'énoncé de la proposition ou du théorème à démontrer doit être parfaitement maîtrisé.

- 3. La colle se poursuivra par un ou plusieurs exercices (de difficulté croissante) mettant en jeu les notions du programme. À chaque fois qu'une définition ou une proposition du cours semblera mal maîtrisée, l'interrogateur en demandera l'énoncé précis.
- \triangle Les étudiants doivent maîtriser le cours afin que les questions de cours et la démonstration ne prennent pas plus de 15 minutes en tout.

A Les étudiants viennent en colle avec leur cours de maths pour pouvoir s'y référer si le colleur le leur demande.

La notation.

Les notes de colle sont comptabilisées dans la moyenne. Le barème est le suivant :

- $n \in [0, 5]$, si aucune des 3 étapes de la colle n'a donné satisfaction,
- $n \in [6, 8]$, dans le cas où l'étudiant a su répondre correctement à certaines questions de l'exercice, mais en laissant l'impression que le cours n'est pas suffisamment su,
- $n \in [9, 20]$, si la question de cours, la démonstration et le cours en général sont sus.

Cette semaine, les questions de cours portent sur les chapitres 1, 2 et 3.

On commencera par un exercice sur les chapitre 1, puis un exercice du chapitre 2.

Chapitre 1 - Analyse asymptotique.

Savoir manipuler les équivalents notamment en utilisant : $f \sim g \Leftrightarrow f - g = o(g)$.

Composition par ln dans un équivalent lorsque la fonction a une limite $\ell \neq 1$.

♠ Formule de Stirling.

↑ Connaître parfaitement les DL usuels.

Opérations sur les DL : somme, produit, composition, quotient.

Développement asymptotique.

Exemples : savoir déterminer un développement asymptotique de $\frac{1}{\sinh x}$ au voisinage de 0 ; de $\frac{x^2-1}{x^2+x+1}$ au voisinage de $+\infty$.

Développement asymptotique de suites définies implicitement.

Chapitre 2 - Séries numériques.

Séries de référence : séries exponentielles, séries géométriques, géométriques dérivée première, géométriques dérivée seconde, séries de Riemann.

Théorèmes de comparaison des séries à terme général positif.

Savoir refaire l'exercice suivant :

Exercice 1. Pour tout entier $n \in \mathbb{N}^*$, on pose :

$$u_n = \frac{(-1)^{n+1}}{\sqrt{n+1}} - \frac{(-1)^n}{\sqrt{n}}$$
 et $v_n = u_n + \frac{1}{n}$.

- 1. Montrer que $\sum u_n$ converge et $\sum v_n$ diverge. 2. Montrer que l'on a cependant $u_n \sim v_n$.

Critère de d'Alembert.

Théorème des séries alternées (avec signe et majoration du reste).

 \wedge Théorème de comparaisons séries-intégrale + encadrement.

Application à l'étude des séries de Riemann.

Sommation des relations de comparaison (cas convergent avec les restes).

Application:
$$H_n = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$
.

Sommation des relations de comparaison (cas divergeant avec les sommes partielles).

Application : les théorèmes de Cesàro (pour une suite convergente ou une suite de limite $+\infty$).

↑ Produit de Cauchy de deux séries absolument convergentes.

 $Applications: propriété algébrique de l'exponentielle complexe + somme de la série géométrique dérivée <math>1^{\text{\`ere}}.$