- TD 4: Structure de groupes -

Exercice 1. 1. Déterminer tous les morphismes de groupes de $(\mathbb{Z}/6\mathbb{Z}, +)$ dans $(\mathbb{Z}/7\mathbb{Z}, +)$.

2. Déterminer tous les morphismes de groupes de $(\mathbb{Z}/6\mathbb{Z},+)$ dans $(\mathbb{Z}/8\mathbb{Z},+)$.

Exercice 2. Déterminer tous les endomorphismes de $(\mathbb{Z}, +)$. Lesquels sont injectifs ? surjectifs ?

Exercice 3. Déterminer tous les morphismes de groupes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

Exercice 4. Soit G la partie de $GL_2(\mathbb{R})$ formée des matrices triangulaires supérieures inversibles. Montrer que G est un sous-groupe de $(GL_2(\mathbb{R}), \times)$.

Exercice 5. Montrer que l'ensemble G des matrices de la forme :

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

avec $(x, y, z) \in \mathbb{R}^3$, est un groupe pour le produit matriciel. Puis, trouver le centre de G.

Exercice 6. Les groupes $(\mathbb{Q}, +)$ et (\mathbb{Q}^*, \times) sont-ils isomorphes ?

Exercice 7. Soit $n \in \mathbb{N}^*$ et $k \in [0, n-1]$.

- 1. Soit $\xi_k = e^{\frac{2ik\pi}{n}}$ un élément du groupe (\mathbb{U}_n, \times) . Déterminer l'ordre de ξ_k .
- **2.** Soit \overline{k} un élément du groupe $(\mathbb{Z}/n\mathbb{Z}, +)$. Déduire de la question précédente l'ordre de \overline{k} .

Exercice 8. Déterminer les groupes dont l'ensemble des sous-groupes est fini.

Indication. On peut remarquer que si φ est un isomorphisme de groupes de G_1 dans G_2 , alors l'application $H \mapsto \varphi(H)$ est une bijection entre l'ensemble des sous-groupes de G_1 et l'ensemble des sous-groupes de G_2 .

Exercice 9. Le théorème de Lagrange.

1. Soit H un sous-groupe de (G,*) et soit \mathcal{R} la relation binaire définie pour tout $(x,y) \in G^2$ par :

$$x\mathcal{R}y \Leftrightarrow x^{-1} * y \in H$$

Montrer que \mathcal{R} est une relation d'équivalence sur l'ensemble G.

- **2.** Dans toute cette question 2, on supposera que G est un groupe fini i.e. qu'il contient un nombre fini p d'éléments. Comme H est une partie de G, on en déduit que H contient un nombre fini q d'éléments avec $q \leq p$. On notera : $H = \{h_1, \ldots, h_q\}$.
 - a. Soit $x \in G$. Montrer que la classe d'équivalence de x, notée \overline{x} , vérifie : $\overline{x} = \{x * h_1, \dots, x * h_q\}$.
 - **b.** Soit $x \in G$. Montrer que \overline{x} contient q éléments distincts.
 - **c.** En déduire que q divise p.
 - d. Retrouver le théorème de Lagrange vu en classe.

Exercice 10. Soit (G, *) un groupe cyclique d'ordre n (i.e. de cardinal n) et soit a un générateur de G. Déterminer tous les sous-groupes H de G. On prouvera qu'ils sont cycliques, et on précisera leur ordre.

Exercice 11. Soit $n \ge 2$ et τ une transposition. Montrer que l'application $f : \sigma \mapsto \sigma \tau$ est une bijection de \mathcal{A}_n dans un ensemble à préciser. En déduire le cardinal de \mathcal{A}_n .

Exercice 12. On dit qu'un sous-groupe H d'un groupe (G, *) est normal ou distingué dans G s'il vérifie :

$$\forall h \in H, \ \forall x \in G, \qquad xhx^{-1} \in H.$$

- 1. Soit f un morphisme d'un groupe G dans un groupe G'. Montrer que le noyau de f est un sous-groupe distingué de G.
- **2.** Soit $n \in \mathbb{N}^*$. On rappelle que le groupe alterné \mathcal{A}_n désigne l'ensemble des permutations paires (i.e. de signature égale à 1) de \mathcal{S}_n .
 - **a.** Montrer que le groupe alterné A_n est un sous-groupe distingué de S_n .
- **b.** Soit a, b, c, d des entiers distincts de l'ensemble [1, n]. Montrer que (ab)(bc) est un 3-cycle et que (ab)(cd) est un produit de deux 3-cycles.
 - **c.** En déduire que \mathcal{A}_n est engendré par l'ensemble des 3-cycles.
- **d.** Soit $n \ge 5$. Soit (a, b, c) et (α, β, γ) deux 3-cycles. Prouver l'existence d'une permutation paire σ telle que $\sigma(a, b, c)\sigma^{-1} = (\alpha, \beta, \gamma)$.
 - e. Soit $n \ge 5$ et soit H un sous-groupe distingué de A_n . Montrer que si H contient un 3-cycle, alors $H = A_n$.

Exercice 13. Soit G et G' deux groupes notés multiplicativement. On suppose que le groupe G et cyclique et note a un générateur de G.

- 1. Soit b un élément de G'. Montrer qu'il existe un morphisme φ de G dans G' vérifiant $\varphi(a) = b$ si, et seulement si, b est un élément d'ordre fini divisant celui de a.
- **2.** Combien existe-t-il d'endomorphismes de $(\mathbb{Z}/n\mathbb{Z}, +)$?
- **3.** Combien existe-t-il de morphismes de $(\mathbb{Z}/n\mathbb{Z}, +)$ dans (\mathbb{C}^*, \times) ?

Exercice 14. Soit G un groupe et $x \in G$ un élément d'ordre n. Quel est l'ordre de x^2 ?

Exercice 15. Montrer qu'un groupe à p éléments avec p premier est cyclique engendré par n'importe lequel de ses éléments différents de e.

Exercice 16. Soit (G, *) un groupe de neutre e.

- 1. Soit a et b deux éléments de G d'ordres respectifs m et n, tels que ab = ba.
 - **a.** Montrer que si m et n sont premiers entre eux, alors ab est d'ordre mn.
 - **b.** Si m et n ne sont pas 1^{ers} entre eux, alors ab est-il nécessairement d'ordre mn? d'ordre $m\vee n$?

Désormais G est supposé fini et commutatif, de neutre e.

- **2.** On note m le ppcm des ordres des éléments de G et $m=p_1^{\alpha_1}\dots p_d^{\alpha_d}$ sa décomposition en facteurs premiers, où d,p_1,\dots,p_d sont des éléments de \mathbb{N}^* .
 - **a.** Soit $i \in [1, d]$. Montrer que G admet un élément d'ordre $p_i^{\alpha_i}$.
 - **b.** Montrer que G admet un élément d'ordre m.
 - \mathbf{c} . Qu'en est-il si G n'est plus supposé commutatif?
- 3. Soit $\mathbb K$ un corps. Montrer que tout sous-groupe fini de $(\mathbb K^\times,\times)$ est cyclique.

Exercice 17. Classification des petits groupes.

- 1. Soit G un groupe fini tel que pour tout $x \in G, x^2 = e$.
 - ${f a}.$ Montrer que G est abélien. Dorénavant, on notera donc + la loi du groupe, et 0 l'élément neutre.
- **b.** On définit une loi de composition externe en posant, pour tout $x \in G$: $\overline{0} \cdot x = 0$ et $\overline{1} \cdot x = x$. Montrer que $(G, +, \cdot)$ est un $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel.
 - **c.** En déduire l'existence de $\in \mathbb{N}^*$ tel que G soit isomorphe à $((\mathbb{Z}/2\mathbb{Z})^n, +)$.
- 2. Déterminer, à isomorphisme près, tous les groupes finis de cardinal inférieur ou égal à 7.