- Programme de colle n° 5: du 13/10 au 17/10 -

Cette semaine, les questions de cours portent sur le chapitre 6 : Topologie (Partie I) Les exercices portent uniquement sur le chapitre 5 : Structure d'anneaux.

Chapitre 6 - Topologie des espaces vectoriels normés (Partie I)

⚠ Les définitions des notions ci-dessous doivent être parfaitement sues. Les étudiants doivent notamment connaître l'expression de chacune des normes évoquées ci-dessous.

- I. Normes et espaces vectoriels normés.
- I.1. Normes sur un K-espace vectoriel.

Connaître la définition de la norme produit et savoir prouver que c'est une norme.

- I.2. Boules fermées, boules ouvertes, sphères.
- I.3. Norme associée à un produit scalaire sur un espace préhilbertien réel. La norme issue d'un produit scalaire est bien une norme.
- **I.4.** Normes usuelles de \mathbb{K}^n .
- I.5. Parties, suites, fonctions bornées.
- **I.6.** Normes sur les espaces usuels de fonctions.
 - a. Norme de la convergence uniforme.
 - b. Normes de la convergence en moyenne, de la convergence en moyenne quadratique.
- II. SUITES D'ÉLÉMENTS D'UN ESPACE VECTORIEL NORMÉ.
- II.1. Suite convergente. Suite divergente.
- II.2. Convergence d'une suite à valeurs dans un produit fini d'espace vectoriel normé.

Une suite (a_n) d'éléments de E converge, pour la norme produit, vers un élément a de E si, et seulement si, pour tout $k \in [1, p]$, la suite (a_n^k) converge vers a^k dans l'espace vectoriel normé (E_k, N_k) .

II.3. Suites extraites, valeurs d'adhérence.

III. TOPOLOGIE D'UN ESPACE VECTORIEL NORMÉ.

III.1. Voisinage d'un point.

III.2. Ouvert.

Les boules ouvertes sont des parties ouvertes.

Une union quelconque d'ouverts de E est un ouvert de E. Une intersection finie d'ouverts de E est un ouvert de E. Connaître un contre-exemple dans le cas d'une intersection quelconque d'ouverts. Tout produit (fini) d'ouverts est un ouvert (pour la norme produit).

III.3. Fermé.

Les boules fermées sont des parties fermées.

Une intersection quelconque de fermés de E est un fermé. Une union finie de fermés de E est un fermé. Caractérisation séquentielle des fermés.

Tout produit (fini) de fermés est un fermé pour la norme produit.

III.4. Point intérieur.

L'intérieur de $B_f(a,r)$ est B(a,r).

L'intérieur de A est le plus grand ouvert contenu dans A (au sens de l'inclusion).

L'intérieur de A est l'union de tous les ouverts contenus dans A.

III.5. Point adhérent.

L'adhérence de B(a,r) est $B_f(a,r)$.

L'adhérence de A est le plus petit fermé contenant dans A (au sens de l'inclusion).

L'adhérence de A est l'intersection de tous les fermés contenant A.

Caractérisation séquentielle d'un point adhérent.

III.6. Frontière.

$$\operatorname{Fr}(A) = \overline{A} \cap \overline{E \setminus A} = \overline{A} \setminus \mathring{A}.$$

III.7. Partie dense.