- TD 6 : Topologie des espaces vectoriels normés (Partie I) -

Exercice 1. Soit a un élément d'un espace vectoriel normé E, et soit r > 0. Soit A une partie de E telle que : $B(a,r) \subset A \subset B_f(a,r)$. Déterminer l'intérieur et l'adhérence de A.

Exercice 2. Montrer que l'application $N_1: P \mapsto \sup_{t \in [0,1]} |P(t)|$ définit une norme sur $\mathbb{R}[X]$.

Montrer que l'application $N_2: P \mapsto \sup_{t \in [0,1]} |P(t) - P'(t)|$ définit une norme sur $\mathbb{R}[X]$.

Exercice 3. On note $\ell^2(\mathbb{N}, \mathbb{K})$ l'ensemble des suites $u = (u_n) \in \mathbb{K}^{\mathbb{N}}$ de carré sommable, c'est-à-dire telles que la série de terme général $|u_n|^2$ converge. Pour tout $u \in \ell^2(\mathbb{N}, \mathbb{K})$ on pose :

$$||u|| = \left(\sum_{n=0}^{+\infty} |u_n|^2\right)^{1/2}.$$

Montrer que $\ell^2(\mathbb{N}, \mathbb{K})$ est un \mathbb{K} -espace vectoriel et que $\|.\|$ est un norme sur cet espace.

Exercice 4. Pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$, on pose :

$$||A|| = \sum_{1 \leqslant i, j \leqslant n} |a_{i,j}|.$$

Montrer (efficacement) que $\|.\|$ est un norme sur $\mathcal{M}_n(\mathbb{R})$, puis prouver qu'elle vérifie :

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2, \ \|AB\| \leqslant \|A\| \cdot \|B\|.$$

↑ Une norme vérifiant cette inégalité, est qualifiée de norme d'algèbre ou norme sous-multiplicative.

Exercice 5. Norme de Frobenius sur $\mathcal{M}_{n,p}(\mathbb{R})$.

Pour tout $A \in \mathcal{M}_{n,p}(\mathbb{R})$, on pose :

$$||A||_2 = \left(\sum_{i=1}^n \sum_{j=1}^p a_{i,j}^2\right)^{1/2}.$$

- **1.** Prouver que $\|.\|_2$ est une norme sur $\mathcal{M}_{n,p}(\mathbb{R})$.
- **2.** On suppose maintenant n = p. Montrer que $\|.\|_2$ est une norme sous-multiplicative.

Exercice 6. On munit $\mathcal{M}_p(\mathbb{K})$ d'une norme sous-multiplicative notée $\|.\|$.

- **1.** Soit (A_n) et (B_n) deux suites d'éléments de $\mathcal{M}_p(\mathbb{K})$ qui convergent respectivement vers A et B. Montrer que la suite $(A_n \times B_n)$ converge vers $A \times B$.
- **2.** À quelle condition sur $A \in \mathcal{M}_p(\mathbb{K})$ existe-t-il $M \in \mathcal{M}_p(\mathbb{K})$ telle que $M^n \xrightarrow[n \to +\infty]{} A$?

Exercice 7. On munit chacun des espaces $\mathcal{M}_{p,q}(\mathbb{K})$, $\mathcal{M}_{q,r}(\mathbb{K})$ et $\mathcal{M}_{r,s}(\mathbb{K})$ de la norme infinie notée $\|.\|_{\infty}$. On considère deux suites (A_n) et (B_n) à valeurs respectivement dans $\mathcal{M}_{p,q}(\mathbb{K})$ et $\mathcal{M}_{q,r}(\mathbb{K})$. On suppose que (A_n) et (B_n) convergent respectivement vers A et B. Montrer que la suite $(A_n \times B_n)$ converge vers $A \times B$.

∧ On verra que ce résultat est vrai quels que soient les normes utilisées.

Exercice 8. Déterminer la frontière de Q.

Exercice 9. Soit A et B deux parties d'un evn. Montrer que $\overset{\circ}{A} \cap \overset{\circ}{B} = \operatorname{Int}(A \cap B)$ et $\overset{\circ}{A} \cup \overset{\circ}{B} \subset \operatorname{Int}(A \cup B)$. Donner un exemple où cette deuxième inclusion est stricte.

Exercice 10. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée dont toutes les suites extraites convergentes ont la même limite. Démontrer que la suite (u_n) converge. Indication : on pourra se rappeler du théorème de Bolzano-Weierstrass.

Exercice 11. Soit (a_n) une suite d'éléments d'un espace vectoriel normé E, et qui converge vers un élément a de E. Le but de cet exercice est de montrer que l'ensemble :

$$A = \{a_n \mid n \in \mathbb{N}\} \cup \{a\}$$

est un fermé de E. Soit $b \in E \setminus A$.

- 1. Prouver l'existence d'un réel r > 0 tel que B(a,r) et B(b,r) soient disjointes.
- **2.** En déduire l'existence d'un réel s>0 tel que $B(b,s)\subset E\setminus A$. Conclure.

Exercice 12. Soit F une partie fermée non vide d'un evn E et $x \in E$. Montrer que : $d(x, F) = 0 \Leftrightarrow x \in F$.

Exercice 13. Montrer qu'un hyperplan H d'un espace vectoriel normé E est soit fermé soit dense.

Exercice 14. Soit
$$N$$
 définie sur $\mathbb{R}[X]$ par $N\left(\sum_{i=0}^n a_i X^i\right) = \max_{0 \leqslant i \leqslant n} |a_i|$

- 1. Montrer que N est une norme.
- **2.** Soit $a \in \mathbb{R}$ et $\phi : P \in \mathbb{R}[X] \mapsto P(a)$. Pour quelles valeur de a, l'application ϕ est-elle continue pour la norme N?

Exercice 15. Soit $E = \mathcal{C}([0,1],\mathbb{R})$ et E^+ la partie de E constituée des fonctions positives qui ne s'annulent qu'au plus un nombre fini de fois. Pour toute fonction $\varphi \in E^+$ et pour toute fonction f de E on pose :

$$||f||_{\varphi} = \int_0^1 |f(t)|\varphi(t) \, \mathrm{d}t.$$

- **1.** Montrer que $\|.\|_{\varphi}$ définit une norme sur E.
- **2.** Montrer que si φ_1 et φ_2 sont deux fonctions strictement positives de E^+ , alors les normes $\|.\|_{\varphi_1}$ et $\|.\|_{\varphi_2}$ sont équivalentes.
- **3.** On définit maintenant les fonctions $\varphi_1: t \mapsto t$ et $\varphi_2: t \mapsto t^2$. Les normes $\|.\|_{\varphi_1}$ et $\|.\|_{\varphi_2}$ sont-elles équivalentes ?

Exercice 16. Soit E l'espace vectoriel des suites complexes $u=(u_n)_{n\in\mathbb{N}}$ bornées et vérifiant $u_0=0$. On pose :

$$\|u\|_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$
 et $\|u\| = \sup_{n \in \mathbb{N}} |u_{n+1} - u_n|$.

On pourra admettre que $\|\cdot\|_{\infty}$ est une norme sur E.

- **1.** Montrer que $\|\cdot\|$ est une norme sur E.
- **2.** Montrer qu'il existe k > 0 tel que pour tout $u \in E$, $||u|| \le k ||u||_{\infty}$. Donner le plus petit k possible.
- 3. Soit $p \in \mathbb{N}$ et soit $(u_n)_{n \in \mathbb{N}}$ la suite définie pour tout $n \in \mathbb{N}$ par :

$$u_n = \left\{ \begin{array}{ll} n & \text{si } n \leqslant p \\ p & \text{sinon.} \end{array} \right.$$

À l'aide de cette suite, montrer que les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|$ ne sont pas équivalentes.

Exercice 17. Pour tout $P \in \mathbb{R}[X]$ on pose :

$$\|P\|_1 = \sum_{k\geqslant 0} |P^{(k)}(0)| \quad \text{ et } \quad \|P\|_\infty = \sup_{t\in [-1,1]} |P(t)|.$$

- 1. Montrer que $\|\cdot\|_1$ et $\|\cdot\|_\infty$ sont des normes sur $\mathbb{R}[X].$
- **2.** Soit $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes définie pour tout $n\in\mathbb{N}$ par $P_n=\frac{1}{n}X^n$.

À l'aide de cette suite, montrer que les normes $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ ne sont pas équivalentes.