$-\,$ TD 7: Topologie des espaces vectoriels normés (Partie II) $\,$ -

Exercice 1. Soit $(A_k)_{k\in\mathbb{N}}$ une suite de matrices inversibles de $\mathcal{M}_n(\mathbb{K})$. On suppose que $(A_k)_{k\in\mathbb{N}}$ converge vers A et que $(A_k^{-1})_{k\in\mathbb{N}}$ converge vers B. Montrer que A est inversible et déterminer son inverse.

Exercice 2. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que la suite $(A^k)_{k \in \mathbb{N}}$ converge vers 0 si, et seulement si, la série de terme général A^k converge.

Exercice 3. Montrer qu'un endomorphisme u d'un espace vectoriel normé E est continu si, et seulement si, la partie $\{x \in E \mid ||u(x)|| = 1\}$ est un fermé de E.

Exercice 4. Soit $f: A \to F$ une application continue. Montrer que si D est une partie dense de A alors, f(D) est une partie dense de f(A).

Exercice 5. Soit H un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$.

- **1.** Justifier l'existence de : $a = \inf H \cap \mathbb{R}_+^*$.
- **2.** On suppose a > 0. Montrer que $a \in H$ puis que $H = a\mathbb{Z}$.
- **3.** On suppose a=0. Établir que H est dense dans \mathbb{R} .
- **4.** Montrer que l'ensemble $\{\cos n \mid n \in \mathbb{N}\}$ est dense dans [-1,1].

Exercice 6. On considère $E = \mathcal{C}([0,1])$ que l'on munit de la norme $\|.\|_{\infty}$.

On considère $F = \mathcal{C}^1([0,1])$ que l'on munit de la norme : $||f||_F = ||f||_\infty + ||f'||_\infty$.

On définit l'application linéaire T de E dans F par : $\forall x \in [0,1], T(f)(x) = \int_0^x f(t) dt$.

Montrer que T est continue et déterminer sa norme subordonnée.

Exercice 7. On considère E l'espace vectoriel des suites bornées, que l'on munit de la norme ||.||_\infty

Pour toute suite bornée $(u_n)_n$ on définit la suite $(v_n)_n$ par : $v_n = u_{n+1} - u_n$.

On définit l'endomorphisme T de E par T(u) = v.

Montrer que T est continue et déterminer sa norme subordonnée.

Exercice 8. On considère l'espace vectoriel $\mathbb{R}[X]$, que l'on munit de la norme $\|.\|_{\infty}$.

Soit $\alpha \in \mathbb{R}$. On définit la forme linéaire φ de $\mathbb{R}[X]$ par $\varphi(P) = P(\alpha)$.

- 1. Déterminer les valeurs de α pour que φ soit continue.
- 2. Dans ce cas, déterminer sa norme subordonnée.

Exercice 9. On considère D l'opérateur de dérivation des polynômes i.e. l'endomorphisme de $\mathbb{K}[X]$ défini par D(P) = P'. Étudier sa continuité pour chacune des normes suivantes et donner sa norme d'opérateur le cas échéant :

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)|$$
 et $N_2(P) = \sup_{x \in [0,1]} |P(x)|$.

Exercice 10. On note : $O_n(\mathbb{R}) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A^{\mathsf{T}}A = \mathbf{I}_n\}$. Montrer que $O_n(\mathbb{R})$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.

Exercice 11. On munit \mathbb{R}^2 de la norme produit. On note :

$$A = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\}$$
 et $B = \{(0, y) \mid y \in \mathbb{R}\}.$

- 1. Montrer que A et B sont deux parties fermées de \mathbb{R}^2 .
- **2.** On note : $A+B=\{a+b\in\mathbb{R}^2\mid a\in A \text{ et }b\in B\}$. Montrer que A+B n'est pas une partie fermée de \mathbb{R}^2 .

Exercice 12. Soit F une partie fermée non vide d'un espace vectoriel normé de dimension finie E. Montrer que, pour tout $x \in E$, la distance de x à F est atteinte en un certain élément $y_0 \in F$.

Exercice 13. On munit \mathbb{K}^p et \mathbb{K}^n de la norme ∞ . Montrer que pour tout $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{K})$ on a :

$$|||A||| = \max_{1 \le i \le n} \sum_{1 \le j \le p} |a_{i,j}|.$$

Exercice 14. Soit E un espace vectoriel normé et soit $(A_i)_{i\in I}$ une famille quelconque de compacts de E. Montrer que leur intersection est un compact de E. Leur union est-elle nécessairement compacte ?

Exercice 15. Soit E un espace normé de dimension finie et u un endomorphisme de E vérifiant :

$$\forall x \in E, \ \|u(x)\| \leqslant \|x\|.$$

Le but de cet exercice est de montrer que les espaces Ker (u - Id) et Im(u - Id) sont supplémentaires.

- **1.** Soit $x \in \text{Ker } (u-\text{Id}) \cap \text{Im}(u-\text{Id})$. Montrer qu'il existe $a \in E$ tel que pour tout entier $n, u^n(a) a = nx$.
- 2. Conclure.

Exercice 16. Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $(u_{n+1} - u_n)$ converge vers 0. Montrer que l'ensemble des valeurs d'adhérence de (u_n) est un intervalle.

Exercice 17. Soit f une application de E dans E vérifiant : $\forall (x,y) \in E^2$, ||f(x) - f(y)|| = ||x - y||. Soit K une partie compacte de E telle que $f(K) \subset K$.

Pour $x \in \mathbb{K}$, on considère la suite (u_n) définie par $u_0 = x$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

Montrer que x est une valeur d'adhérence de (u_n) . En déduire que f(K) = K.

Exercice 18. Soit E un espace vectoriel normé de dimension finie. Montrer que l'ensemble \mathcal{P} des projecteurs de E est une partie fermée de $\mathcal{L}(E)$.

Exercice 19. Soit $n \in \mathbb{N}^*$. On se place dans $\mathcal{M}_n(\mathbb{C})$. Soit T une matrice triangulaire inversible.

- 1. Montrer que T peut être reliée à I_n par un chemin à valeurs dans $\mathrm{GL}_n(\mathbb{C})$.
- **2.** En déduire que $\mathrm{GL}_n(\mathbb{C})$ est connexe par arcs.

Exercice 20. On souhaite montrer que les seules parties ouvertes et fermées d'un espace vectoriel normé E sont \varnothing et E. On raisonne par l'absurde et on suppose l'existence d'une troisième partie A ouverte et fermée.

- 1. Montrer que l'application indicatrice de A, notée $\mathbb{1}_A$, est continue en tout point de E.
- 2. Conclure.