- TD 8 : Révisions d'algèbre linéaire -

Exercice 1. Soit E un espace vectoriel et u en endomorphisme de E admettant $X^2 + 3X + 2$ pour polynôme annulateur i.e. vérifiant : $u^2 + 3u + 2\operatorname{Id}_E = 0$.

- 1. On pose $v = u + 2\operatorname{Id}_E$, calculer v^2 .
- **2.** En déduire l'existence de deux sous-espaces vectoriels supplémentaires F et G de E tels que les restrictions u_{1F} et u_{1G} sont des homothéties.

Exercice 2. Soit E et F deux espaces vectoriels de dimension finie, et G un sous-espace vectoriel de E. On définit l'ensemble \mathcal{H} par :

$$\mathcal{H} = \{ u \in \mathcal{L}(E, F) \mid G \subset \text{Ker } u \}.$$

Montrer que \mathcal{H} est un sous-espace vectoriel de $\mathcal{L}(E,F)$ et calculer sa dimension.

Exercice 3. On sait que la valeur de la dimension d'un \mathbb{K} -espace vectoriel E dépend du choix du corps \mathbb{K} . Le but de cet exercice est de montrer que le \mathbb{Q} -espace vectoriel \mathbb{R} est un espace vectoriel de dimension infinie

On considère la suite $(p_n)_{n\in\mathbb{N}^*}$ de tous les nombres premiers dans l'ordre croissant : $p_1=2, p_2=3\dots$ Montrer que, pour tout $n\in\mathbb{N}^*$, la famille $(\ln(p_1),\dots,\ln(p_n))$ est libre.

Exercice 4. Soit l'application :

$$\begin{array}{cccc} \Delta & : & \mathbb{R}[X] & \to & \mathbb{R}[X] \\ & P & \mapsto & P(X+1) - P. \end{array}$$

 \wedge P(X+1) désigne la composée de P par X+1, que l'on pourrait aussi noter $P\circ (X+1)$.

- 1. Montrer que Δ est un endomorphisme de $\mathbb{R}[X]$.
- **2.** Montrer que Ker $(\Delta) = \mathbb{R}_0[X]$.
- **3.** Montrer que pour tout $n \in \mathbb{N}^*$, $\Delta(\mathbb{R}_n[X]) = \mathbb{R}_{n-1}[X]$. En déduire $\mathrm{Im}(\Delta)$.
- **4.** Soit F l'ensemble des $P \in \mathbb{R}[X]$ tels que P(0) = 0.
 - **a.** Montrer que F est un hyperplan de $\mathbb{R}[X]$.
 - **b.** Montrer que : $F \oplus \text{Ker } (\Delta) = \mathbb{R}[X]$.
 - **c.** Montrer que $\Delta|_F$ est un isomorphisme de F dans $\mathbb{R}[X]$.
- 5. a. Montrer qu'il existe une unique suite $(N_n)_{n\in\mathbb{N}}\in\mathbb{R}[X]^{\mathbb{N}}$ telle que $N_0=1,$ et :

$$\forall n \in \mathbb{N}^*, \begin{cases} N_n(0) = 0 \\ \Delta(N_n) = N_{n-1}. \end{cases}$$

- **b.** Montrer que : $\forall n \in \mathbb{N}^*, \ N_n = \frac{X(X-1)\cdots(X-n+1)}{n!}.$
- **c.** Montrer que (N_0, N_1, \dots, N_n) est une base de $\mathbb{R}_n[X]$.
- **6.** Soit $Q \in \mathbb{R}_n[X]$. Montrer que les coordonnées de Q dans la base (N_0, N_1, \dots, N_n) sont :

$$(Q(0), \Delta(Q)(0), \Delta^{2}(Q)(0), \dots, \Delta^{n}(Q)(0)).$$

Exercice 5. Soit (a_1, \ldots, a_n) des éléments de \mathbb{K} deux à deux distincts, et soit $(L_i)_{1 \leq i \leq n}$ les polynômes de Lagrange associés. Déterminer une expression simple du polynôme $P = \sum_{1 \leq i \leq n} L_j$.

Exercice 6. Soit (a_1, \ldots, a_n) des éléments de \mathbb{K} deux à deux distincts, et soit $(L_i)_{1 \leq i \leq n}$ les polynômes de Lagrange associés.

- **1.** Montrer que $(L_i)_{1 \leq i \leq n}$ est une base de $\mathbb{K}_{n-1}[X]$.
- 2. Déterminer sa base duale.

Exercice 7. Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Soit f et q deux formes linéaires non-nulles définies sur E.

- 1. Démontrer qu'il existe $u \in E$ tel que $f(u) \neq 0$ et $g(u) \neq 0$.
- 2. On suppose qu'il existe p formes linéaires f_1,\dots,f_p telles que :

$$\forall x \in E, (f_1(x) = \ldots = f_p(x) = 0) \Rightarrow x = 0.$$

Montrer que $\dim(E) \leq p$.

Exercice 8. Soit F et G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie égale à n. Donner une condition nécessaire et suffisante sur F et G pour qu'il existe $u \in \mathcal{L}(E)$ de noyau F et d'image G.

Exercice 9. Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. On dit que F est stable par u si :

$$\forall x \in F, u(x) \in F.$$

Déterminer tous les sous-espaces vectoriels de \mathbb{R}^n stables par tous les endomorphismes :

$$u_{\sigma}:(x_1,\ldots,x_n)\longmapsto(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

pour tout $\sigma \in \mathcal{S}_n$.

Exercice 10. Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

- 1. Soit $x \in E$ tel que $\varphi(x) = 0$ pour tout $\varphi \in E^*$. Que peut-on dire de x?
- **2.** Soit $(\varphi_1, \ldots, \varphi_n)$ une base de E^* . Montrer qu'il existe une unique base $\mathcal{B} = (e_1, \ldots, e_n)$ de E telle que $(\varphi_1, \ldots, \varphi_n)$ soit la base duale de \mathcal{B} .