- Chapitre 10 -

Réduction des endomorphismes et des matrices carrées (1)

Conformément au programme, dans tout ce chapitre, $\mathbb K$ désignera un sous-corps de $\mathbb C$.

I. Rappels sur les racines d'un polynôme.

Définition 1. Soit P un polynôme non nul de $\mathbb{K}[X]$. Soit $\alpha \in \mathbb{K}$ et $r \in \mathbb{N}$. On dit que α est :

- racine d'ordre au moins r si $(X \alpha)^r \mid P$.
- racine d'ordre r si $(X \alpha)^r \mid P$ et $(X \alpha)^{r+1} \not\mid P$. Cet entier r est alors appelé ordre de multiplicité de la racine α .

 \triangle Autrement-dit, l'ordre de multiplicité d'une racine α est le plus grand entier r tel que $(X - \alpha)^r \mid P$. Il est important de supposer le polynôme P non nul, car sinon,

Remarque importante.

S'il existe $Q \in \mathbb{K}[X]$ tel que $P = (X - \alpha)^r Q$, alors α est une racine d'ordre <u>au moins r</u> de P. Et on a : $(\alpha \text{ est racine d'ordre } r \text{ de } P) \iff \iff$

Théorème 1. Caractérisation de l'ordre de multiplicité d'une racine.

Soit $\alpha \in \mathbb{K}$ et $r \in \mathbb{N}^*$. Alors, α est une racine d'ordre r de P, si, et seulement si,

$$P(\alpha) = P'(\alpha) = \dots = P^{(r-1)}(\alpha) = 0$$
 et $P^{(r)}(\alpha) \neq 0$.

Exemple 1. Appliquons ce théorème sur un exemple simple. Prenons $P = (X + 2)(X - 1)^2$, dont on sait déjà que -2 est une racine d'ordre 1 et 1 d'ordre 2. Après développement, on a : P =

Proposition 1. Soit P un polynôme de degré $n \in \mathbb{N}$. Soit $\alpha_1, \ldots, \alpha_p$ les p racines distinctes de P et soit r_1, \ldots, r_p leur multiplicité respective.

- P admet au plus n racines comptées avec leur ordre de multiplicité, ce qui signifie que : $r_1 + \cdots + r_p \leqslant n$.
- \bullet P admet une factorisation de la forme :

$$P = \lambda \prod_{k=1}^{p} (X - \alpha_k)^{r_k},$$

où λ est le coefficient dominant de P si, et seulement si, $r_1 + \cdots + r_p = n$. Dans ce cas, le polynôme P est dit scindé.

 $\underline{\wedge}$ Le caractère scindé d'un polynôme dépend du corps. Par exemple, le polynôme $P = X^2 - 2$ est scindé sur $\mathbb{R}[X]$ car s'écrit $P = (X - \sqrt{2})(X + \sqrt{2})$, mais pas sur $\mathbb{Q}[X]$ puisqu'il n'admet aucune racine sur \mathbb{Q} .

Corollaire 1. Si un polynôme P de degré $n \in \mathbb{N}$ admet n racines distinctes, alors il est scindé. Dans ce cas, ses n racines sont toutes simples et P admet donc une factorisation de la forme

$$P = \lambda \prod_{k=1}^{n} (X - \alpha_k),$$

où λ est le coefficient dominant et $\alpha_1, \ldots, \alpha_n$ ses n racines distinctes.

Dans ce cas, le polynôme P est dit scindé à racines simples ou simplement scindé.

Remarque 2. Tout diviseur d'un polynôme scindé est scindé.

Tout diviseur d'un polynôme scindé à racines simples est scindé à racines simples.

Exemple 2. Pour tout $n \in \mathbb{N}^*$ le polynôme $X^n - 1$ est scindé à racines simples dans $\mathbb{C}[X]$. Il s'écrit :

$$X^n - 1 =$$

Exemple 3. Pour tout $n \in \mathbb{N}^*$ le polynôme $P = 1 + X + \cdots + X^{n-1}$ est scindé à racines simples dans $\mathbb{C}[X]$. Il s'écrit :

$$P =$$

Le théorème de d'Alembert-Gauss assure que :

Théorème 2. Tout polynôme non nul de $\mathbb{C}[X]$ est scindé.

II. Sous-espaces vectoriels stables.

Soit u un endomorphisme de E.

Définition 2. Un sous-espace vectoriel F de E est dit stable par un endomorphisme u de E lorsque $u(F) \subset F$, i.e. lorsque :

$$\forall x \in F, \ u(x) \in F.$$

Exemple 4. $\{0\}$ et E sont stables par tout endomorphisme.

Exercice 1. Soit F et G deux sous-espaces vectoriels stables par u. Montrer que $F \cap G$ et F + G sont stables par u.

Exemple 5. Les homothéties (applications de la forme $\alpha \mathrm{Id}_E$) stabilisent tout sous-espace vectoriel.

La réciproque est vraie :

Exercice 2. Soit u un endomorphisme de E stabilisant tout sous-espace vectoriel de E. Montrer que u est une homothétie.

Proposition 2. Soit u et v deux endomorphismes de E qui commutent (i.e. $u \circ v = v \circ u$). Le noyau et l'image de u sont stables par v.

Démonstration.

Définition 3. Si F est un sous-espace vectoriel de E stable par u, on appelle endomorphisme induit par u sur F l'endomorphisme de F noté u_F et défini par :

$$\begin{array}{ccc} F & \to & F \\ x & \mapsto & u(x). \end{array}$$

 \triangle On ne peut parler d'endomorphisme induit sur F que lorsque F est stable par u.

Ne pas confondre u_F qui est une application de F dans F et $u|_F$ qui est une application de F dans E.

Remarque 3. Ker
$$u_F =$$

$$\operatorname{Im} u_F =$$

En dimension finie, la notion d'endomorphisme stable se traduit matriciellement :

Proposition 3. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de $E, u \in \mathcal{L}(E)$, et $r \in [1, n-1]$. Si:

$$M_{\mathcal{B}}(u) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 avec $A \in \mathcal{M}_r(\mathbb{K})$.

Posons $F = \text{Vect } (e_1, \dots, e_r) \text{ et } G = \text{Vect } (e_{r+1}, \dots, e_n).$

• F est stable par u si, et seulement si, C = 0.

Dans ce cas, A est alors la matrice de u_F dans la base (e_1, \ldots, e_r) .

• G est stable par u si, et seulement si, B = 0.

Dans ce cas, D est alors la matrice de u_G dans la base (e_{r+1}, \ldots, e_n) .

Démonstration.

Proposition 4. Soit $M \in \mathcal{M}_{n,p}(\mathbb{K})$ et $M' \in \mathcal{M}_{p,q}(\mathbb{K})$ écrites sous formes de blocs :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 et $M' = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$.

Si le produit AA' existe, alors :

$$MM' = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}.$$

Démonstration. On applique la définition du produit matriciel...

Cette écriture des matrices sous forme de blocs peut évidemment se généraliser à un nombre quelconque de blocs.

En particulier, si $E = F_1 \oplus \cdots \oplus F_r$ où F_1, \ldots, F_r sont r sous-espaces vectoriels de E, et si \mathcal{B} est une base adaptée à cette décomposition de E, et u un endomorphisme de E, alors :

$$M_{\mathcal{B}}(u)$$
 est de la forme
$$\begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_r \end{pmatrix}$$
 où A_1, \dots, A_r sont des matrices carrées,

si, et seulement si, les F_i sont tous stables par u.

Proposition 5. Déterminant d'une matrice triangulaire par blocs.

Pour tout $A \in \mathcal{M}_r(\mathbb{K})$ et $D \in \mathcal{M}_{n-r}(\mathbb{K})$:

$$\det\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det A \det D \quad \text{ et } \quad \det\begin{pmatrix} A & 0 \\ C & D \end{pmatrix} = \det A \det D.$$

Démonstration.
III. ÉLÉMENTS PROPRES D'UN ENDOMORPHISME, D'UNE MATRICE CARRÉE. III.1. VECTEURS PROPRES ET VALEURS PROPRES D'UN ENDOMORPHISME.
Définition 4. Un scalaire λ est appelé $valeur$ $propre$ d'un endomorphisme u , s'il existe un vecteur non nul x de E vérifiant : $u(x) = \lambda x.$ On dit alors que x est un $vecteur$ $propre$ de u associé à la valeur propre λ .
$\underline{\wedge}$ Si x est un vecteur propre, il existe un unique scalaire vérifiant $u(x) = \lambda x$. En effet :
Ainsi, on pourra dire que λ est <u>la</u> valeur propre associée à x . Cependant, x n'est pas le seul vecteur non nul vérifiant $u(x) = \lambda x$. En effet le vecteur convient aussi.
Soit $\lambda \in \mathbb{K}$ et $x \in E$.
$u(x) = \lambda x \Leftrightarrow$
Proposition 6. Un scalaire λ est une valeur propre de u si, et seulement si, $u - \lambda \operatorname{Id}_E$ est
Démonstration.

Définition 5.	Soit λ	une	valeur	propre de	u.	On appelle	$sous\mbox{-}espace$	vectoriel	propre	associée	àλ	١,
l'ensemble :												

$$E_{\lambda}(u) = \text{Ker } (u - \lambda \text{Id}_E) = \{x \in E \mid u(x) = \lambda x\}.$$

 \wedge Les vecteurs propres associés à la valeur propre λ sont tous les éléments <u>non nuls</u> de $E_{\lambda}(u)$.

Remarque 4. En tant que noyau d'un endomorphisme, $E_{\lambda}(u)$ est bien un sous-espace vectoriel de E. On a de plus $E_{\lambda}(u) \neq \{0_E\}$ sinon λ ne serait pas une valeur propre de u.

 $\underline{\Lambda}$ On a défini ici $E_{\lambda}(u)$ dans le seul cas où λ une valeur propre de u. Certains auteurs définissent $E_{\lambda}(u)$ pour n'importe quel $\lambda \in \mathbb{K}$. Dans ce cas, on a :

 $(\lambda \text{ est une valeur propre de } u) \iff$

Remarque importante. Le scalaire 0 est valeur propre de u si, et seulement si, On a alors : $E_0(u) =$

Exercice 3. Soit u un endomorphisme de E et x un vecteur non nul de E. Montrer que x est un vecteur propre de u si, et seulement si, la droite Vect $\{x\}$ est stable par u.

Méthode.	Pour	déterminer	les	éléments	propres	(i.e.	les	valeurs	propres	et	${\rm les}$	sous-espaces	propres
associés), on	étudi	iera l'équati	on:	$u(x) = \lambda$	x.								
Cette équati	on est	t parfois app	elé	e <i>équation</i>	aux élér	ment	s pr	opres.					

Exercice 4. Déterminer les éléments propres de l'homothétie $h = \alpha \mathrm{Id}_E$.

Exercice 5. Déterminer les éléments propres d'un projecteur p et d'une symétrie vectorielle s.

Proposition 7. Soit u et v deux endomorphismes de E . Si u et v commutent (i.e. $u \circ v = v \circ u$), al tout sous-espace propre de u est stable par v .
Démonstration.
Exercice 6. Si α et β sont deux scalaires distincts, alors Ker $(u - \alpha Id_E)$ et Ker $(u - \beta Id_E)$ sont somme directe.
Ce résultat se généralise à un nombre $p\geqslant 2$ de sous-espaces vectoriels.
Théorème 3. Soit $u \in \mathcal{L}(E)$. Si $\lambda_1, \ldots, \lambda_p$ sont des scalaires deux à deux distincts, alors les sous-espa $\operatorname{Ker}(u - \lambda_1 \operatorname{Id}_E), \ldots, \operatorname{Ker}(u - \lambda_p \operatorname{Id}_E)$ sont en somme directe.
Démonstration.

Corollaire 2. Toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.
Démonstration.
⚠ Dans la démonstration précédente, on a traité seulement le cas des familles finies, ce qui est cohérent puisque la liberté d'une famille infinie correspond à la liberté de chacune des ses sous-familles finies.
Méthode. Le corollaire ci-dessus peut s'avérer efficace pour prouver la liberté d'une famille.
III.2. Cas des endomorphismes d'un espace de dimension finie.
Définition 6. Lorsque E est de dimension finie, on appelle $spectre$ de u , et l'on note sp u , l'ensemble des valeurs propres de u .
<u>∧</u> En dimension infinie, on s'interdira à parler de spectre.
Proposition 8. Si E est de dimension finie égale à n , alors le spectre d'un endomorphisme est fini, et de cardinal au plus n .
Démonstration.
⚠ En dimension infinie, un endomorphisme peut avoir une infinité de valeurs propres.
Exercice 7. Déterminer les éléments propres de l'opérateur de dérivation D de $\mathcal{C}^{\infty}(\mathbb{R})$.
Proposition 9. Soit u un endomorphisme d'un espace vectoriel de dimension finie.
Pour tout $\lambda \in \mathbb{K}$: $(\lambda \text{ est une valeur propre de } u) \Leftrightarrow u - \lambda \text{Id}_E \text{ est non bijectif.}$
Démonstration.

III.3. VECTEURS PROPRES ET VALEURS PROPRES D'UNE MATRICE CARRÉE.

Soit $n \in \mathbb{N}^*$ et soit $A \in \mathcal{M}_n(\mathbb{K})$.

Définition 7. Les éléments propres de A sont les éléments propres de son endomorphisme canoniquement associé. Plus précisément :

• Un scalaire λ est appelé valeur propre de A, s'il existe un élément non nul $X \in \mathbb{K}^n$ vérifiant :

$$AX = \lambda X$$

en on dit alors que X est un vecteur propre de A associé à la valeur propre λ .

• Si λ une valeur propre de A. On appelle sous-espace vectoriel propre associée à λ , l'ensemble :

$$E_{\lambda}(A) = \operatorname{Ker} (A - \lambda I_n) = \{ X \in \mathbb{K}^n \mid AX = \lambda X \}.$$

• L'ensemble des valeurs propres de A est appelé le spectre de A et noté $\operatorname{sp}(A)$.

Les résultats de la partie précédente se traduisent matriciellement :

Proposition 10. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- Le spectre de A est fini, et de cardinal au plus n.
- Pour tout $\lambda \in \mathbb{K}$: $(\lambda \text{ est une valeur propre de } A) \Leftrightarrow A \lambda I_n \text{ est}$

III.4. POLYNÔME CARACTÉRISTIQUE D'UNE MATRICE CARRÉE.

Soit $n \in \mathbb{N}^*$ et soit $A \in \mathcal{M}_n(\mathbb{K})$.

$$(\lambda \text{ est une valeur propre de } A) \iff A - \lambda \mathbf{I}_n \text{ est} \iff A - \lambda \mathbf{I}_n \text{ est}$$

Définition 8. On appelle polynôme caractéristique de A, le polynôme noté χ_A et défini par :

$$\chi_A = \det(XI_n - A).$$

Exercice 8. Calculer le polynôme caractéristique de la matrice :

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

 $\underline{\wedge}$ Dans la définition de χ_A on calcule le déterminant de la matrice $XI_n - A$ qui est une matrice à coefficients dans $\mathbb{K}[X]$. Est-ce bien légitime ?

Oui, la théorie du déterminant présentée en mpsi dans le corps des complexes se généralise à n'importe quel corps. Il suffit donc de l'appliquer au corps

Proposition 11. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Le polynôme caractéristique de A est un polynôme unitaire de degré n. Plus précisément, il est de la forme :

$$\chi_A = X^n - \operatorname{tr}(A)X^{n-1} + \dots + (-1)^n \det(A).$$

Démonstration.

D'après la formule sommatoire du déterminant d'une matrice, on a :

$$\chi_A = \det(XI_n - A) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \left(X \delta_{\sigma(1),1} - a_{\sigma(1),1} \right) \left(X \delta_{\sigma(2),2} - a_{\sigma(2),2} \right) \cdots \left(X \delta_{\sigma(n),n} - a_{\sigma(n),n} \right).$$

où $\delta_{i,j}$ désigne le symbole de Kronecker.

Exemple 6. Pour une matrice A d'ordre 2, on obtient : $\chi_A = X^2 - \operatorname{tr}(A)X + \det(A)$.

Remarque 6. Une matrice A et sa transposée ont même polynôme caractéristique. En effet :

Théorème 4. Le spectre de A est égale à l'ensemble des racines de χ_A .

Autrement-dit, pour tout $\lambda \in \mathbb{K}$: $\lambda \in \operatorname{sp}(A) \Leftrightarrow \chi_A(\lambda) = 0$.

Démonstration. On a déjà prouvé que : $(\lambda \text{ est une valeur propre de } A) \Leftrightarrow \det(\lambda \mathbf{I}_n - A) = 0.$

Remarque 7. On retrouve le fait que le spectre d'une matrice de $\mathcal{M}_n(\mathbb{K})$ est fini de cardinal au plus n.

Méthode. Pour déterminer les éléments propres d'une matrice A, on pourra donc commencer par déterminer les valeurs propres en cherchant les racines du polynôme caractéristique. Puis, pour tout $\lambda \in \operatorname{sp}(A)$ on déterminera $E_{\lambda}(A)$ en résolvant l'équation aux éléments propres : $AX = \lambda X$.

Exercice 9. Déterminer les éléments propres de la matrice :

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

On a déjà obtenu son polynôme caractéristique :

Remarque importante. Soit $A \in \mathcal{M}_n(\mathbb{K})$, et supposons que \mathbb{K} soit un sous-corps de \mathbb{L} .

L'inclusion, $\mathbb{K} \subset \mathbb{L}$ donne $\mathcal{M}_n(\mathbb{K}) \subset \mathcal{M}_n(\mathbb{L})$. Si bien qu'on peut considérer A aussi bien comme un élément de $\mathcal{M}_n(\mathbb{K})$, qu'un élément de $\mathcal{M}_n(\mathbb{L})$. On peut alors chercher les valeurs propres de A dans \mathbb{K} mais aussi les valeurs propres de A dans \mathbb{L} .

Plus précisément, en notant $\operatorname{sp}_{\mathbb{K}}(A)$ le spectre de A dans \mathbb{K} et $\operatorname{sp}_{\mathbb{L}}(A)$ le spectre de A dans \mathbb{L} , on obtient :

$$\operatorname{sp}_{\mathbb{K}}(A) = \operatorname{sp}_{\mathbb{L}}(A) \cap \mathbb{K}.$$

En effet, $\operatorname{sp}_{\mathbb{L}}(A)$ est égale aux racines dans \mathbb{L} de χ_A , alors que $\operatorname{sp}_{\mathbb{K}}(A)$ est seulement égale aux racines dans \mathbb{K} de χ_A .

Dans le cas particulier où $A \in \mathcal{M}_n(\mathbb{R})$, on a ainsi :

$$\operatorname{sp}_{\mathbb{R}}(A) = \operatorname{sp}_{\mathbb{C}}(A) \cap \mathbb{R}.$$

Rechercher les valeurs propres dans C est une bonne idée, puisque

Exercice 10. Déterminer $\operatorname{sp}_{\mathbb{R}}(A)$ et $\operatorname{sp}_{\mathbb{C}}(A)$ où :

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Proposition 12. Soit A et B deux éléments de $\mathcal{M}_n(\mathbb{K})$. Si A et B sont semblables, alors $\chi_A = \chi_B$. On dit que le polynôme caractéristique est un *invariant de similitudes*.

Démonstration.

 $\underline{\wedge}$ La réciproque est fausse. Donner deux matrices non semblables ayant le même polynôme caractéristique :

Corollaire 3. Deux matrices semblables ont même spectre.

Démonstration.

III.5. POLYNÔME CARACTÉRISTIQUE D'UN ENDOMORPHISME.

Soit E un espace vectoriel de dimension finie égale à $n \in \mathbb{N}^*$.

Définition 9. On appelle polynôme caractéristique d'un endomorphisme u de E, et l'on note χ_u , le polynôme caractéristique de la matrice de u dans n'importe quelle base de E.

 \wedge Cette définition a bien un sens puisque le polynôme caractéristique d'une matrice représentant l'endomorphisme u dans une base de E ne dépend pas du choix de cette base.

Remarque importante. En particulier si $A \in \mathcal{M}_n(\mathbb{K})$ et si u est l'endomorphisme canoniquement associé à A, alors $\chi_A = \chi_u$. En effet,

Proposition 13. Le polynôme caractéristique d'un endomorphisme u de E est un polynôme unitaire de degré n. Plus précisément, il est de la forme :

$$\chi_u = X^n - \text{tr}(u)X^{n-1} + \dots + (-1)^n \det(u).$$

Démonstration.

Proposition	14	Pour tou	$t. \lambda \in \mathbb{K}$	$\gamma_{-}(\lambda) = de$	$t(\lambda \mathrm{Id}_{E} - u)$
I Tobostom	T.T.	1 Our tou	U // C III,	$\chi_u(\Lambda) - uc$	$u(\Lambda 1 \mathbf{u}_{F}) = u_{f}$.

Démonstration.

 \wedge Pour une matrice A, on a pu définir le polynôme caractéristique par l'égalité :

$$\chi_A = \det(XI_n - A),$$

qui a bien un sens à condition de voir $XI_n - A$ comme une matrice à coefficients dans le corps $\mathbb{K}(X)$. Pour un endomorphisme, une telle démarche n'est pas possible car E n'a pas nécessairement de structure de $\mathbb{K}(X)$ -espace vectoriel.

C'est pour ça, qu'on prendra un scalaire λ dans \mathbb{K} pour écrire seulement $\chi_u(\lambda) = \det(\lambda \operatorname{Id}_E - u)$.

Théorème 5. Le spectre d'un endomorphisme u de E est égale à l'ensemble des racines de χ_u . Autrement-dit, pour tout $\lambda \in \mathbb{K}$: $\lambda \in \operatorname{sp}(u) \Leftrightarrow \chi_u(\lambda) = 0$.

Démonstration.

Remarque 10. Le polynôme caractéristique d'une matrice triangulaire dont la diagonale est $(\alpha_1, \dots, \alpha_n)$ est :

Exercice 11. Calculer le polynôme caractéristique d'une matrice triangulaire par blocs de la forme :

$$M = \begin{pmatrix} A & C \\ 0 & D \end{pmatrix}$$

Polynôme caractéristique d'un endomorphisme induit.

Proposition 15. Le polynôme caractéristique de l'endomorphisme u_F induit par u sur un sous-espace vectoriel stable F, divise le polynôme caractéristique de u. Autrement-dit : χ_{u_F} divise χ_u .

Démonstration.

Multiplicité d'une valeur propre.

Définition 10. On appelle ordre de multiplicité d'une valeur propre λ de u, et l'on note m_{λ} , sa multiplicité en tant que racine du polynôme caractéristique de u.

Proposition 16. Pour toute valeur propre λ de u, on a :

 $1 \leqslant \dim E_{\lambda}(u) \leqslant m_{\lambda}.$

Démonstration.

Remarque 11. Certains auteurs appellent multiplicité algébrique de la valeur propre λ le nombre m_{λ} et appellent multiplicité géométrique le nombre dim $E_{\lambda}(u)$. La proposition précédente affirme alors que la multiplicité géométrique est majorée par la multiplicité

algébrique.

Méthode.

Si l'on connait une valeur propre λ en notant $p = \dim E_{\lambda}(u)$, on obtient que $p \leq m_{\lambda}$ ce qui équivaut à dire que $(X - \lambda)^p$ divise χ_u .

Exercice 12. Déterminer, sans calcul, le polynôme caractéristique de la matrice :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$

Corollaire 4. Si λ est une racine simple de χ_u , alors dim $E_{\lambda}(u) = 1$, autrement-dit, $E_{\lambda}(u)$ est une droite vectorielle.

Proposition 17. Si u est un endomorphisme d'un espace vectoriel de dimension n, alors : $\sum_{\lambda \in \operatorname{sp}(u)} m_{\lambda} \leqslant n$.

Démonstration.

Remarque 12. Pour résumer :

- Diagonaliser un endomorphisme u signifie déterminer les valeurs propres de u et, quand c'est possible, une base de diagonalisation i.e. une base constituée de vecteurs propres.
- Diagonaliser une matrice carrée A signifie déterminer, quand c'est possible, une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$, ou tout simplement une matrice inversible P telle que $P^{-1}AP$ soit diagonale.

IV. ENDOMORPHISMES ET MATRICES CARRÉES DIAGONALISABLES.

IV.1. DÉFINITIONS DE LA NOTION DE DIAGONALISATION.

Soit E un espace vectoriel de dimension finie égale à $n \in \mathbb{N}^*$.

Définition 11. Un endomorphisme u d'un espace vectoriel E de dimension finie est dit diagonalisable s'il existe une base de E dans laquelle sa matrice est diagonale.

Interprétation géométrique.

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. $M_{\mathcal{B}}(u)$ est diagonale si, et seulement si, \mathcal{B} est

Dans ce cas, on a:

$$M_{\mathcal{B}}(u) =$$

où les λ_k sont les valeurs propres de u. En effet, on a :

Une telle base, quand elle existe, est parfois appelée une base de diagonalisation.

Question : combien de fois λ_k apparaît-elle dans la matrice $M_{\mathcal{B}}(u)$ ci-dessus ?

Remarque 13. Lorsque u est diagonalisable, la matrice de u dans n'importe quelle base de E est alors semblable à une matrice diagonale.

Exemple 7. L'application Id_E et plus généralement les homothéties $\lambda \mathrm{Id}_E$ avec $\lambda \in \mathbb{K}$ sont des endomorphismes diagonalisables. En effet, quel que soit la base \mathcal{B} de E, $M_{\mathcal{B}}(\mathrm{Id}_E) = \mathrm{I}_n$ et $M_{\mathcal{B}}(\lambda \mathrm{Id}_E) = \lambda \mathrm{I}_n$.

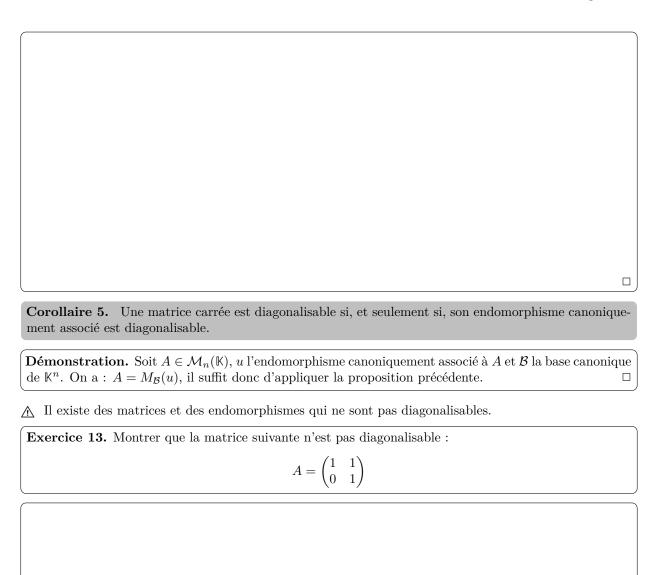
Exemple 8. Un projecteur p et une symétrie vectorielle s sont diagonalisables puisque

Définition 12. Une matrice carrée est dite diagonalisable si elle est semblable à une matrice diagonale.

Proposition 18. Interprétation en termes d'endomorphisme.

Soit u un endomorphisme de E et \mathcal{B} une base de E. La matrice $M_{\mathcal{B}}(u)$ est diagonalisable si, et seulement si, u est diagonalisable.

Démonstration.			



IV.2. CONDITIONS DE DIAGONALISATION.

Nous allons voir ici des critères de diagonalisation (condition nécessaire et suffisante) ainsi que des conditions suffisantes.

Nous noterons $\{\lambda_1, \ldots, \lambda_p\}$ les valeurs propres distinctes de u.

Théorème 6. Un endomorphisme est diagonalisable si, et seulement si, la somme de ses sous-espaces propres est égale à E.

Rappel. La somme de ses sous-espaces propres est toujours directe.

Démonstration.
Corollaire 6. Caractérisation par la somme des dimensions des sous-espaces propres.
Un endomorphisme u de E est diagonalisable si, et seulement si, $\sum_{k \in L} \dim E_{\lambda_k}(u) = n$.
$1 \leqslant k \leqslant p$
Démonstration.
Demonstration.
Remarque 14. Dans tous les cas on a : $\sum \dim E_{\lambda_k}(u) \leqslant n$, puisque
$1 \leqslant k \leqslant p$
$1 \leqslant k \leqslant p$
$1 \leqslant k \leqslant p$ Corollaire 7. Condition suffisante de diagonalisabilité.
$1 \leqslant k \leqslant p$ Corollaire 7. Condition suffisante de diagonalisabilité.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
Corollaire 7. Condition suffisante de diagonalisabilité. Si un endomorphisme u de E admet n valeurs propres distinctes, alors u est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.

En effet, l'application

 $\underline{\wedge}\hspace{-0.05cm}$ Ce résultat ne fournit qu'une condition suffisante de diagonalisabilité.

Remarque 15.

 $(u \text{ admet } n \text{ valeurs propres distinctes}) \Leftrightarrow$

 \Leftrightarrow

Cette remarque permet d'obtenir :

Corollaire 8. Condition suffisante de diagonalisabilité.

Si χ_u est scindé à racines simples, alors u est diagonalisable et possède n valeurs propres distinctes et les sous-espaces propres sont des droites vectorielles.

⚠ De même, ce résultat n'est qu'une condition suffisante de diagonalisabilité. En effet, l'application

Théorème 7. Un endomorphisme u est diagonalisable si, et seulement si, χ_u est scindé et que, pour toute valeur propre de u, la dimension de l'espace propre associé est égale à sa multiplicité.

Démonstration. Notons $\lambda_1,\dots,\lambda_p$ les p valeurs propres distinctes de u. On doit prouver :

$$(u \text{ diagonalisable}) \iff \left\{ \begin{array}{l} \chi_u \text{ est scind\'e} \\ \forall k \in [\![1,p]\!], \ m_{\lambda_k} = \dim E_{\lambda_k}(u). \end{array} \right.$$

Remarque importante. On comprend maintenant que dans n'importe quelle base de diagonalisation \mathcal{B} , la valeur propre λ_k apparait fois sur la diagonale de la matrice $M_{\mathcal{B}}(u)$.

Les énoncés précédents se traduisent matriciellement :

Théorème 8. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Notons $\{\lambda_1, \ldots, \lambda_p\}$ les valeurs propres distinctes de A.

- A est diagonalisable si, et seulement si, $\bigoplus_{1 \leqslant k \leqslant p} E_{\lambda_k}(A) = \mathbb{K}^n$.
- A est diagonalisable si, et seulement si, $\sum_{1\leqslant k\leqslant p}\dim E_{\lambda_k}(A)=n.$
- \bullet Si A admet n valeurs propres distinctes, alors A est diagonalisable. De plus, les sous-espaces propres sont alors des droites vectorielles.
- Si χ_A est scindé à racines simples, alors A est diagonalisable et possède n valeurs propres distinctes et les sous-espaces propres sont des droites vectorielles.
- A est diagonalisable si, et seulement si, χ_A est scindé et que, pour tout $k \in [1, p]$, dim $E_{\lambda_k}(A) = m_{\lambda_k}$.

Exercice 14. Que peut-on dire d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ diagonalisable et admettant une unique valeur propre λ ?

 $\underline{\wedge}$ On vient donc de montrer que pour une matrice A de $\mathcal{M}_n(\mathbb{K})$ ayant une unique valeur propre : A est diagonalisable si, et seulement si, A est

V. Endomorphismes et matrices carrées trigonalisables.

Définition 13. Un endomorphisme d'un espace vectoriel E de dimension finie est dit trigonalisable s'il existe une base de E dans laquelle sa matrice est triangulaire.

Remarque 17. Tout endomorphisme diagonalisable est donc trigonalisable.

Exercice 15. Soit E un espace de dimension 3, et u un endomorphisme de E. On considère une base $\mathcal{B}=(e_1,e_2,e_3)$ de E telle que :

$$M_{\mathcal{B}}(u) = \begin{pmatrix} a_1 & 0 & 0 \\ a_2 & b_2 & 0 \\ a_3 & b_3 & c_3 \end{pmatrix}.$$

Donner la matrice de u dans la base $\mathcal{B}' = (e_3, e_2, e_1)$.

Remarque importante. L'exemple précédent, montre que si dans une base $\mathcal{B} = (e_1, \dots, e_n)$ de E, $M_{\mathcal{B}}(u)$ est triangulaire inférieure, alors en posant $\mathcal{B}' = (e_n, \dots, e_1)$, $M_{\mathcal{B}'}(u)$ est triangulaire supérieure. On peut donc affirmer qu'un endomorphisme est trigonalisable si, et seulement si, il existe une base de E dans laquelle sa matrice est triangulaire supérieure.

Interprétation géométrique.

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. $M_{\mathcal{B}}(u)$ est triangulaire supérieure si, et seulement si,

En particulier, si $M_{\mathcal{B}}(u)$ est triangulaire supérieure, e_1 est un vecteur propre de u.

Définition 14. Une matrice carrée est dite trigonalisable si elle est semblable à une matrice triangulaire.

Remarque 19. L'exemple et la remarque précédentes prouvent que toute matrice triangulaire inférieure est semblable à une matrice triangulaire supérieure. On peut donc affirmer qu'une matrice est trigonalisable si, et seulement si, elle est semblable à une matrice triangulaire supérieure.

On obtient, comme dans le cas de la diagonalisation, les deux résultats suivants :

Proposition 19. Interprétation en termes d'endomorphisme.

Soit u un endomorphisme de E et \mathcal{B} une base de E. La matrice $M_{\mathcal{B}}(u)$ est trigonalisable si, et seulement si, u est trigonalisable.

Corollaire 9. Une matrice carrée est trigonalisable si, et seulement si, son endomorphisme canoniquement associé est trigonalisable.

Théorème 9. Un endomorphisme (ou une matrice carrée) est trigonalisable si, et seulement si, son polynôme caractéristique est scindé.

Demonstration.	

Remarque importante. La première partie de la démonstration prouve que si $M_{\mathcal{B}}(u)$ est triangulaire supérieure, alors la diagonale de $M_{\mathcal{B}}(u)$ contient les valeurs propres de u .
Dans ce cas, toute valeur propre λ apparait dans la matrice précédente fois sur la diagonale de $M_{\mathcal{B}}(u)$.
Remarque 21. Comme une matrice et sa transposée ont même polynôme caractéristique, on en déduit qu'une matrice A est trigonalisable si, et seulement si, A^{T} , est trigonalisable.
Proposition 20. Si u est trigonalisable et si F est un sous-espace vectoriel de E stable par u , alors l'endomorphisme induit u_F est aussi trigonalisable.
Démonstration.

Lycée Jeanne d'Albret – MP – **2025-2026.**

Page n°22.

Corollaire 10.

- ullet Si E est un $\mathbb C$ -espace vectoriel de dimension finie, alors tout endomorphisme de E est trigonalisable.
- Toute matrice carrée à coefficients dans $\mathbb C$ est trigonalisable sur $\mathbb C.$

Démonstration.

 \wedge En revanche, une matrice carrée réelle n'est pas toujours trigonalisable sur \mathbb{R} .

En effet, la matrice

Proposition 21. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice trigonalisable. Notons $\{\lambda_1, \dots, \lambda_p\}$ les valeurs propres distinctes de A. Alors :

$$\operatorname{tr}(A) = \sum_{1 \leqslant k \leqslant p} m_{\lambda_k} \lambda_k \quad \text{ et } \quad \operatorname{det}(A) = \prod_{1 \leqslant k \leqslant p} \lambda_k^{m_{\lambda_k}},$$

où m_{λ_k} est la multiplicité (algébrique) de λ_k .

Démonstration.

Remarque 22. Si \mathbb{K} est un sous-corps strict de \mathbb{C} et que la matrice A n'est pas trigonalisable dans $\mathcal{M}_n(\mathbb{K})$, les formules ci-dessus restent vraies en considérant les valeurs propres complexes de A.

VI. Plan d'étude.

VI.1. Plan d'étude de la réduction d'une matrice 2×2 .

Soit $A \in \mathcal{M}_2(\mathbb{K})$. On calcule χ_A .

Si χ_A n'est pas scindé dans $\mathbb{K}[X]$, alors A n'est pas trigonalisable (et donc pas diagonalisable) dans $\mathcal{M}_2(\mathbb{K})$.

Si χ_A est scindé, alors on écrit :

VI.2. Plan d'étude de la réduction d'une matrice 3×3 .

Soit $A \in \mathcal{M}_3(\mathbb{K})$. On calcule χ_A .

Si χ_A n'est pas scindé dans $\mathbb{K}[X]$, alors A n'est pas trigonalisable (et donc pas diagonalisable) dans $\mathcal{M}_3(\mathbb{K})$.

Si χ_A est scindé, alors on écrit :