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– Chapitre 15 : Rappels sur les espaces préhilbertiens réels –

I. Produit scalaire.
Définition 1. On appelle produit scalaire d’un R-espace vectoriel E, toute forme bilinéaire symétrique,
et définie positive.

Notations.
Si φ est un produit scalaire et si (x, y) ∈ E2, alors le réel φ(x, y) sera noté (x | y) ou ⟨x, y⟩ ou x · y.

Exemple 1. Pour tout x = (x1, . . . , xn) et y = (y1, . . . , yn), on définit un produit scalaire sur Rn en
posant :

⟨x, y⟩ =
n∑

k=1
xkyk.

Ce produit scalaire est appelée, le produit scalaire canonique de Rn.
Plus généralement, si p1, . . . , pn sont des réels strictement positifs, on définit un produit scalaire sur Rn

en posant :

⟨x, y⟩ =
n∑

k=1
pkxkyk.

Exemple 2. Sur l’espace vectoriel C([a, b],R), on définit un produit scalaire en posant :

∀(f, g) ∈ C([a, b],R)2, ⟨f, g⟩ =
∫ b

a

f(x)g(x)dx.

Plus généralement, si p ∈ C([a, b],R) est une fonction à valeurs strictement positives, on définit un produit
scalaire sur C([a, b],R) en posant :

∀(f, g) ∈ C([a, b],R)2, ⟨f, g⟩ =
∫ b

a

p(x)f(x)g(x)dx.

Définition 2.
• On appelle espace préhilbertien réel, tout R-espace vectoriel muni d’un produit scalaire.
• On appelle espace euclidien, tout espace préhilbertien réel de dimension finie.

Dans toute la suite de ce chapitre E désignera un espace préhilbertien réel. On notera ⟨·, ·⟩ le produit
scalaire et ∥ · ∥ le norme euclidienne associée définie par : ∥x∥ =

√
⟨x, x⟩.

Théorème 1. Inégalité de Cauchy-Schwarz.
Soit E un R-espace vectoriel muni d’un produit scalaire. Pour tout (x, y) ∈ E2 on a :

ou encore :

Cette inégalité est une égalité si, et seulement si, x et y sont colinéaires.
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Proposition 1. Identités de polarisation. Pour tout (x, y) ∈ E2 :
1. ∥x + y∥2 = ∥x∥2 + ∥y∥2 + 2 ⟨x, y⟩
2. ∥x − y∥2 = ∥x∥2 + ∥y∥2 − 2 ⟨x, y⟩

3. ⟨x, y⟩ = ∥x + y∥2 − ∥x − y∥2

4 .

Démonstration.
1. ∥x + y∥2 = ⟨x + y, x + y⟩ = ⟨x, x⟩ + ⟨x, y⟩ + ⟨y, x⟩ + ⟨y, y⟩ = ∥x∥2 + 2 ⟨x, y⟩ + ∥y∥2.
2. On remplace y par −y dans l’égalité précédente et on utilise la linéarité à droite.
3. La soustraction des 2 premières lignes donne : ∥x + y∥2 − ∥x − y∥2 = 4 ⟨x, y⟩.

- 2

Remarque 1. La propriété 3 permet d’exprimer le produit scalaire uniquement en fonction de la norme
euclidienne.
Par conséquent, une norme euclidienne provient d’un unique produit scalaire. Autrement dit, deux
produits scalaires différents induisent deux normes euclidiennes différentes.

En ajoutant les lignes 1 et 2 de la proposition précédente, on obtient :

Corollaire 1. Égalité du parallélogramme.
Pour tout (x, y) ∈ E2 : ∥x + y∥2 + ∥x − y∥2 = 2

(
∥x∥2 + ∥y∥2)

.

II. Orthogonalité.
Définition 3.
• Deux vecteurs x et y de E sont dits orthogonaux si ⟨x, y⟩ = 0. On note alors x ⊥ y.
• Deux sous-espaces vectoriels F et G de E sont dits orthogonaux si tout vecteur de F est orthogonal
à tout vecteur de G, autrement dit si :

∀(x, y) ∈ F × G, x ⊥ y.

Exercice 1. Dans C([0, 2π],R) muni du produit scalaire vu précédemment, montrer que sin ⊥ cos.

-
⟨sin, cos⟩ =

∫ 2π

0
sin(x) cos(x)dx = 1

2

∫ 2π

0
sin(2x)dx = −1

4 [cos(2x)]2π
0 = 0.

Remarque 2. On peut en déduire que les droites vectorielles Vect {sin} et Vect {cos} sont orthogonales.

Théorème 2. Théorème de Pythagore.
Deux vecteurs x et y de E sont orthogonaux si, et seulement si, ∥x + y∥2 = ∥x∥2 + ∥y∥2.

Démonstration.
L’équivalence découle immédiatement de l’égalité : ∥x + y∥2 = ∥x∥2 + ∥y∥2 + 2 ⟨x, y⟩. 2
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Définition 4.
• On appelle famille orthogonale, toute famille de vecteurs 2 à 2 orthogonaux.
• On appelle famille orthonormale ou orthonormée, toute famille orthogonale dont les vecteurs sont
normés i.e. de norme 1.

Exemple 3. La base canonique de Rn est une famille orthonormée pour le produit scalaire canonique.
On parle donc de base orthonormée.

Proposition 2. Relation de Pythagore.
Si (x1, . . . , xn) est une famille orthogonale de vecteurs de E, alors :∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
2

=
n∑

i=1
∥xi∥2.

Démonstration.∥∥∥∥∥
n∑

i=1
xi

∥∥∥∥∥
2

=
〈

n∑
i=1

xi,

n∑
j=1

xj

〉
=

n∑
i=1

n∑
j=1

⟨xi, xj⟩ , par bilinéarité du produit scalaire.

Et
n∑

i=1

n∑
j=1

⟨xi, xj⟩ =
n∑

i=1
∥xi∥2, car les vecteurs sont orthogonaux 2 à 2.

2

" La réciproque est fausse. Par exemple dans R2 : (1, 0), (1, 1) et (−1, 1). On a (1, 0) ̸⊥ (1, 1) or :

∥(1, 0)∥2 + ∥(1, 1)∥2 + ∥(−1, 1)∥2 = 1 + 2 + 2 = 5 et ∥(1, 0) + (1, 1) + (−1, 1)∥2 = ∥(1, 2)∥2 = 1 + 22 = 5

Proposition 3. Si (e1, . . . , en) est une famille orthonormée de E et si x =
n∑

i=1
λiei alors :

∀i ∈ J1, nK, λi = ⟨x, ei⟩ .

Démonstration.

Soit i ∈ J1, nK. ⟨x, ei⟩ =
〈

n∑
j=1

λjej , ei

〉
=

n∑
j=1

λj ⟨ej , ei⟩ =
n∑

j=1
λjδi,j = λi.

- 2

" Le vecteur x s’écrit donc x =
n∑

i=1
⟨x, ei⟩ ei.

Corollaire 2. Si (e1, . . . , en) est une famille orthonormée de E, alors elle est libre.

Démonstration.

Soit (λ1, . . . , λn) ∈ K
n tel que

n∑
i=1

λiei = 0.

En appliquant la proposition précédente à x = 0 on obtient, pour tout i : λi = ⟨0, ei⟩ = 0. Donc, la
famille est libre.
- 2
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Théorème 3. Procédé d’orthonormalisation de Schmidt.
Soit F = (e1, . . . , en) une famille libre d’un espace préhilbertien réel E. Alors, il existe une famille
orthonormée (f1, . . . , fn) de E telle que :

∀i ∈ J1, nK, Vect {e1, . . . , ei} = Vect {f1, . . . , fi}.

" Il n’y a pas unicité de la famille (f1, . . . , fn). En effet, la famille (−f1, f2, . . . , fn) convient aussi.
Cependant, la famille orthonormée (f1, . . . , fn) devient unique si l’on impose de plus la condition :
∀i ∈ J1, nK, ⟨ei, fi⟩ > 0.

C’est justement, cette famille là que donne le procédé d’orthonormalisation de Schmidt.

Remarque importante. Si les premiers vecteurs de la famille sont déjà orthonormés, alors le procédé
les conserve.

Exercice 2. Dans R3 muni du produit scalaire usuel, orthonormaliser la famille :
e1 = (1, 1, 0), e2 = (1, 2, 0), e3 = (1, 1, 1).

" Avant d’orthonormaliser une famille, bien penser à vérifier qu’elle est libre.

e1 = g1

g2 e2

λg1

• Posons g1 = e1 =
�� ��(1, 1, 0) .

• Posons g2 = e2 − λg1. On veut ⟨g1, g2⟩ = 0.
Or, ⟨g1, g2⟩ = ⟨g1, e2 − λg1⟩ = ⟨g1, e2⟩ − λ ⟨g1, g1⟩.
Or, ⟨g1, e2⟩ = 1 × 1 + 1 × 2 + 0 × 0 = 3 et ⟨g1, g1⟩ = 12 + 12 + 02 = 2.
Donc, ⟨g1, g2⟩ = 0 ⇔ 3 − 2λ = 0. Il suffit donc de poser λ = 3

2 .

Donc, g2 = (1, 2, 0) − 3
2 (1, 1, 0) =

�
�

�



(
−1
2 ,

1
2 , 0

)
.

• Posons g3 = e3 − λ1g1 − λ2g2. On veut ⟨g3, g1⟩ = 0 et ⟨g3, g2⟩ = 0.
⟨g3, g1⟩ = ⟨e3 − λ1g1 − λ2g2, g1⟩ = ⟨e3, g1⟩ − λ1 ⟨g1, g1⟩ − λ2 ⟨g2, g1⟩ = 2 − 2λ1.
Il suffit donc de poser λ1 = 1.
⟨g3, g2⟩ = ⟨e3 − λ1g1 − λ2g2, g2⟩ = ⟨e3, g2⟩ − λ1 ⟨g1, g2⟩ − λ2 ⟨g2, g2⟩ = 0 − 1

2 λ2.
Il suffit donc de poser λ2 = 0.
Donc, g3 = e3 − g1 = (1, 1, 1) − (1, 1, 0) =

�� ��(0, 0, 1) .

• Re-normalisons les vecteurs : ∥g1∥ =
√

12 + 12 + 02 =
√

2, ∥g2∥ = 1√
2 et ∥g3∥ = 1. D’où :

f1 = 1√
2

(1, 1, 0), f2 =
√

2
(

−1
2 ,

1
2 , 0

)
= 1√

2
(−1, 1, 0) et f3 = (0, 0, 1).
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III. Bases orthonormées ou orthonormales.
Dans cette partie E désigne un espace euclidien i.e. un espace préhilbertien réel de dimension finie, notée n.

Définition 5. On appelle base orthonormée ou base orthonormale de E (ou d’un sous-espace vectoriel F
de E), toute base de E (ou de F ) qui est une famille orthonormée.

Proposition 4. Si dim E = n, et si (e1, . . . , en) est une famille orthonormée de E, alors c’est une base
orthonormée de E.

Démonstration.
La famille est orthonormée donc libre. Or, elle est constituée de n vecteurs, et dim E = n. Donc c’est
une base de E. - 2

Voici une conséquence immédiate du procédé d’orthonormalisation :

Proposition 5. Si (e1, . . . , en) est une base de E, alors il existe une base orthonormée (f1, . . . , fn) de E
telle que : ∀i ∈ J1, nK, Vect {e1, . . . , ei} = Vect {f1, . . . , fi}.

Corollaire 3. Tout espace euclidien admet au moins une base orthonormée.

Démonstration. C’est une conséquence immédiate du fait que tout espace vectoriel de dimension finie
admette au moins un base et de la proposition précédente.- 2

Proposition 6. Toute famille orthonormée de E peut être complétée en une base orthonormée.

Démonstration.
Soit F = (e1, . . . , ep) une famille orthonormée de E. Elle est donc libre. Ainsi, d’après le théorème de la
base incomplète, elle peut être complétée en une base B = (e1, . . . , ep, ep+1, . . . , en) de E.
On applique ensuite le procédé d’orthonormalisation de Schmidt à cette base B. On obtient alors une base
orthonormée B′ de E. Mais d’après la remarque importante, les p premiers vecteurs formant déjà une
famille orthonormée restent inchangés par le procédé. Ainsi, la base orthonormée B′ est une sur-famille
de la famille (e1, . . . , ep).
- 2

Proposition 7. Si B = (e1, . . . , en) est une base orthonormée d’un espace euclidien E, alors :

∀x ∈ E, x =
n∑

i=1
⟨x, ei⟩ ei.

Démonstration.

Soit x ∈ E. Comme B est une base de E, il existe des réels (x1, . . . , xn) tels que : x =
n∑

i=1
xiei.

Ainsi, pour tout j ∈ J1, nK : ⟨x, ej⟩ =
〈

n∑
i=1

xiei, ej

〉
=

n∑
i=1

xi ⟨ei, ej⟩︸ ︷︷ ︸
=δi,j

= xj , puisque (e1, . . . , en) est une

base orthonormée.
- 2
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Proposition 8. Soit B = (e1, . . . , en) une base orthonormée d’un espace euclidien E. Soit x et y deux
vecteurs de coordonnées respectives (x1, . . . , xn) et (y1, . . . , yn) dans B. Alors :

⟨x, y⟩ =
n∑

i=1
xiyi = XT · Y et ∥x∥2 =

n∑
i=1

x2
i = XT · X,

où X et Y sont les matrices colonnes constituées des cordonnées de x et y dans B.

Démonstration.

• ⟨x, y⟩ =
〈

n∑
i=1

xiei,

n∑
j=1

yjej

〉
=

n∑
i=1

n∑
j=1

xiyj ⟨ei, ej⟩︸ ︷︷ ︸
=δi,j

=
n∑

i=1
xiyi.

• XT · Y =
(

x1 . . . xn

)
·

 y1
...

yn

 =
n∑

i=1
xiyi.

On a donc prouvé : ⟨x, y⟩ =
n∑

i=1
xiyi = XT · Y . La deuxième égalité s’en déduit en posant Y = X.

- 2

On déduit des propositions précédentes que : ⟨x, y⟩ =
n∑

i=1
⟨x, ei⟩ ⟨y, ei⟩.

IV. Orthogonal d’une partie.

Définition 6. On appelle orthogonal d’une partie (quelconque) A de E, l’ensemble noté A⊥ défini par :
A⊥ = {x ∈ E | ∀a ∈ A, ⟨x, a⟩ = 0} = {x ∈ E | ∀a ∈ A, x ⊥ a}.

Proposition 9. Pour toute partie A de E, l’ensemble A⊥ est un sous-espace vectoriel de E.

Démonstration. A⊥ = {x ∈ E | ∀a ∈ A, ⟨x, a⟩ = 0} =
⋂

a∈A

{x ∈ E | ⟨x, a⟩ = 0}. Notons :

φa : E → R

x 7→ ⟨x, a⟩

Le produit scalaire étant linéaire à gauche, φa est une forme linéaire et {x ∈ E | ⟨x, a⟩ = 0} = Ker (φa)
et : A⊥ =

⋂
a∈A

Ker (φa). Ainsi, A⊥ est un sev de E en tant qu’intersection de sev de E.

- 2

Exemple 4. {0}⊥ = E

Exercice 3. Montrer que E⊥ = {0}.

Soit x ∈ E⊥. Par définition, pour tout y ∈ E, ⟨x, y⟩ = 0.
Mais x appartient aussi à E. Donc en particulier, ⟨x, x⟩ = 0. Donc, x = 0 puisque le produit scalaire est
défini positif.
On a montré que E⊥ ⊂ {0}. Donc, E⊥ = {0} puisque E⊥ est un sev de E.
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Proposition 10. Si A et B sont deux parties de E, alors : A ⊂ B ⇒ B⊥ ⊂ A⊥.

Démonstration.

Supposons A ⊂ B. Soit x ∈ B⊥.
Alors pour tout b ∈ B, x ⊥ b.
Mais comme A ⊂ B, tout élément a ∈ A vérifie aussi a ∈ B donc vérifie : x ⊥ a.
On en déduit que x ∈ A⊥.
- 2

Proposition 11. Pour toute partie A de E, A⊥ = (Vect A)⊥.

Démonstration.

• Comme A ⊂ Vect A, la proposition précédente donne : (Vect A)⊥ ⊂ A⊥.
• Soit x ∈ A⊥. Montrons que x ∈ (Vect A)⊥.

Soit a ∈ Vect A. On sait qu’il existe alors des (a1, . . . , ap) ∈ Ap et (α1, . . . , αp) ∈ K
p tels que a =

p∑
i=1

αiai.

Ainsi, ⟨x, a⟩ =
〈

x,

p∑
i=1

αiai

〉
=

p∑
i=1

αi ⟨x, ai⟩︸ ︷︷ ︸
=0

= 0 car x ∈ A⊥ et ai ∈ A.

Donc, x ∈ (Vect A)⊥. On a donc montré que : A⊥ ⊂ (Vect A)⊥.

- 2

Rappel. Par définition, deux sous-espaces vectoriels F et G sont dits orthogonaux si tout vecteur de F
est orthogonal à tout vecteur de G.

Exemple 5. Les sous-espaces vectoriels F et F ⊥ sont orthogonaux.

Proposition 12. Deux sous-espaces vectoriels F et G sont orthogonaux si, et seulement si, F ⊂ G⊥ ;
ce qui équivaut encore à : G ⊂ F ⊥.

Démonstration.
F ⊥ G ⇔ (∀x ∈ F, ∀y ∈ G, x ⊥ y) ⇔ (∀x ∈ F, x ∈ G⊥) ⇔ (F ⊂ G⊥).
- 2

V. Supplémentaire orthogonal d’un sous-espace de dimension finie.
Soit E un espaces préhilbertien réel.

Théorème 4. Si F est un sous-espace vectoriel de E et si F est de dimension finie, alors F et F ⊥ sont
supplémentaires :

E = F⊕F ⊥.

Le sous-espace vectoriel F ⊥ est ainsi appelé le supplémentaire orthogonal de F .
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Remarque 4. Pour dire que G est le supplémentaire orthogonal de F , on notera :

E = F
⊥
⊕ F ⊥.

Remarque importante. Le théorème précédent est vrai en particulier dans le cas où E est un espace
euclidien. L’hypothèse « F est de dimension finie » est alors forcément vérifiée.

Dans le cas d’un espace euclidien, on peut, de plus, énoncer :

Proposition 13. Si F est un sous-espace vectoriel d’un espace euclidien E, alors :
1. dim F ⊥ + dim F = dim E.
2. (F ⊥)⊥ = F.

Démonstration.

1. C’est un conséquence immédiate de : F ⊥ ⊕ F = E.
2. Comme F ⊥ ⊥ F on a : F ⊂ (F ⊥)⊥.
Le point précédent appliqué à F ⊥ donne : dim(F ⊥)⊥+dim F ⊥ = dim E i.e. dim(F ⊥)⊥ = dim E−dim F ⊥.
Or, on a aussi : dim F = dim E − dim F ⊥. Donc, dim F = dim(F ⊥)⊥.
Conclusion : (F ⊥)⊥ = F.

- 2

VI. Projection orthogonale.
Soit E un espaces préhilbertien réel et F un sous-espace vectoriel de E de dimension finie.

Définition 7.
• On appelle projection orthogonale sur F , la projection sur F parallèlement à F ⊥.
• L’image d’un vecteur x de E, par cette projection est appelée le projeté orthogonal de x sur F .

Remarque importante. Nommons π la projection orthogonale sur F . On a déjà vu que tout vecteur
x de E est la somme d’un vecteur de F et d’un vecteur de F ⊥. Cette décomposition est donc :

x = π(x) + (x − π(x))
En particulier,

�� ��x − π(x) ∈ F ⊥ .

Définition 8. On appelle symétrie orthogonale par rapport à F , la symétrie par rapport à F parallèle-
ment à F ⊥.

Proposition 14. Si B = (e1, . . . , ep) est une base orthonormée de F , et si π la projection orthogonale
sur F , alors :

∀x ∈ E, π(x) =
p∑

i=1
⟨x, ei⟩ ei
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Démonstration.

-- 2

Retour sur le procédé d’orthonormalisation.

On a vu qu’on devait poser :

gp+1 = ep+1 −
p∑

i=1
λifi avec λi = ⟨ep+1, fi⟩

ce qui correspond à
�� ��gp+1 = ep+1 − π(ep+1) , où π est la projec-

tion orthogonale sur F = Vect {e1, . . . , ep} = Vect {f1, . . . , fp}. e1

g2

e2

π(e2)

π(e2)

Proposition 15. Soit F un sous-espace vectoriel engendré par une famille quelconque de vecteurs :
(e1, . . . , ep), et soit π la projection orthogonale sur F . Pour tout vecteur x ∈ E et tout y ∈ F , on a :

y = π(x) ⇔ ∀i ∈ J1, pK, ⟨x − y, ei⟩ = 0.

Démonstration.

Soit x ∈ E et y ∈ F .
• Supposons y = π(x). Alors, x − y = x − π(x) donc x − y ∈ F ⊥.
Donc, pour tout i ∈ J1, pK, ⟨x − y, ei⟩ = 0, puisque ei ∈ F .
• Réciproquement, supposons que pour tout i ∈ J1, pK, ⟨x − y, ei⟩ = 0.
Ainsi, x − y ∈ {e1, . . . , ep}⊥. Or, {e1, . . . , ep}⊥ = (Vect {e1, . . . , ep})⊥ = F ⊥, puisque (e1, . . . , ep) est une
famille génératrice de F . Donc, x − y ∈ F ⊥.
On a donc : x = y︸︷︷︸

∈F

+ x − y︸ ︷︷ ︸
∈F ⊥

. Donc, π(x) = y.

- 2

Exercice 4. On munit R[X] du produit scalaire définit pour tout (P, Q) ∈ R[X]2, par :

⟨P, Q⟩ =
∫ 1

0
P (x)Q(x)dx.

Déterminer le projeté orthogonal de X2 sur R1[X], en utilisant la proposition précédente.
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Notons π(X2) le projeté orthogonal de X2 sur R1[X]. Comme π(X2) ∈ R1[X] on peut noter :
π(X2) = aX + b.
Appliquons la proposition 15, avec pour famille génératrice de R1[X] la famille (1, X).〈
X2 − (aX + b), 1

〉
=

∫ 1

0
(x2 − ax − b)dx =

[
x3

3 − a
x2

2 − bx

]1

0
= 1

3 − a

2 − b.

〈
X2 − (aX + b), X

〉
=

∫ 1

0
(x3 − ax2 − bx)dx =

[
x4

4 − a
x3

3 − b
x2

2

]1

0
= 1

4 − a

3 − b

2 .{
a
2 + b = 1

3
a
3 + b

2 = 1
4

⇔

{
a
2 + b = 1

3
−b
2 = 1

12
⇔

{
a = 1
b = −1

6

Donc, π(X2) = X − 1
6 .

VII. Distance à un sous-espace vectoriel.
Rappel. Soit A une partie non vide de E et x ∈ E. On appelle distance de x à A, le nombre :

d(x, A) = inf
a∈A

d(x, a) = inf
a∈A

∥x − a∥ = inf{∥x − a∥ | a ∈ A}.

Théorème 5. Soit F un sous-espace vectoriel de E de dimension finie, soit π la projection orthogonale
sur F , et soit x ∈ E.
Alors la distance de x à F est atteint en un unique élément de F qui est : π(x).
1. d(x, F ) = ∥x − π(x)∥.
2. ∀y ∈ F, d(x, F ) = ∥x − y∥ ⇔ y = π(x).

Démonstration.
• Montrons que d(x, F ) = ∥x − π(x)∥.
Pour tout y ∈ F, ∥x − y∥2 = ∥ (x − π(x))︸ ︷︷ ︸

∈F ⊥

+ (π(x) − y)︸ ︷︷ ︸
∈F

∥2.

Donc d’après le théorème de Pythagore :
∀y ∈ F, ∥x − y∥2 = ∥x − π(x)∥2 + ∥π(x) − y∥2 (∗)

π(x)
x − π(x)

F
y

x
x − y

Donc, pour tout y ∈ F, ∥x − π(x)∥2 ⩽ ∥x − y∥2 d’où : ∥x − π(x)∥ ⩽ ∥x − y∥.
Cela signifie que ∥x − π(x)∥ est un minorant de l’ensemble {∥x − y∥ | y ∈ F}.
D’autre-part, π(x) ∈ F . Donc, ∥x − π(x)∥ est le minimum de {∥x − y∥ | y ∈ F}. En particulier,
d(x, F ) = ∥x − π(x)∥.

• Par ailleurs, si y ∈ F et y ̸= π(x) alors ∥π(x) − y∥2 > 0 et (∗) donne ∥x − y∥2 > ∥x − π(x)∥2

i.e. ∥x − y∥ > d(x, F ).
Ainsi, d(x, F ) est atteint en un unique élément de F .

- 2
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Exercice 5. En reprenant le produit scalaire de R[X] défini dans l’exercice précédent, calculer :

m = inf
(a,b)∈R2

∫ 1

0
(x2 − ax − b)2dx.

-
m = inf{∥X2 − aX − b∥2 | (a, b) ∈ R

2} = inf{∥X2 − P∥2 | P ∈ R1[X]} = d(X2,R1[X])2.

Or, d’après la proposition précédente, d(X2,R1[X]) est atteinte en π(X2) (projeté orthogonal de X2 sur
R1[X]) i.e. d(X2,R1[X]) = ∥X2 − π(X2)∥.
On a déjà montré que π(X2) = X − 1

6 .

Donc, m = ∥X2 − (X − 1
6)∥2 =

∫ 1

0

(
x2 − x + 1

6

)2
dx

Donc, m =
∫ 1

0

(
x4 + x2 + 1

36 − 2x3 − 2x

6 + 2x2

6

)
dx

Donc, m =
[

x5

5 + x3

3 + x

36 − x4

2 − x2

6 + x3

9

]1

0
= 1

180 .

VIII. Distance à un hyperplan d’un espace euclidien.
Proposition 16. Soit H un hyperplan affine de E, A un point de H, et a⃗ un vecteur normal à H. Alors
pour tout point M de E :

d(M, H) = |⃗a ·
−−→
AM |

∥a⃗∥
.

Démonstration.
• Cas particulier où H est un hyperplan vectoriel i.e. H = H.
On a déjà prouvé que : d(M, H) = ∥

−−→
PM∥, où P est le projeté

orthogonal de M sur H.
On sait que −−→

PM ∈ H⊥ et H⊥ est la droite engendrée par a⃗.
P

a⃗

H

M

O A

Il existe donc un réel α tel que −−→
PM = αa⃗. Donc, d(M, H) = |α|∥a∥

Donc : a⃗ ·
−−→
AM = a⃗ ·

−→
AP︸ ︷︷ ︸

=0

+a⃗ ·
−−→
PM (⃗a ·

−→
AP = 0 car a⃗ ∈ H⊥ et −→

AP ∈ H)

Donc : a⃗ ·
−−→
AM = a⃗ · (αa⃗) = α∥a∥2.

Ainsi, |⃗a ·
−−→
AM | = |α|∥a∥2 = ∥a⃗∥ d(M, H).

• Dans le cas général, où H est un hyperplan affine, on se ramène au cas précédent par translation de
vecteur −→

AO.
-- 2
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