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– Chapitre 16 : Endomorphismes d’un espace euclidien –

Dans tout ce chapitre, E désignera un espace euclidien et ∥.∥ la norme euclidienne.

I. Adjoint d’un endomorphisme d’un espace euclidien.

I.1. Représentation des formes linéaires sur un espace euclidien.

Exercice 1. Soit (a, b) ∈ E2. On suppose que : ∀x ∈ E, ⟨a, x⟩ = ⟨b, x⟩. Montrer que a = b.

On a donc : ∀x ∈ E, ⟨a − b, x⟩ = 0.
En posant x = a − b, on obtient : ∥a − b∥2 = 0, d’où a = b.

Pour tout a ∈ E, on note φa l’application :
φa : E → R

x 7→ ⟨a, x⟩ .

Le produit scalaire étant bilinéaire, on obtient que φa ∈ E∗ i.e. que φa est une forme linéaire sur E. Le
théorème de représentation de Riesz nous dit que réciproquement, toute forme linéaire est de la forme
φa pour un unique a ∈ E.

Théorème 1. Théorème de représentation de Riesz.
Pour toute forme linéaire f de E, il existe un unique a ∈ E tel que f = φa i.e. tel que :

∀x ∈ E, f(x) = ⟨a, x⟩ .

Démonstration.
Comme E est un espace euclidien, il possède une base orthonormée (e1, . . . , en).
Soit f ∈ E∗.
Analyse. Supposons l’existence de a ∈ E, tel que : ∀x ∈ E, f(x) = ⟨a, x⟩ .

On sait que : a =
∑

1⩽i⩽n

⟨a, ei⟩ ei.

Or, pour tout i ∈ J1, nK, ⟨a, ei⟩ = f(ei).
On en déduit que : a =

∑
1⩽i⩽n

f(ei)ei.

Synthèse. Soit a =
∑

1⩽i⩽n

f(ei)ei.

Pour montrer l’égalité des deux formes linéaires f et φa il suffit de montrer que f(ei) = φa(ei) pour tout
i ∈ J1, nK. Soit i ∈ J1, nK.

φa(ei) = ⟨a, ei⟩ =
〈 ∑

1⩽j⩽n

f(ej)ej , ei

〉
=

∑
1⩽j⩽n

f(ej) ⟨ej , ei⟩ = f(ei).

2

On verra une démonstration plus efficace en TD.
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Corollaire 1. Soit B une base orthonormée de E, et soit a un vecteur non nul de coordonnées (a1, . . . , an)
dans la base B.
Soit H une partie de E. Les affirmations suivantes sont équivalentes :
1. H = Ker φa,
2. H = {x ∈ E | ⟨a, x⟩ = 0},

3. H a pour équation dans B :
n∑

i=1
aixi = 0.

Dans chacun de ces 3 cas, on obtient que H est un hyperplan vectoriel de E, et a est alors appelé vecteur
normal à H.

" Si H est un hyperplan affine dirigé par un hyperplan vectoriel H, on appelle vecteur normal à H tout
vecteur normal à H.

I.2. Définition de l’adjoint d’un endomorphisme.

Proposition 1. Pour tout endomorphisme u ∈ L(E), il existe un unique endomorphisme de E, noté u∗

vérifiant :
∀(x, y) ∈ E2, ⟨x, u(y)⟩ = ⟨u∗(x), y⟩ .

Cet endomorphisme u∗ est appelé l’adjoint de u.

Démonstration.

2

Exemple 1. 0L(E)∗ = 0L(E)

- Id∗
E = IdE .

Proposition 2. L’application u 7→ u∗ est une symétrie de l’espace vectoriel L(E).
Autrement-dit, l’application u 7→ u∗ est un endomorphisme de L(E) et c’est une application involutive :
∀u ∈ L(E), (u∗)∗ = u.
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" On obtient donc que l’application u 7→ u∗ est un automorphisme de l’espace vectoriel L(E).

Démonstration.

2

Proposition 3. Pour tout (u, v) ∈ L(E)2, (v ◦ u)∗ = u∗ ◦ v∗.

Démonstration.

2

Corollaire 2. Si u est un automorphisme de E, alors u∗ est un automorphisme de E, et l’on a :

(u∗)−1 =
(
u−1)∗.

Démonstration.

2

Matrice de l’adjoint en base orthonormée.

Proposition 4. Pour toute base orthonormée B de E, on a :

MB(u∗) = MB(u)T.
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Démonstration.

2

Corollaire 3. On munit Rn de sa structure euclidienne canonique.
Soit A ∈ Mn(R) et soit u l’endomorphisme canoniquement associé à A. Alors u∗ est l’endomorphisme
canoniquement associé à AT.

Démonstration. La base canonique de Rn est une base orthonormée pour le produit scalaire canonique
de Rn.

2

Corollaire 4. Pour tout u ∈ L(E) :

tr u∗ = tr u, rg u∗ = rg u, det u∗ = det u et χu∗ = χu.

Démonstration. Un matrice et sa transposée ont même trace, même rang, même déterminant et même
polynôme caractéristique.

2

Corollaire 5. Pour tout u ∈ L(E) :

Ker u∗ =
(
Im u

)⊥ et Im u∗ =
(
Ker u

)⊥
.

Démonstration.

2

Proposition 5. Si F est un sous-espace vectoriel stable par u, alors F ⊥ est stable par u∗.
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Démonstration.

2

Soit E un espace euclidien dont on note ∥ · ∥ la norme euclidienne. On rappelle que l’on peut définir la
norme subordonnée à ∥ · ∥ sur l’algèbre L(E), en posant, pour tout u ∈ L(E) :

9u9 = sup
∥x∥=1

∥u(x)∥ = sup
x ̸=0E

∥u(x)∥
∥x∥

.

Exercice 2. Montrer que pour tout u ∈ L(E) : 9u9 = 9u∗9.

-

II. Isométries vectorielles. Matrices orthogonales.

II.1. Isométries vectorielles d’un espace euclidien.

Définition 1. On appelle isométrie vectorielle de E, tout endomorphisme u de E conservant la norme,
i.e. vérifiant :

∀x ∈ E, ∥u(x)∥ = ∥x∥.

Exemple 2. IdE et -IdE sont des isométries vectorielles de E.

Définition 2. On appelle automorphisme orthogonal de E, tout endomorphisme u de E conservant le
produit scalaire, i.e. vérifiant :

∀(x, y) ∈ E2, ⟨u(x), u(y)⟩ = ⟨x, y⟩ .

Proposition 6. Soit u ∈ L(E). Alors, u est un automorphisme orthogonal si, et seulement si, u est une
isométrie vectorielle.

" Conformément au programme, nous utiliserons de préférence l’expression « isométrie vectorielle ».
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Démonstration.

- 2

Proposition 7. Les isométries vectorielles sont des automorphismes de E.

Démonstration.

- 2

" On comprend mieux pourquoi les isométries vectorielles sont aussi appelées automorphismes ortho-
gonaux.
Plus précisément :

Proposition 8. Soit u ∈ L(E). Alors :
(u est une isométrie vectorielle) ⇔ (u est un automorphisme de E et u−1 = u∗).

Démonstration.

- 2
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Proposition 9. Soit u ∈ L(E). Les affirmations suivantes sont équivalentes :
1. u est une isométrie vectorielle,
2. pour toute base orthonormée B de E, l’image de B par u est une base orthonormée de E,
3. il existe une base orthonormée de E dont l’image par u est une base orthonormée de E,

Démonstration.

- 2

Exercice 3. Soit u une symétrie de E. Montrer que u est une isométrie vectorielle, si, et seulement
si, c’est une symétrie orthogonale.

-

-
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Exercice 4. Une projection peut-elle être une isométrie vectorielle ?

-

II.2. Groupe orthogonal O(E).

Proposition 10.
• La composée de deux isométries vectorielles de E est une isométrie vectorielle de E.
• La réciproque d’une isométrie vectorielle de E est une isométrie vectorielle de E.
Par conséquent, l’ensemble noté O(E), des isométries vectorielles de E est un sous-groupe de (GL(E), ◦).
O(E) est appelé le groupe orthogonal de E.

-

- 2

II.3. Matrices orthogonales.

Proposition 11. Soit M ∈ Mn(R). Les affirmations suivantes sont équivalentes :
1. MTM = In.
2. MMT = In.
3. M est inversible et M−1 = MT.
4. les colonnes de M forment une famille orthonormée de Rn (pour le produit scalaire canonique de Rn).
5. les lignes de M forment une famille orthonormée de Rn (pour le produit scalaire canonique de Rn).
Une matrice vérifiant l’une de ces 5 propriétés équivalentes est dite orthogonale.

Exemple 3.
• In est une matrice orthogonale

• M =
(

1√
2

−1√
2

1√
2

1√
2

)
est une matrice orthogonale. Ainsi : M−1 =
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Démonstration. -

- 2

Proposition 12. Soit B une base orthonormée de E. Une base B′ de E est orthonormée si, et seulement
si, la matrice de passage de B à B′, PB,B′ , est orthogonale.

Démonstration.

- 2
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Proposition 13. Soit B une base orthonormée de E, et soit u ∈ L(E).
Alors, u ∈ O(E) si, et seulement si, MB(u) est une matrice orthogonale.

Démonstration.

- 2

Proposition 14. L’ensemble des matrices orthogonales de Mn(R) est un sous-groupe de (GLn(R), ×).
Il est noté O(n) ou On(R) et est appelée le groupe orthogonal.

Démonstration.

- 2
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II.4. Groupe spécial orthogonal.

Exercice 5.
1. Quel est le déterminant d’une matrice orthogonale M ∈ On(R) ?
2. Quel est le déterminant d’une isométrie u ∈ O(E) ?

-

Définition 3.
• Une matrice orthogonale est dite positive si son déterminant vaut 1, et négative s’il vaut −1.
• Une isométrie vectorielle est dite positive ou directe si son déterminant vaut 1, et négative ou indirecte
s’il vaut −1.

Proposition 15. Soit B une base orthonormée de E, et soit u ∈ L(E). Alors :
• u est une isométrie positive si, et seulement si, MB(u) est une matrice orthogonale positive,
• u est une isométrie négative si, et seulement si, MB(u) est une matrice orthogonale négative.

Démonstration.

- 2

" Ceci ne dépend pas du choix de l’orientation de la base orthonormée B de E.

Proposition 16.
• L’ensemble des matrices positives de On(R) forment un sous-groupe de On(R), appelée le groupe
spécial orthogonal. Il est noté SOn(R) ou SO(n).
• L’ensemble des isométries directes de O(E) forment un sous-groupe de O(E), appelée le groupe spécial
orthogonal. Il est noté SO(E).

Démonstration.

- 2

Définition 4. On appelle réflexion une symétrie orthogonale par rapport à un hyperplan.
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Proposition 17. Les réflexions sont des isométries indirectes.

Démonstration.

- 2

Rappel. Orienter l’espace E c’est choisir une base de référence B0 de E. Alors, les bases B de E vérifient
toutes :

detB0(B) > 0 ou detB0(B) < 0.

Dans le premier, cas, on dit que B est une base directe, et dans le second cas, que B est une base indirecte.

Exemple 4. Si (e1, e2, . . . , en) est une base directe de E, alors (−e1, e2, . . . , en) en est une base indirecte.

Exercice 6. Soit B = (e1, e2) une base directe de E. Montrer que (e1 − e2, e1 + e2) une base de E, et
donner son orientation.

detB(e1 − e2, e1 + e2) =
∣∣∣∣ 1 1
−1 1

∣∣∣∣ = 2 > 0. Ainsi, (e1 − e2, e1 + e2) est une base directe de E.

Proposition 18. Soit B une base orthonormée directe de E.
Une base B′ de E est orthonormée directe si, et seulement si, la matrice de passage PB,B′ , est orthogonale
positive, i.e. si, et seulement si, PB,B′ ∈ SOn(R).

Démonstration.

- 2

Corollaire 6. Soit F une famille de n vecteurs de E, et soit B et B′ deux bases orthonormées directes
de E. Alors, detB(F) = detB′(F).

Démonstration.

- 2

" En régle générale, le déterminant d’une famille F de vecteurs dans une base B, detB(F) dépend du
choix de la base B. Mais on vient de voir ici que la valeur de detB(F) sera la même quel que soit le choix
d’une base orthonormée directe B.
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III. Isométrie vectorielle en dimension 2.
Soit E un plan euclidien i.e. un espace euclidien de dimension 2.

III.1. Matrices orthogonales 2 × 2.

Proposition 19. L’ensemble O2(R) est l’ensemble des matrice de la forme :

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
ou S(θ) =

(
cos θ sin θ
sin θ − cos θ

)
,

avec θ ∈ R. On a de plus : SO2(R) = {R(θ) | θ ∈ R}.

Démonstration.

- 2

Proposition 20. L’application :
R : (R, +) → (SO2(R), ×)

θ 7→ R(θ)

est un morphisme de groupes surjectif et de noyau 2πZ.

Démonstration.

- 2

14 janvier 2026. Nicolas HUBERT Page n°13.

https://www.youtube.com/channel/UCaDhFd5i-mMZHBFinsi6hFg/


Lycée Jeanne d’Albret – MP – 2025-2026. Page n°14.

Corollaire 7. Le groupe (SO2(R), ×) est isomorphe au groupe (U, ×).

Démonstration.
Pour tout z ∈ U on note θ un argument de z et on note R̃(z) = R(θ). Pour montrer que l’on a correctement
défini une application de U dans SO2(R) on doit prouver que la valeur de R(θ) ne dépend pas du choix
d’un argument de z.
Soit θ et θ′ deux arguments de z. On a alors : θ ≡ θ′ [2π], i.e. qu’il existe k ∈ Z tel que θ = θ′ + 2kπ.
On a donc : R(θ) = R(θ′) + R(2kπ) = R(θ′).
L’application R̃ est donc correctement définie.
Soit (z1, z2) ∈ U

2. Soit θ1 un argument de z1 et θ2 de z2. On sait qu’un argument de z1z2 est θ1 + θ2.
Donc, R̃(z1z2) = R(θ1 + θ2) = R(θ1) × R(θ2) = R̃(z1) × R̃(z2).
Donc, R̃ est un morphisme de groupes de (U, ×) dans (SO2(R), ×).
Soit z ∈ U d’argument θ. R̃(z) = In ⇔ R(θ) = In ⇔ θ ∈ Ker R ⇔ θ ∈ 2πZ ⇔ z = 1.
On a prouvé que Ker R̃ = {1}, et donc R̃ est injective.
Soit A ∈ SO2(R). Par surjectivité de R il existe θ ∈ R tel que A = R(θ). Or, R(θ) = R̃(eiθ). Donc, R̃ est
surjective.

- 2

Remarque importante. On en déduit que (SO2(R), ×) est un groupe abélien.

III.2. Isométrie directe en dimension 2.

Proposition 21. Si r est une isométrie directe d’un un plan euclidien E, alors il existe un réel θ unique
modulo 2π tel que dans n’importe quelle base orthonormée directe de E, la matrice de r soit R(θ).
On dit alors que r est la rotation d’angle θ.

14 janvier 2026. Nicolas HUBERT Page n°14.

https://www.youtube.com/channel/UCaDhFd5i-mMZHBFinsi6hFg/


Lycée Jeanne d’Albret – MP – 2025-2026. Page n°15.

Démonstration.

- 2

Remarque importante. Ce résultat reste vrai dans une base orthonormée indirecte ; la seule chose
qui change sera la valeur de θ. En effet :

Proposition 22. Si E est un plan euclidien, le groupe (SO(E), ◦) est isomorphe au groupe (U, ×).

Démonstration. Conséquence immédiate du fait que le groupe (SO2(R), ×) est isomorphe au (U, ×).
- 2

Remarque 3. On en déduit que (SO(E), ◦) est un groupe abélien.

On suppose que que le plan euclidien E est orienté.

Proposition 23. Si x et y sont deux vecteurs non nuls, il existe une unique rotation r telle que
r
(

x
∥x∥
)

= y
∥y∥ .

On appelle mesure de l’angle orienté (x, y) toute mesure de r.
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Démonstration.

- 2

Proposition 24. Relation de Chasles.
Si x, y et z sont trois vecteurs non nuls, alors :

Démonstration.

- 2

Proposition 25. Si θ est une mesure de l’angle orienté (x, y) où x et y sont deux vecteurs normés, alors :

cos θ = sin θ =

où B désigne une bond quelconque de E.

Démonstration.

- 2
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III.3. Isométrie indirecte en dimension 2.

Proposition 26. Les isométries indirectes d’un plan euclidien E sont les réflexions.

Démonstration.
On a déjà vu que toute réflexion est une isométrie indirecte.
Réciproquement, soit s une isométrie indirecte, et soit B une bon quelconque de E.

- 2

Exercice 7. Déterminer l’axe d’une réflexion dont la matrice dans une bon (e1, e2) est S(θ).

-

-
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Proposition 27. (Hors programme). Toute rotation d’un plan euclidien E est la composée de deux
réflexions. De plus, la première réflexion peut être choisie arbitrairement, et l’axe de la deuxième se
déduit de l’axe de la première, par une rotation d’angle moitié.

Démonstration.

- 2

IV. Réduction des isométries vectorielles.
Proposition 28. L’endomorphisme induit sur un sous-espace vectoriel stable F par une isométrie
vectorielle u est aussi une isométrie vectorielle.

Démonstration. La conservation de la norme reste vraie par restriction à un sous-espace stable. 2

Proposition 29. Si F est un sous-espace vectoriel stable par une isométrie vectorielle u, alors F ⊥ est
également stable par u.

Démonstration.

- 2

Exercice 8. Soit u isométrie vectorielle. Que peut-on dire du spectre de u ? Montrer que les sous-espaces
propres sont orthogonaux deux à deux.

1. Soit λ une valeur propre et x un vecteur propre associé.
On a : ∥x∥ = ∥u(x)∥ = ∥λx∥ = |λ|∥x∥. Or ∥x∥ ≠ 0, d’où : |λ| = 1. On a prouvé que sp(u) ⊂ {−1, 1}.
2. Soit x ∈ E1(u) et y ∈ E−1(u). ⟨x, y⟩ = ⟨u(x), u(y)⟩ = ⟨x, −y⟩. On obtient donc : ⟨x, y⟩ = 0.
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Retour sur la dimension 2.

Exercice 9. Pour quelles valeurs de θ les matrices R(θ) et S(θ) sont-elles diagonalisables ?

-

En dimension 3.

Proposition 30. Soit u ∈ SO(E) où E est un espace euclidien de dimension 3. Alors, il existe une base
orthonormée B de E et un réel θ tels que :

MB(u) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

.

Démonstration.

1er cas : u diagonalisable. Si sp(u) = {1}, alors quel que soit la base orthonormée B de E, MB(u) est
semblable à I3, donc MB(u) = I3 ; ce qui est bien de la forme annoncée avec θ = 0.
Si sp(u) ̸= {1}. Comme u est une isométrie directe, dim E1(u) = 1 et dim E−1(u) = 2.
On choisit un vecteur propre normé e1 associé à la valeur propre 1, ainsi qu’une base orthonormée (e2, e3)
de E−1. Comme E1 ⊥ E−1, la base B = (e1, e2, e3) est orthonormée et on a : MB(u) = diag(1, −1, −1) ;
ce qui est bien de la forme annoncée avec θ = π.

2nd cas : u n’est pas diagonalisable. Comme la dimension de E est impaire, u admet au moins une valeur
propre λ ∈ {−1, 1}. On choisit un vecteur propre normé e1 associé à la valeur propre λ. Soit P =
Vect {e1}⊥. Comme Vect {e1} est stable par u et que u est une isométrie, on en déduit que P est stable
par u.
Comme u est une isométrie, on sait que l’induit uP est aussi une isométrie.
Si (e2, e3) est une base orthonormée de P , alors la matrice de uP dans cette base appartient à O2(R)
donc est de la forme R(θ) ou S(θ).
Mais c’est impossible que ce soit la matrice S(θ) car elle est diagonalisable et u ne l’est pas. Dans, la
base orthonormée B = (e1, e2, e3) la matrice MB(u) est dons de la forme :

MB(u) =

λ 0 0
0 cos θ − sin θ
0 sin θ cos θ

.

Et comme son déterminant vaut 1, λ = 1.

2
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Corollaire 8. Si u ∈ SO(E) où E est un espace euclidien de dimension 3, alors il existe une droite stable
D et un plan stable P orthogonal à D tels que uD = IdD et tel que uP soit une rotation.

Remarque 4. Pour cette raison, comme en dimension 2, un élément u de SO(E) est appelé rotation
d’angle θ. Connaissant u, comment peut-on déterminer θ ?
Tr u = 1 + 2 cos θ permet de connaître θ au signe près.
Pas surprenant puisque le signe de θ dépend de l’orientation choisie !

Proposition 31. Soit u ∈ O(E) \ SO(E) où E est un espace euclidien de dimension 3. Alors, il existe
une base orthonormée B de E et un réel θ tels que :

MB(u) =

−1 0 0
0 cos θ − sin θ
0 sin θ cos θ

.

Démonstration.

- 2

Cas général.

Lemme. Tout endomorphisme u d’un espace vectoriel E de dimension n ⩾ 1 possède une droite ou un
plan stable par u.

Démonstration.

2
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Théorème 2. Soit u une isométrie vectorielle. Il existe une base orthonormée B de E dans laquelle la
matrice de u est égale à une matrice diagonale par blocs avec des blocs diagonaux :
•de taille 1 de la forme (α) avec α ∈ {−1, 1},
•de taille 2 et de la forme : R(θ) avec θ ∈ R \ πZ.

Dans une telle base orthonormée, MB(u) est une matrice diagonale par blocs de la forme :
Ip

−Iq

R(θ1)
. . .

R(θr)


" En munissant Rn de sa structure euclidienne canonique, toute matrice orthogonale est orthogonale-
ment semblable (i.e. avec matrice de passage orthogonale) à une matrice de la forme précédente.

Démonstration.
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V. Endomorphismes autoadjoints d’un espace euclidien.

V.1. Définitions et premières propriétés.

Définition 5. On dit qu’un endomorphisme u est autoadjoint (ou symétrique) si u∗ = u, i.e. si :
∀(x, y) ∈ E2, ⟨x, u(y)⟩ = ⟨u(x), y⟩ .

Notation. On note S(E) l’ensemble des endomorphismes autoadjoints de E.

Proposition 32. L’ensemble S(E) est un sous-espace vectoriel de L(E).

Démonstration. C’est le noyau de l’application linéaire u 7→ u − u∗.

2

Proposition 33. Soit B une base orthonormée de E, et soit u ∈ L(E).
Alors, u est autoadjoint si, et seulement si, MB(u) est une matrice symétrique.
Autrement-dit, u ∈ S(E) si, et seulement si, MB(u) ∈ Sn(R).

On comprend maintenant pourquoi les endomorphismes autoadjoints sont aussi appelés endomorphismes
symétriques.
" On rappelle que Sn(R) désigne l’ensemble des matrices symétriques de Mn(R).

Corollaire 9. En notant n = dim E, on obtient que dim S(E) = n(n + 1)
2 .

Démonstration.

- 2

Proposition 34. Un projecteur de E est un projecteur orthogonal si, et seulement s’il est autoadjoint.

Démonstration.

- 2
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V.2. Réduction des endomorphismes autoadjoints.

Proposition 35. Soit u ∈ S(E) et F un sous-espace vectoriel stable par u. Alors F ⊥ est stable par u.

Démonstration.

- 2

Proposition 36. Soit u ∈ S(E) et F un sous-espace vectoriel stable par u. Alors l’endomorphisme
induit uF est autoadjoint.

Démonstration.

- 2

Proposition 37. Les sous-espaces propres d’un endomorphisme autoadjoint sont 2 à 2 orthogonaux.

Démonstration.

- 2

Théorème 3. Théorème spectral. Soit u un endomorphisme d’un espace euclidien E. Les affirmations
suivantes sont équivalentes :
1. u est autoadjoint,

2. E =
⊥⊕

λ∈sp(u)

Eλ(u),

3. il existe une base orthonormée de E constituée de vecteurs propres de u.

Lemme. Tout endomorphisme autoadjoint u d’un espace euclidien E de dimension 1 ou 2 possède au
moins une valeur propre.

Démonstration.
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Démonstration du théorème spectral.

- 2

Interprétation matricielle.

Théorème 4. Théorème spectral. Une matrice de Mn(R) est symétrique si, et seulement si, elle est
orthogonalement diagonalisable (i.e. diagonalisable avec matrice de passage orthogonale).

" Le résultat est faux pour une matrice à coefficients complexes.

Exercice 10. Montrer que la matrice symétrique A =
(

1 i
i −1

)
n’est pas diagonalisable.

Son polynôme caractéristique est X2 donc A a 0 pour unique valeur propre. Si A était diagonalisable,
elle serait semblable à la matrice nulle, donc serait égale à la matrice nulle.

Exercice 11. Soit A =

1 1 1
1 1 1
1 1 1

. Déterminer P ∈ O3(R) et D diagonale telles que : A = PDP T.
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A est symétrique réelle donc est orthogonalement diagonalisable.
On a rg A = 1 donc 0 est valeur propre. Le noyau de A est le plan d’équation x + y + z = 0 dont (e1, e2)

est une base orthonormée, avec : e1 = 1√
2

 1
−1
0

 , e2 = 1√
6

 1
1

−2

.

" D’après la formule du rang, on savait déjà que dim E0(A) = 2.
Comme Tr A = 3, la somme des valeurs propres complexes vaut 3, et donc 3 est valeur propre. Or, E3(A)

est la droite orthogonale à E0(A) donc est dirigé par (1, 1, 1). Il suffit donc de poser : e3 = 1√
3

1
1
1

.

V.3. Endomorphismes autoadjoints positifs, définis positifs.

Définition 6. Soit u un endomorphisme autoadjoint de E.
• On dit que u est autoadjoint positif si : ∀x ∈ E, ⟨x, u(x)⟩ ⩾ 0.
• On dit que u est autoadjoint défini positif si : ∀x ∈ E \ {0}, ⟨x, u(x)⟩ > 0.

Notations. L’ensemble des endomorphismes autoadjoints positifs de E est noté S+(E) ; celui des endo-
morphismes autoadjoints définis positifs S++(E).

Remarque 5. Si u ∈ S++(E) alors, l’application φ définie pour tout (x, y) ∈ E2 par :

φ(x, y) = ⟨x, u(y)⟩

est un produit scalaire sur E.

Proposition 38. Caractérisation spectrale.
Soit u ∈ S(E). On a alors :

u ∈ S+(E) ⇔ sp(u) ⊂ R+ et u ∈ S++(E) ⇔ sp(u) ⊂ R
∗
+.

Démonstration.

2
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Définition 7. Soit A ∈ Sn(R).
• On dit que A est une matrice symétrique positive si :

∀x ∈ R
n, ⟨x, Ax⟩ ⩾ 0.

• On dit que A est une matrice symétrique définie positive si :

∀x ∈ R
n \ {0}, ⟨x, Ax⟩ > 0.

Notations. L’ensemble des matrices symétriques positives est noté S+
n (R) ; celui des matrices symé-

triques définies positives S++
n (R).

" On a la même caractérisation spectrale que pour les endomorphismes.

Exercice 12. Soit A ∈ S2(R). Montrer que : A ∈ S++
2 (R) ⇔ (trA > 0 et det A > 0).

-
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