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– Chapitre 17 –
Ensembles dénombrables et familles sommables

I. Ensembles finis et dénombrement (rappels).

I.1. Notion d’ensembles finis.

Définition 1. Un ensemble E est dit fini s’il existe un entier naturel n tel que E et J1, nK soient en
bijection. Il y a alors unicité d’un tel n ∈ N. On l’appelle cardinal de E, et on le note Card (E), ou #E
ou |E|. Un ensemble non fini est dit infini.

Remarque 1. Concrètement, dire qu’un ensemble E est fini de cardinal n, signifie qu’on peut relier de
manière bijective les éléments de E aux éléments de J1, nK, ce qui équivaut encore à dire que l’ensemble
E peut s’écrire E = {x1, . . . , xn}, où les n éléments sont deux à deux distincts.

Proposition 1.
• Tout ensemble en bijection avec un ensemble fini, est fini et de même cardinal.
• Tout ensemble en bijection avec un ensemble infini, est infini.

Corollaire 1. Si E et F sont deux ensembles finis de cardinal respectif n et m, alors : E et F sont en
bijection si, et seulement si, n = m.

" L’écriture E = {x1, . . . , xn} n’implique pas que Card (E) = n, mais que : Card (E) ⩽ n.

Théorème 1. Soit E un ensemble fini et F une partie de E. Alors :
• F est un ensemble fini et Card (F ) ⩽ Card (E),
• Card (F ) = Card (E) ⇔ F = E.

Proposition 2. Si E et F sont deux ensembles finis et disjoints, alors E ∪ F est un ensemble fini, et :

Card (E ∪ F ) = Card (E) + Card (F ).

Corollaire 2. Si A est une partie d’un ensemble fini E, alors : Card (A) = Card (E) − Card (A).

Corollaire 3. Si (Ek)1⩽k⩽n est une famille de n ensembles finis deux à deux disjoints.
Alors

⋃
1⩽k⩽n

Ek est un ensemble fini et : Card
⋃

1⩽k⩽n

Ek =
∑

1⩽k⩽n

Card (Ek).

Corollaire 4. Si E et F sont deux ensembles finis, alors E ∪ F est un ensemble fini, et :
Card (E ∪ F ) = Card (E) + Card (F ) − Card (E ∩ F ).

Remarque 2. On peut déduire de l’égalité précédente que pour deux ensembles finis E et F :
Card (E ∪ F ) = Card (E) + Card (F ) ⇔ E ∩ F = ∅.
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Corollaire 5. Si E et F sont deux ensembles finis, alors E × F est un ensemble fini, et :
Card (E × F ) = Card (E) · Card (F ).

On pourrait généraliser cette proposition au cas d’un produit de p ensembles finis (avec p ∈ N∗). En
particulier :

Corollaire 6. Soit p ∈ N∗ et E un ensemble fini. Alors Ep est un ensemble fini, et :

Card (Ep) = (Card E)p.

I.2. Applications d’un ensemble fini dans un autre.

Proposition 3. Soit E et F deux ensembles finis, et f une application de E dans F . On a :
1. Card (f(E)) ⩽ Card (E)
2. Card (f(E)) = Card (E) ⇔ f est

Proposition 4. Soit E et F deux ensembles finis, et f une application de E dans F . On a :
1. Card (f(E)) ⩽ Card (F )
2. Card (f(E)) = Card (F ) ⇔ f est

On a déjà vu que si deux ensembles finis sont en bijection, alors ils ont même cardinal. Mais plus préci-
sément :

Proposition 5. Soit E et F deux ensembles finis, et f une application de E dans F . On a :
1. Si f est injective, alors : Card (E) ⩽ Card (F ).
2. Si f est surjective, alors : Card (F ) ⩽ Card (E).

Théorème 2. Soit E et F deux ensembles finis de même cardinal, et f une application de E dans F .
Alors :

f injective ⇔ f surjective ⇔ f bijective.

I.3. Dénombrement.

I.3.a. Dénombrement des p-listes ou p-uplets.

Soit p ∈ N∗ et E est un ensemble.

Définition 2. On appelle p-liste (ou p-uplet) d’éléments de E, tout élément de Ep.

Théorème 3. Le nombre de p-listes d’un ensemble fini de cardinal n est :

Exercice 1. Combien peut-on faire de mots de 4 lettres avec l’alphabet français ?

On s’intéresse à dénombrer les 4-listes d’un ensemble à 26 éléments.
Il y en a : 264 = 456976.
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I.3.b. Dénombrement des applications d’un ensemble fini dans un autre.

Théorème 4. Si E et F sont deux ensembles finis, alors F(E, F ) est un ensemble fini, et :

Card (F(E, F )) = (Card F )Card E .

I.3.c. Dénombrement des injections d’un ensemble fini dans un autre. Arrangements.

Définition 3. Soit p ∈ N∗.
Si F est un ensemble, on appelle arrangement de p éléments de F une p-liste d’éléments de F distincts
deux à deux.

Théorème 5. Soit E et F deux ensembles finis de cardinaux respectifs p et n.

Le nombre d’injections de E dans F , noté Ap
n est donné par : Ap

n =


n!

(n − p)! si p ⩽ n

0 sinon.

Remarque importante. Ce nombre Ap
n correspond aussi au nombre d’arrangements de p éléments d’un

ensemble de cardinal n.

Remarque 4. Un “p-arrangement” correspond à p tirages successifs avec ordre et sans remise.

Exercice 2. Combien y a-t-il de tiercés dans l’ordre pour 10 chevaux au départ ?

On s’intéresse à dénombrer les 3-arrangements d’un ensemble à 10 éléments.
Il y en a : A3

10 = 10!
7! = 10 × 9 × 8 = 720.

I.3.d. Dénombrement des permutations.

Définition 4. On appelle permutation d’un ensemble E, une bijection de E dans E.

Théorème 6.
Si E et F sont deux ensembles finis de même cardinal n, alors il existe n! bijections de E dans F .
En particulier, le nombre de permutations d’un ensemble fini E de cardinal n est n!

" Si E et F sont deux ensembles finis de cardinal différent, alors il n’existe aucune bijection de E dans F .

Remarque 5. Une permutation correspond concrètement à une manière d’ordonner les éléments de E.

Exercice 3. Combien y a-t-il de manières de placer 35 étudiants dans une salle de classe comptant 35
chaises ?

Il y a 35! possibilités (35! > 1040)
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I.3.e. Dénombrement des combinaisons.

Définition 5. Soit p ∈ N.
Si E est un ensemble, on appelle combinaison de p éléments de E une partie de E à p éléments.

Théorème 7. Soit (p, n) ∈ N2, et E un ensemble de cardinal n. Le nombre de parties de E à p éléments

est donné par le coefficient binomial p parmi n, noté
(

n

p

)
et défini par :

(
n

p

)
=


n!

p!(n − p)! si p ⩽ n

0 sinon.

Remarque 6. Une combinaison à p éléments correspond à p tirages successifs sans ordre ni remise ; ce
qui revient encore à un tirage simultané.

Exemple 1.
(

n

0

)
= 1

(
n

n

)
= 1

(
n

1

)
= n

(
n

n − 1

)
= n

Proposition 6. Soit (p, n) ∈ N2 avec p ⩽ n.

1.
(

n

p

)
=

(
n

n − p

)
2. Si de plus p et n sont non nuls :(

n

p

)
=

(
n − 1

p

)
+

(
n − 1
p − 1

)
Égalité de Pascal

Démonstration.

- 2

Proposition 7. Identité d’absorption - Formule du pion.
Pour tout (k, n) ∈ N2 tel que 1 ⩽ k ⩽ n on a :

k

(
n

k

)
= n

(
n − 1
k − 1

)
.

Cette égalité est aussi appelée « formule du capitaine » en référence à la démonstration par dénombre-
ment suivante :

Démonstration.

- 2
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Rappel. Lorsque n est un nombre premier que l’on notera p, les coefficients binomiaux non extrêmes
de la ligne p du triangle de Pascal sont tous multiples de p. En effet :

Théorème 8. Formule du binôme de Newton.
Soit (A, +, ×) un anneau, et soit (a, b) ∈ A2 deux éléments qui commutent i.e. vérifiant ab = ba. Alors :

∀n ∈ N, (a + b)n =
n∑

k=0

(
n

k

)
akbn−k =

n∑
k=0

(
n

k

)
an−kbk.

Corollaire 7. Soit E un ensemble de cardinal n. Le nombre de parties de E est 2n.

Remarque 7. L’identité d’absorption peut être utile pour éliminer un paramètre dans des calculs de
sommes, comme par exemple :

n∑
k=0

k

(
n

k

)
=

n∑
k=1

n

(
n − 1
k − 1

)
= n

n−1∑
k=0

(
n − 1

k

)
= n2n−1,

Plus généralement
n∑

k=0
k

(
n

k

)
pk(1 − p)n−k = np, donne l’espérance de la loi binomiale B(n, p).

L’itération de la formule du pion :

k(k − 1)
(

n

k

)
= n(n − 1)

(
n − 2
k − 2

)
permet d’obtenir :

n∑
k=0

k2
(

n

k

)
=

n∑
k=0

(k(k − 1) + k)
(

n

k

)
= · · · = n(n + 1)2n−2.

" Il est important de savoir visualiser les différentes propriétés des coefficients binomiaux sur le triangle
de Pascal.

II. Notion d’ensembles dénombrables.

II.1. Ensembles dénombrables.

Définition 6. Un ensemble E est dit dénombrable s’il est équipotent à N, i.e. s’il existe une bijection de
E dans N.

Exemple 2. N est donc bien évidemment un ensemble dénombrable.

Exercice 4. Montrer que Z est un ensemble dénombrable.
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-

Remarque 8. Concrètement, dire qu’un ensemble E est dénombrable, signifie qu’il peut s’écrire :
E = {xn | n ∈ N},

où les éléments sont deux à deux distincts.

Exemple 3. La bijection ci-dessus entre N et Z revient à énumérer les éléments de Z de la façon suivante :
0, −1, 1, −2, 2, −3, 3, −4, 4, . . .

Remarque 9. Tout ensemble en bijection avec un ensemble infini, est lui même infini. Or, N est un
ensemble infini. On en déduit qu’un ensemble dénombrable est nécessairement infini.

" Cependant, tout ensemble infini n’est pas nécessairement dénombrable. On verra que R et P(N) sont
des ensembles non dénombrables.

Remarque 10. Tout ensemble en bijection avec un ensemble dénombrable, est lui même dénombrable.

Proposition 8. Les parties infinies de N sont dénombrables.

" Plus généralement, les parties infinies de n’importe quel ensemble dénombrable sont dénombrables.

Démonstration.

- 2
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Exemple 4. On en déduit que l’ensemble des nombres pairs, des nombres impairs, des nombres premiers
sont des ensembles dénombrables.

Proposition 9. L’ensemble N2 est dénombrable.

Démonstration.

- 2

Corollaire 8. Le produit cartésien d’un nombre fini d’ensembles dénombrables est dénombrable.

" On verra que le résultat est faux pour un produit infini d’ensembles dénombrables.

Démonstration.

- 2

Exemple 5. Pour tout n ∈ N∗, Nn et Zn sont dénombrables.
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II.2. Ensembles au plus dénombrables.

Définition 7. Un ensemble est dit au plus dénombrable s’il est fini ou dénombrable.

Exemple 6. De ce qui précède, les parties de N sont au plus dénombrables.
Plus généralement, les parties de n’importe quel ensemble au plus dénombrable sont au plus dénombrables.

Proposition 10. Soit E un ensemble. Les affirmations suivantes sont équivalentes :
1. E est au plus dénombrable,
2. E est en bijection avec une partie de N,
3. il existe une injection de E dans N.

Démonstration.

- 2

Exemple 7.
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Proposition 11. Un ensemble non vide E est au plus dénombrable si, et seulement s’il existe une surjec-
tion de N dans E.

Démonstration.

- 2

Remarque 11. On comprend maintenant que dire qu’un ensemble E est au plus dénombrable, signifie
qu’il peut s’écrire E = {xn | n ∈ N} (sans préciser que les éléments sont deux à deux distincts).

Corollaire 9. L’image d’un ensemble au plus dénombrable par une application est au plus dénombrable.

Démonstration.

- 2

Proposition 12. L’ensemble Q des nombres rationnels est dénombrable.

Démonstration.

- 2
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Proposition 13. Une réunion finie ou dénombrable d’ensembles finis ou dénombrables est finie ou
dénombrable.

Démonstration.

- 2

II.3. Ensembles infinis non dénombrables.

Théorème 9. L’ensemble R est non dénombrable.

Démonstration.

- 2
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Exercice 5. Montrer que l’ensemble R \ Q des nombres irrationnels n’est pas dénombrable.

En effet, s’il l’était, alors R serait dénombrable, car union de deux ensembles dénombrables, Q et R \ Q.

Exercice 6. Soit (a, b) ∈ R2, avec a < b. Montrer que l’intervalle ]a, b[ n’est pas dénombrable.

Nous allons montrer que ]a, b[ est en bijection avec R.

En effet, il existe une bijection affine de ]a, b[ sur ] − π
2 , π

2 [. Donc tan ◦f est une bijection de ]a, b[ dans R.

" On en déduit que toute partie de R d’intérieur non vide est non dénombrable.
En particulier, les intervalles de R sont :

Théorème 10. Théorème de Cantor.
Soit E une ensemble quelconque.
L’ensemble E n’est pas en bijection avec l’ensemble P(E) de ses parties.

Remarque 12. Si E est un ensemble fini, la démonstration est très simple. En effet, en notant
n = Card (E) on sait que Card (P(E)) = 2n. Or, on peut prouver par récurrence que 2n > n. Ainsi
Card (E) ̸= Card (P(E)), d’où E et P(E) ne peuvent être en bijection.

Exercice 7. Montrer qu’il existe au moins une injection de E dans P(E).

L’application : x 7→ {x}. Elle est injective car si {x} = {y} alors x = y.

" Pour démontrer le théorème de Cantor dans le cas général, nous prouverons donc qu’il n’existe pas
de surjection de E dans P(E).

Démonstration. Soit f une application de E dans P(E). On construit le sous-ensemble des éléments
de E qui n’appartiennent pas à leur image par f , c’est-à-dire :

D = {x ∈ E | x ̸∈ f(x)}.

Montrons par l’absurde que D n’a pas d’antécédent par f .
S’il existait un élément x ∈ E, tel que D = f(x), alors :
• si x ∈ D, par construction de D, x ̸∈ f(x) i.e. x /∈ D,
• si x /∈ D, on a de même : x ∈ f(x) i.e. x ∈ D.
Chacune des deux hypothèses mènent donc à une contradiction. On a donc montré qu’aucune fonction
de E dans P(E) n’est surjective, et a fortiori bijective.

2

Exemple 8. On en déduit que l’ensemble P(N) n’est pas dénombrable.
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Exemple 9. On en déduit aussi que l’ensemble {0, 1}N des suites à valeurs dans {0, 1} n’est pas
dénombrable. En effet, les ensembles {0, 1}N et P(N) sont équipotents.

Définition 8. On dit qu’un ensemble E a la puissance du continu s’il est équipotent à R, i.e. s’il est en
bijection avec R.

Remarque 13. Soit (a, b) ∈ R2, avec a < b. On a montré plus haut que tout intervalle de la forme ]a, b[
a la puissance du continu.

Remarque 14. Comme R est infini et non dénombrable, on en déduit que tout ensemble ayant la
puissance du continu est infini et non dénombrable.

Exemple 10. On peut montrer que les ensembles {0, 1}N et P(N) ont la puissance du continu.
Par contre, d’après le théorème de Cantor, l’ensemble P(R) n’a pas la puissance du continu.

III. Familles sommables.
Nous avons déjà donné un sens à une somme d’une infinité de nombres réels, et même d’une infinité de
vecteurs (séries à valeurs dans un evn de dimension finie) ou de fonctions (séries de fonctions). Les termes
de la somme étaient alors indexés par N, et l’ordre de sommation des termes était donc imposé.
Cela peut sembler surprenant, mais cet ordre imposé pour les termes à sommer a un importance. En
effet, si l’on considère une série semi-convergente de nombres réels, en réordonnant les termes à sommer
on peut changer la valeur de la somme, et même la nature de la série.
Prenons l’exemple de la série harmonique alternée, i.e. la série de terme général (−1)n−1

n . Cette série est
semi-convergente et :

+∞∑
n=1

(−1)n−1

n
= ln 2.

On peut démontrer que pour tout élément λ ∈ [−∞, +∞], il existe une permutation σ de N telle que :
+∞∑
n=1

(−1)σ(n)−1

σ(n) = λ.

III.1. Familles sommables de réels positifs.

On considère une famille (ui)i∈I de nombres réels positifs, où I est un ensemble quelconque (non néces-
sairement dénombrable).
Le but est de définir une notion de somme des termes de cette famille indépendamment de l’ordre dans
lequel seront sommés les éléments.
Pour cela, on considère indistinctement toutes les sommes d’un nombre fini de termes d’éléments de la
famille :
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{∑
i∈J

ui | J ⊂ I et J fini
}

.

Cet ensemble est une partie non vide de R+ donc il admet une borne supérieure dans [0, +∞], ce qui
conduit à la définition suivante :

Définition 9. Soit (ui)i∈I une famille de réels positifs.
• On appelle somme de la famille (ui)i∈I l’élément de [0, +∞] noté

∑
i∈I

ui et défini par :

∑
i∈I

ui = sup
J⊂I

J fini

∑
i∈J

ui.

• La famille (ui)i∈I est dite sommable si
∑
i∈I

ui < +∞.

Si I est fini, on retrouve la somme définie au sens usuel. Dans le cas où I = N, la notion de famille som-
mable (dans le cas positif) correspond à la notion de série convergente :

Proposition 14. La famille de réels positifs (un)n∈N est sommable si, et seulement si, la série
∑

un

converge. Et dans ce cas la somme de la famille et la somme de la série sont égales.

Démonstration.

- 2

Définition 10. On appelle support de la famille sommable (ui)i∈I l’ensemble :

{i ∈ I | ui ̸= 0}.
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Proposition 15. Le support d’une famille sommable positive (ui)i∈I est au plus dénombrable.

Démonstration.

- 2

" Dans la suite, on pourra donc supposer que I est au plus dénombrable.

Théorème 11. Sommation par paquets (cas positif).
Soit (In)n∈N une partition d’un ensemble au plus dénombrable I et soit (ui)i∈I une famille de réels
positifs. Alors : ∑

i∈I

ui =
+∞∑
n=0

∑
i∈In

ui.

" Ce théorème ne nécessite pas de faire l’hypothèse que la famille (ui)i∈I est sommable ; i.e. que l’égalité
ci-dessus est vraie dans [0, +∞].
" Ce théorème est particulièrement pratique. À la seule condition que les termes soient positifs, il
permet de regrouper les termes comme on le souhaite sans même avoir besoin de prouver que la famille
est sommable.

III.2. Familles sommables de nombres complexes.

Dans la suite I désigne un ensemble au plus dénombrable.

Définition 11. Une famille de nombres complexes (ui)i∈I est dite sommable si la famille de réels positifs
(|ui|)i∈I est sommable.

" Lorsque I = N, on retrouve l’équivalence entre sommabilité et convergence absolue de la série.
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Soit (ui)i∈I une famille sommable de nombres complexes. On souhaite définir la somme de cette famille
sommable.

Proposition 16. Inégalité triangulaire.

Soit (ui)i∈I une famille sommable de nombres complexe. On a alors :
∣∣∣∣∣∑

i∈I

ui

∣∣∣∣∣ ⩽ ∑
i∈I

|ui| .

Proposition 17. Linéarité de la somme.
Soit (ui)i∈I et (vi)i∈I deux familles sommables de nombres complexes, et soit (α, β) ∈ C2. Alors, la
famille (αui + βvi)i∈I est sommable et :∑

i∈I

(
αui + βvi

)
= α

∑
i∈I

ui + β
∑
i∈I

vi.

Théorème 12. Sommation par paquets (cas complexe).
Soit (In)n∈N une partition d’un ensemble au plus dénombrable I et soit (ui)i∈I une famille sommable de
nombres complexes. Alors :
• pour tout n ∈ N, la famille (ui)i∈In

est sommable,

• la série de terme général
∑
i∈In

ui converge, et
∑
i∈I

ui =
+∞∑
n=0

∑
i∈In

ui.

" Contrairement au cas positif, ce théorème nécessite d’avoir au préalable vérifier la sommabilité de la
famille ! En pratique, on pourra justifier la sommabilité de la famille (ui)i∈In en appliquant à la famille
(|ui|)i∈In le théorème de sommation par paquets dans le cas positif.
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Proposition 18. Convergence commutative.
Soit (un)n∈N une suite de nombres complexes. Si la série de terme général un converge absolument alors,
pour toute permutation σ de N, la série de terme général uσ(n) converge, et :∑

n∈N
uσ(n) =

∑
n∈N

un.

Démonstration.

- 2

" Ce résultat est faux dans le cas d’une série semi-convergence. Voir l’exemple de la série harmonique
alternée :

∑ (−1)n−1

n .

III.3. Application aux séries doubles.

Théorème 13. Théorème de Tonelli discret.
Soit (ui,j)(i,j)∈I×J une famille de réels positifs. Alors :∑

(i,j)∈I×J

ui,j =
∑
i∈I

∑
j∈J

ui,j =
∑
j∈J

∑
i∈I

ui,j .

" Il n’est pas utile de vérifier que la famille (ui,j)(i,j)∈I×J est sommable. Ainsi, l’égalité ci-dessus est
vraie dans [0, +∞].

Démonstration.

- 2

Théorème 14. Théorème de Fubini discret.
Soit (ui,j)(i,j)∈I×J une famille sommable de nombres complexes. Alors :∑

(i,j)∈I×J

ui,j =
∑
i∈I

∑
j∈J

ui,j =
∑
j∈J

∑
i∈I

ui,j .

" Pour pouvoir appliquer le théorème de Fubini, on vérifiera que la famille est sommable. Pour ce faire,
on pourra appliquer le théorème de Tonelli à la famille et prouver que :∑

i∈I

∑
j∈J

|ui,j | < +∞ ou
∑
j∈J

∑
i∈I

|ui,j | < +∞.
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