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– Chapitre 18 : Espaces probabilisés –

En mpsi, vous avez étudié la notion d’espaces probabilisés dans le cas d’un univers fini. L’objectif de ce
premier chapitre de probabilité est notamment de généraliser cette notion d’espaces probabilisés au cas
d’un univers quelconque.

I. Notion de tribu et d’espace probabilisable.
On souhaite modéliser une expérience aléatoire.

Définition 1.
• On appelle issue (ou réalisation) d’une expérience aléatoire tout résultat possible de cette expérience.
• L’ensemble des issues possibles d’une expérience aléatoire est appelé l’univers. On le note souvent Ω.

En mpsi, nous avez vu que lorsque Ω est un ensemble fini, alors l’ensemble des évènements est P(Ω).
Dans le cas, où l’ensemble Ω est infini non dénombrable, P(Ω) est tellement « gros » qu’on ne peut
raisonnablement plus travailler avec ; certaines parties seraient d’une telle complexité qu’on ne pourrait
pas calculer leur probabilité. Dans ce cas, on va choisir pour ensemble des évènements, une partie stricte
A de P(Ω), appelée tribu, et vérifiant certaines propriétés.

Définition 2. On appelle tribu ou σ-algèbre de Ω toute partie A de P(Ω) vérifiant les 3 propriétés
suivantes :
• Ω ∈ A,
• A est stable par passage au complémentaire : pour tout A ∈ A, A ∈ A,
• A est stable par union dénombrable : si (An)n∈N est une suite d’éléments de A, alors

⋃
n∈N

An ∈ A.

Exemple 1. L’ensemble P(Ω) des parties de Ω est une tribu de Ω, appelée tribu discrète.
L’ensemble {∅, Ω} de Ω, appelée tribu grossière.
Si A est une partie de Ω, l’ensemble {∅, A, A, Ω} est aussi une tribu de Ω.

Définition 3. On appelle espace probabilisable tout couple (Ω, A) où Ω est un ensemble non vide et A
une tribu de Ω.
On appellera alors évènement tout élément de A.

Proposition 1. Soit (Ω, A) un espace probabilisable. Alors :
• ∅ ∈ A,
• A est stable par intersection dénombrable : si (An)n∈N est une suite d’éléments de A, alors

⋂
n∈N

An ∈ A,

• A est stable par union et intersection finies,
• A est stable par différence.
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Démonstration.

- 2

Exemple 2. On considère une suite infinie de lancers à pile ou face. On note An l’évènement « obtenir
pile au n-ème lancer ». Écrire mathématiquement les évènements :

« obtenir au moins une fois pile »:

« obtenir au moins une fois face »:

« obtenir toujours pile »:

« obtenir toujours face »:

Exercice 1. Soit (An)n∈N une suite d’événements d’un espace probabilisable (Ω, A).
1. Montrer que l’ensemble B des issues appartenant à tous les événements An sauf à un nombre fini est
un événement.
2. Montrer que l’ensemble C des issues appartenant à une infinité d’événements An est un événement.

-

Remarque importante. On considère une expérience aléatoire d’univers Ω, et soit A un événement.
L’expérience est réalisée, et on obtient l’issue ω ∈ Ω.
Alors, l’événement A est réalisé si, et seulement si, ω ∈ A.
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On emploie le même vocabulaire que dans les espaces probabilisés finis. Rappelons certains points :

Définition 4. On dit que l’événement A implique l’événement B si A ⊂ B.

Remarque 2. Cette définition est totalement légitimée, par le fait que si A ⊂ B, alors :

∀ω ∈ Ω, (ω ∈ A ⇒ ω ∈ B).

Et cette implication peut se traduire en disant que « si A se réalise, alors B se réalise ».

Terminons cette partie par un tableau de correspondance entre le vocabulaire probabiliste et le vocabu-
laire ensembliste :

Langage probabiliste Langage ensembliste

issue, réalisation élément ω de l’univers Ω
événement élément A de la tribu A
A est réalisé ω ∈ A

A implique B A ⊂ B

A ou B A ∪ B

A et B A ∩ B

événement contraire de A complémentaire de A (A)
événement élémentaire singleton
événement impossible ∅
événement certain Ω
A et B sont incompatibles A ∩ B = ∅

-

II. Notion d’espace probabilisé.

II.1. Définitions.

Définition 5. On appelle probabilité sur l’espace probabilisable (Ω, A), toute application P définie sur
A et à valeurs dans [0, 1] vérifiant :
1. P(Ω) = 1,
2. pour toute suite (An)n∈N d’événements 2 à 2 incompatibles, la série

∑
P(An) converge et :

P
(⋃

n∈N
An

)
=

+∞∑
n=0

P(An) (σ-additivité).

" Une probabilité est donc une application, et non un nombre ! Cependant, si A est un événement,
alors P(A) est un nombre, appelé la probabilité de A.

Définition 6. On appelle espace probabilisé tout triplet (Ω, A, P) où (Ω, A) est un espace probabilisable
et P une probabilité sur (Ω, A).

" Un même espace probabilisable peut être muni de plusieurs probabilités. Par exemple, si l’on consi-
dère le lancer d’un dé à 6 faces, la probabilité dépendra du dé.
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II.2. Propriétés.

Dans la suite (Ω, A, P) désignera un espace probabilisé.

Proposition 2. P(∅) = 0

Démonstration.

- 2

Proposition 3. Pour toute famille au plus dénombrable d’événements deux à deux incompatibles (Ai)i∈I ,
la famille (P(Ai))i∈I est sommable et :

P
(⋃

i∈I

Ai

)
=
∑
i∈I

P(Ai).

Démonstration.

- 2

Corollaire 1. Si A et B sont deux événements incompatibles : P(A ∪ B) = P(A) + P(B).

" Une probabilité sur un univers fini Ω, telle que définie en mpsi, est donc un cas particulier de la
définition donnée ici pour un espace probabilisable quelconque. Dans le cas fini, la tribu des événements
est P(Ω).

Théorème 1. Soit (Ω, A, P) un espace probabilisé et soit A et B deux événements. On a :
1. P(B \ A) = P(B) − P(A ∩ B),
2. P(A) = 1 − P(A),
3. si A ⊂ B, alors P(A) ⩽ P(B), et P(B \ A) = P(B) − P(A),
4. P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
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Remarque 3. La point 3 signifie que P est une application croissante de l’ensemble ordonnée (A, ⊂)
dans l’ensemble ordonné ([0, 1],⩽).

Démonstration.

1. B = (A ∩ B) ∪ (B \ A) or (A ∩ B) et (B \ A) sont incompatibles, donc P(B) = P(A ∩ B) + P(B \ A).

2. On applique le point 1, avec B = Ω : P(Ω \ A︸ ︷︷ ︸
=A

) = P(Ω)︸ ︷︷ ︸
=1

−P (A ∩ Ω︸ ︷︷ ︸
=A

).

3. Comme A ⊂ B, on a : A ∩ B = A. Le point 1 donne alors : P (B \ A) = P (B) − P (A). Et comme
0 ⩽ P (B \ A) on obtient 0 ⩽ P(B) − P(A).

4. A ∪ B = A ∪ (B \ A) or A et (B \ A) sont incompatibles. Donc, P (A ∪ B) = P (A) + P (B \ A). On
conclut en appliquant le point 1.

- 2

Définition 7.
• Tout événement de probabilité nulle est dit négligeable.
• Tout événement de probabilité 1 est dit presque sûr ou presque certain.

Définition 8. On appelle système complet d’événements d’un espace probabilisable (Ω, A), toute famille
au plus dénombrable d’évènements (Ai)i∈I deux à deux incompatibles et tels que :⋃

i∈I

Ai = Ω.

" Cette notion de système complet d’événements est une notion purement ensembliste i.e. ne faisant
pas intervenir de probabilité.

Exemple 3. Si A est un évènement différent de ∅ et de Ω alors (A, A) est un sce.
Pour le lancer d’un dé, notons A1 = {1, 3, 5}, A2 = {2, 4} et A3 = {6}. Alors (A1, A2, A3) est un sce.

Définition 9. On appelle système quasi-complet d’événements d’un espace probabilisé (Ω, A, P), toute
famille au plus dénombrable d’évènements (Ai)i∈I deux à deux incompatibles et tels que :

P
(⋃

i∈I

Ai

)
= 1.

" Contrairement à la notion de système complet d’événements, la notion de système quasi-complet
d’événements dépend du choix de la probabilité P.

" Tout système complet d’événements est en particulier un système quasi-complet d’événements.
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Proposition 4. Si (Ai)i∈I est un système quasi-complet d’événements, alors la famille
(
P(Ai)

)
i∈I

est
sommable et : ∑

i∈I

P(Ai) = 1.

Démonstration.
La famille (Ai)i∈I est au plus dénombrable et les événements Ai sont deux à deux incompatibles donc,
par σ-additivité :

∑
i∈I

P(Ai) = P
(⋃

i∈I

Ai

)
= 1.

2

Théorème 2. Soit (Ai)i∈I un système quasi-complet d’événements. Alors, pour tout événement B, la
famille

(
P(Ai ∩ B)

)
i∈I

est sommable et :

P(B) =
∑
i∈I

P(Ai ∩ B).

" Nous verrons que cette propriété est à la base de la formule des probabilités totales.

Démonstration.

Notons C =
⋃
i∈I

Ai.

Les événements Ai étant deux à deux incompatibles, il en est de même des événements Ai ∩ B, d’où par
σ-additivité :∑
i∈I

P(Ai ∩ B) = P
(⋃

i∈I

(Ai ∩ B)
)

= P (C ∩ B) = P(B) − P(B \ C).

Or, 0 ⩽ P(B \ C) = P(C ∩ B) ⩽ P(C) = 0, puisque par hypothèse l’événement C est presque sûr.

Donc,
∑
i∈I

P(Ai ∩ B) = P(B).

- 2

Théorème 3. Théorème de continuité croissante.
Soit (An)n∈N une suite croissante d’événements (i.e. An ⊂ An+1 pour tout n ∈ N). Alors, on a :

P
(+∞⋃

n=0
An

)
= lim

n→+∞
P(An).
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Démonstration.

On pose :
B1 = A1 et ∀n ⩾ 2, Bn = An\An−1.

Alors les Bi sont disjoints et vérifient :

⋃
n⩾1

Bn =
⋃

n⩾1
An et ∀n ⩾ 1,

n⋃
k=1

Bk = An.

Les propriétés de σ-additivité et d’additivité, respectivement, entrainent alors que :

∑
n⩾1

P(Bn) = P

⋃
n⩾1

An

 et ∀n ⩾ 1,

n∑
k=1

P(Bk) = P(An).

Alors

P

⋃
n⩾1

An

 = lim
n
P(An)

n’est autre que la définition de la somme d’une série comme limite de ses sommes partielles.

2

Théorème 4. Théorème de continuité décroissante.
Soit (An)n∈N une suite décroissante d’événements (i.e. An+1 ⊂ An pour tout n ∈ N). Alors, on a :

P
(+∞⋂

n=0
An

)
= lim

n→+∞
P(An).

Démonstration.

- 2
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Corollaire 2. Pour toute suite (An)n∈N d’événements, on a :

P
(+∞⋃

n=0
An

)
= lim

n→+∞
P
(

n⋃
k=0

Ak

)
et P

(+∞⋂
n=0

An

)
= lim

n→+∞
P
(

n⋂
k=0

Ak

)

Démonstration.

- 2

Proposition 5. Inégalité de Boole ou sous-additivité.
Pour toute famille au plus dénombrable d’événements (Ai)i∈I , on a :

P
(⋃

i∈I

Ai

)
⩽
∑
i∈I

P(Ai).

" Dans cette inégalité de Boole, on n’a pas nécessairement
∑
i∈I

P(Ai) < +∞, mais si la somme est su-

périeure à 1, l’inégalité est sans intérêt.

Démonstration.

- 2
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Exercice 2. Soit A, B et C trois événements équiprobables, i.e. tels que P(A) = P(B) = P(C). Montrer
que si de plus P(A ∩ B ∩ C) = 0, alors P(A) ⩽ 2

3 .

A ∩ B ∩ C = A ∪ B ∪ C.

Donc, P (A ∪ B ∪ C) = 1 − P (A ∩ B ∩ C) = 1.

Or, P (A ∪ B ∪ C) ⩽ P (A) + P (B) + P (C)

Or, 1 ⩽ 1 − P (A) + 1 − P (B) + 1 − P (C) donc 3P (A) ⩽ 2 et ainsi P (A) ⩽ 2
3 .

Corollaire 3.
• Une réunion au plus dénombrable d’événements négligeables est un événement négligeable.
• Une intersection au plus dénombrable d’événements presque sûrs est un événement presque sûr.

Démonstration.

- 2

Remarque 4.

-
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II.3. Le cas particulier des espaces probabilisés discrets.

Définition 10. Soit Ω un ensemble. On appelle distribution de probabilités discrètes sur Ω toute famille
sommable d’éléments de R+ indexée par Ω et de somme 1.

Définition 11. Soit (pω)ω∈Ω une distribution de probabilités discrètes sur Ω. On appelle support de
(pω)ω∈Ω l’ensemble : {ω ∈ Ω | pω ̸= 0}.

Proposition 6. Le support d’une distribution de probabilités discrète est au plus dénombrable.

Démonstration.

- 2

Proposition 7. Si (pω)ω∈Ω est une distribution de probabilités discrètes sur Ω, alors l’application :

P : P(Ω) −→ [0, 1]
A 7−→

∑
ω∈A

pω

est une probabilité sur l’espace probabilisable (Ω, P(Ω)).
Cette probabilité P est appelée probabilité associée à la distribution (pω)ω∈Ω.
Elle vérifie : ∀ω ∈ Ω, P

(
{ω}

)
= pω.

Démonstration.

- 2

Définition 12. On appelle espace probabilisé discret tout espace probabilisé (Ω, P(Ω), P) où P est une
probabilité associée à une distribution de probabilités discrètes sur Ω.

" Dans le cas d’un univers fini, on peut en particulier définir une probabilité pour laquelle les événe-
ments élémentaires ont tous même probabilité : c’est la probabilité uniforme. Ce n’est pas possible pour
un univers dénombrable. Pourquoi ?

Si Ω est dénombrable et si pω est une constante. Alors :
• soit cette constante n’est pas nulle et la famille (pω)ω∈Ω n’est alors pas sommable,
• soit cette constante est nulle et alors :

∑
ω∈Ω pω = 0 ̸= 1.
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On vient de définir, pour n’importe quel univers Ω, la notion de probabilité associée à une distribution
de probabilités discrètes, qui est une probabilité sur l’espace probabilisable (Ω, P(Ω)). Dans le cas où Ω
est au plus dénombrable il n’y en a pas d’autres :

Proposition 8. Soit Ω un ensemble au plus dénombrable et P une probabilité sur (Ω, P(Ω)). Si l’on
pose pω = P

(
{ω}

)
, pour tout ω ∈ Ω, alors (pω)ω∈Ω est une distribution de probabilités discrète sur Ω et

P est la probabilité associée à cette distribution.

Démonstration.

- 2

Remarque importante.
• Dans le cas où Ω est une ensemble fini de cardinal n ⩾ 1, une distribution de probabilités discrète sur

Ω est simplement un n-uplet (p1, . . . , pn) de réels positifs tel que :
n∑

k=1
pk = 1.

• Dans le cas où Ω = N, une distribution de probabilités discrète sur N est simplement une suite (pn)

de réels positifs telle que :
+∞∑
n=0

pn = 1.

Exercice 3. Soit λ > 0. Montrer que l’on définit bien une distribution de probabilités discrète sur N en
posant pour tout n ∈ N :

pn = e−λ λn

n! .

-
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III. Variables aléatoires discrètes.

III.1. Définitions.

Soit (Ω, A) un espace probabilisable, et soit E un ensemble quelconque.

Définition 13. On appelle variable aléatoire discrète définie sur l’espace probabilisable (Ω, A) et à
valeurs dans E, toute application définie sur Ω, à valeurs dans l’ensemble E, telle que X(Ω) soit au plus
dénombrable et que :

∀x ∈ X(Ω), X−1({x}
)

∈ A.

" La propriété X−1({x}
)

∈ A signifie simplement que l’ensemble X−1({x}
)

est un événement.
" Si Ω est muni de la tribu discrète P(Ω), alors toute application de Ω dans E est une variable aléatoire.

Définition 14. Une variable aléatoire discrète est dite réelle si E ⊂ R, complexe si E ⊂ C, finie si X(Ω)
est un ensemble fini.

Proposition 9. Soit X une variable aléatoire discrète sur (Ω, A). Alors pour tout partie A de E,
l’ensemble X−1(A) ∈ A.

Démonstration.

- 2

Notations.
On vient de voir que si X une variable aléatoire sur (Ω, A), à valeurs dans E et si A est une partie de E,
alors l’ensemble :

X−1(A) = {ω ∈ Ω | X(ω) ∈ A}

est un événement. Cet événement sera noté : {X ∈ A} ou (X ∈ A).
Ces notations seront en particulier très utilisées pour des variables aléatoires réelles avec A un intervalle
de la forme : {x}, ]−∞, x], [x, +∞[, ]−∞, x[ et ]x, +∞[. On obtient alors respectivement les événements :

{X = x}, {X ⩽ x}, {X ⩾ x}, {X < x} et {X > x}.

" On remarque que, pour tout x ∈ E \ X(Ω), on a {X = x} = ∅.
Ainsi {X = x} = ∅ sauf pour un ensemble au plus dénombrable de valeurs de x.

Proposition 10. Soit a un élément d’un ensemble E. L’application constante égale à a est une variable
aléatoire (finie).
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Démonstration.

- 2

Proposition 11. Soit A un événement. L’application indicatrice de A, notée 1A, est une variable
aléatoire (finie).

Démonstration.

- 2

Proposition 12. Soit X une variable aléatoire discrète sur (Ω, A), et soit f une application définie sur
un ensemble contenant X(Ω). L’application f ◦ X est alors une variable aléatoire discrète sur (Ω, A).
Elle sera notée f(X).

Démonstration.

- 2

III.2. Loi d’une variable aléatoire discrète.

Proposition 13. Si X est une variable aléatoire discrète sur (Ω, A, P), alors, l’application :

PX : P(X(Ω)) −→ [0, 1]
A 7−→ P(X ∈ A)

est une probabilité sur (X(Ω), P(X(Ω))). Cette probabilité est appelée loi de X.

Remarque 6. Dans ce théorème P(X ∈ A) désigne en fait P({X ∈ A}), c’est un abus de notation
largement répandu. On a donc :

P({X ∈ A}) = P(X ∈ A) = PX(A).
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Démonstration.

2

Proposition 14. Si X est une variable aléatoire discrète, alors la famille d’événements ({X = x})x∈X(Ω)
est un système complet d’événements, appelé système complet d’événements associé à X. On a ainsi :∑

x∈X(Ω)

P(X = x) = 1.

Nous savons qu’une probabilité sur un univers au plus dénombrable est entièrement déterminée par la
donnée des probabilités de chaque événement élémentaire. Plus précisément :

Proposition 15. Si X est une variable aléatoire discrète sur un espace probabilisé (Ω, A, P), alors,
la loi de X, PX , est entièrement déterminée, par la donnée de la distribution de probabilités discrète(
P (X = x)

)
x∈X(Ω).

De plus pour tout événement A de X(Ω) :

PX(A) =
∑
x∈A

P(X = x).

Démonstration.

- 2

Remarque 7. Déterminer la loi d’une variable aléatoire X, c’est donc déterminer X(Ω) ainsi que la
valeur de P(X = x) pour tout x ∈ X(Ω).
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Théorème 5. Soit E un ensemble et (px)x∈E une distribution de probabilités discrète sur E.
Alors il existe un espace probabilisé (Ω, A, P) et une variable aléatoire X telle que :

X(Ω) ⊂ E et ∀x ∈ E, P(X = x) = px.

Démonstration.

- 2

Définition 15. Une variable aléatoire est dite presque sûrement constante s’il existe un élément a tel
que P(X = a) = 1.

Définition 16. On dit que deux variables aléatoires discrètes X et Y ont même loi si X(Ω) = Y (Ω) et
PX = PY . On note alors X ∼ Y . On dira aussi que X et Y sont identiquement distribuées.

" Les variables X et Y ne sont pas nécessairement définies sur le même espace probabilisé.
" On pourra encore considérer que X et Y ont même loi si les ensembles X(Ω) et Y (Ω) ne sont pas
égaux, à condition qu’ils ne diffèrent que par des valeurs de probabilité nulle.

Loi de f(X).

Proposition 16. Soit X une variable aléatoire discrète sur (Ω, A, P) et f une application définie sur
X(Ω). Alors la loi de f(X) est donnée par :

∀y ∈ f(X)(Ω), P
(
f(X) = y

)
=

∑
x∈f−1({y})

P(X = x).

Démonstration.

- 2

2 février 2026. Nicolas HUBERT Page n°15.

https://www.youtube.com/channel/UCaDhFd5i-mMZHBFinsi6hFg/


Lycée Jeanne d’Albret – MP – 2025-2026. Page n°16.

Proposition 17. Soit X et Y deux variables aléatoires discrètes à valeurs dans E et f une application
définie sur E. Si X ∼ Y , alors f(X) ∼ f(Y ).

Démonstration.

- 2

III.3. Lois usuelles.

III.3.a. Loi de Bernoulli.

Définition 17. Soit p ∈]0, 1[. On dit qu’une variable aléatoire X suit la loi de Bernoulli de paramètre p
si X(Ω) = {0, 1} et si P(X = 1) = p.
On le note : X ∼ B(p).

Remarque 8. Dans ce cas, on a alors : P(X = 0) = 1 − p.

Remarque importante. Soit A un événement tel que P(A) ∈]0, 1[. Alors, en notant p = P(A), on a :

1A ∼ B(p).

Plus généralement, toute épreuve à deux issues peut être modélisée par une loi de Bernoulli. Une telle
épreuve est d’ailleurs appelée épreuve de Bernoulli.

III.3.b. Loi binomiale.

Définition 18. Soit p ∈]0, 1[ et n ∈ N∗. On dit qu’une variable aléatoire X suit la loi binomiale de
paramètres n et p si X(Ω) = J0, nK et si :

∀k ∈ J0, nK, P(X = k) =
(

n

k

)
pk(1 − p)n−k.

On le note : X ∼ B(n, p).

" On a bien défini la loi d’une variable aléatoire car :

∀k ∈ J0, nK, P(X = k) ⩾ 0 et
n∑

k=0
P(X = k) =

n∑
k=0

(
n

k

)
pk(1 − p)n−k = (p + (1 − p))n = 1.

Remarque 10. La loi binomiale B(1, p) n’est rien d’autres que la loi de Bernoulli B(p).

On renouvelle n fois de manière indépendante une épreuve de Bernoulli de paramètre p. Si l’on note X
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la variable aléatoire égale au nombre de succès obtenus à l’issue des n épreuves, alors X ∼ B(n, p).

III.3.c. Loi géométrique.

Définition 19. Soit p ∈]0, 1[. On pose q = 1 − p. On dit qu’une variable aléatoire discrète X suit la loi
géométrique de paramètre p si X(Ω) = N∗ et si :

∀k ∈ N∗, P(X = k) = pqk−1.

On le note X ∼ G(p).

" On a bien défini la loi d’une variable aléatoire car :

∀n ∈ N
∗, P(X = n) ⩾ 0 et

+∞∑
n=1

P(X = n) =

Proposition 18. Si la variable aléatoire X suit la loi géométrique de paramètre p ∈]0, 1[, on a, pour
tout entier naturel k :

P(X > k) = qk.

Démonstration.

2

On considère le jeu de pile ou face infini, la probabilité d’obtenir pile (succès) à chaque lancer étant p ∈]0, 1[
(on pose q = 1 − p). La loi géométrique permet de modéliser le rang du premier succès.

III.3.d. Loi de Poisson.

Définition 20. Soit λ > 0. On dit qu’une variable aléatoire discrète X suit la loi de Poisson de paramètre
λ si X(Ω) = N et si :

∀k ∈ N, P(X = k) = λk

k! e−λ.

On le note X ∼ P(λ).

" On a bien défini la loi d’une variable aléatoire car :

∀n ∈ N, P(X = n) ⩾ 0 et
+∞∑
n=0

P(X = n) =
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Proposition 19. Soit (Xn)n∈N∗ une suite de variables aléatoires discrètes telles que, pour tout n ∈ N∗,
Xn suive la loi binomiale de paramètre (n, pn). On suppose que la suite (npn) converge vers un réel
λ > 0. Alors, pour tout k ∈ N, on a :

lim
n→+∞

P(Xn = k) = λk

k! e−λ.

Démonstration.

2

Si la variable aléatoire X suit une loi binomiale avec n grand et p proche de 0, elle suit donc approxima-
tivement une loi de Poisson de paramètre λ = np. C’est pourquoi l’on dit que la loi de Poisson est la loi
des événements « rares ».
Plus précisément la loi de Poisson est utilisée pour modéliser le nombre d’occurrences d’un phénomène
rare au cours d’un intervalle de temps donné. Par exemple :
- le nombre d’arrivées de bateaux dans un port dans un intervalle de temps donné,
- le nombre de communications dans un intervalle de temps donné,
- le nombre de buts au cours d’un match. (accidents dus à un coup de sabot de cheval dans les armées)

IV. Le module random en Python.
On commancera par importer le module random (d’alias rd) : import random as rd.
On utilisera les commandes suivantes:

rd.random() retourne un flottant choisi au hasard dans l’intervalle [0, 1[
a+(b-a)*rd.random() retourne un flottant choisi au hasard dans l’intervalle [a,b[
rd.randint(a,b) retourne un entier choisi au hasard dans l’ensemble Ja,bK, où a et b sont deux entiers
rd.choice(L) retourne un élément choisi au hasard dans une liste L

(rd.random()<p)*1 retourne 1 avec probabilité p et 0 avec probabilité 1-p
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