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– Chapitre 19 : Probabilités conditionnelles et indépendance –

Dans tout ce chapitre, (Ω, A, P) désigne un espace probabilisé quelconque.

I. Probabilités conditionnelles.

I.1. Définition.

Définition 1. Si A et B sont deux événements de l’espace probabilisé (Ω, A, P) et si P(A) ̸= 0, alors on
appelle probabilité conditionnelle de B sachant A le nombre noté PA(B) ou P(B|A) et défini par :

PA(B) = P(B|A) = P(A ∩ B)
P(A) .

Remarque importante. Cette définition revient à restreindre l’univers à A (la division par P(A) ne
servant qu’à ce que la probabilité de l’événement certain reste égale à 1), ce qui correspond bien à la prise
en compte de l’information apportée par la réalisation de A.

" La notation P(B|A) est dangereuse car pourrait laisser entendre qu’il existerait un événement B|A. Il
n’existe pas d’événement conditionnel, mais seulement des probabilités conditionnelles. Quand on calcule
P(B|A) l’événement auquel on s’intéresse est B.

Théorème 1. Pour tout événement A de l’espace probabilisé (Ω, A, P) avec P(A) ̸= 0, l’application :

PA : A −→ [0, 1]
B 7−→ PA(B)

est une probabilité sur (Ω, A). Elle est appelée la probabilité conditionnelle sachant A.

Démonstration.

• Soit B un événement. PA(B) = P (A ∩ B)
P (A) . Donc, 0 ≤ PA(B)

Or, (A ∩ B) ⊂ A, donc P (A ∩ B) ≤ P (A). Or, P (A) > 0. Donc, PA(B) ≤ 1.

• PA(Ω) = P (A ∩ Ω)
P (A) = P (A)

P (A) = 1.

• Soit (Bn) une suite d’événements deux événements incompatibles.

PA

(⋃
n∈N

Bn

)
=

P
(
A ∩

(⋃
n∈N Bn

))
P (A) =

P
(⋃

n∈N(A ∩ Bn)
)

P (A) .

Or, les Bn sont 2 à 2 incompatibles donc les A ∩ Bn aussi. Par σ-additivité on a :

P

(⋃
n∈N

A ∩ Bn

)
=

+∞∑
n=0

P (A ∩ Bn). On obtient donc : PA

(⋃
n∈N

Bn

)
=

+∞∑
n=0

PA(Bn).

2
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Exercice 1. On considère une famille de deux enfants. On fait l’hypothèse que chaque enfant a une
probabilité égale à 1

2 d’être une fille. Quelle est la probabilité pour ce couple d’avoir deux filles :
1. si on sait que l’aînée est une fille ?
2. si on sait que le couple a au moins une fille ?

-Ω = {(f, f), (g, f), (f, g), (g, g)}, où par exemple l’issue (f, g) signifie que laînée est une fille et le cadet
un garçon.
On munit Ω de la probabilité uniforme, que l’on note P .
Soit A l’événement “avoir deux filles”: A = {(f, f)}.
Soit B l’événement “l’aînée est une fille”: B = {(f, f), (f, g)}.
Soit C l’événement “le couple a au moins une fille”: C = {(f, f), (f, g), (g, f)}.

1. PB(A) = P (A ∩ B)
P (B) .

Or, A ∩ B = A et P (A) = Card A

Card Ω = 1
4.

Et P (B) = Card B

Card Ω = 2
4 = 1

2. Donc, PB(A) = 1/4
1/2 = 1

2.

2. PC(A) = P (A ∩ C)
P (C) = P (A)

P (C) = 1/4
3/4 = 1

3.

I.2. Formule des probabilités composées.

Dans les exercices, le plus souvent on ne calculera pas PA(B) à partir de P(A ∩ B), mais au contraire,
on calculera P(A ∩ B) à partir de PA(B) :

Proposition 1. Si P(A) ̸= 0 alors P(A ∩ B) = P(A) · PA(B).
On dit que l’on a conditionné par l’événement A.

Démonstration. Par définition : PA(B) = P(A∩B)
P(A) . 2

Théorème 2. Formule de probabilités composées.
Soit un entier n ⩾ 2 et (A1, . . . , An) une famille de n événements tels que P(A1 ∩ · · · ∩ An−1) ̸= 0. On a
alors :

P(A1 ∩ · · · ∩ An) = P(A1) · PA1(A2) · PA1∩A2(A3) · · · PA1∩···∩An−1(An).

Démonstration. Par récurrence sur n ⩾ 2. 2

Remarque 2. On a :
(A1 ∩ · · · ∩ An−1) ⊂ (A1 ∩ · · · ∩ An−2) ⊂ · · · ⊂ (A1 ∩ A2) ⊂ A1.

D’où :
P (A1 ∩ · · · ∩ An−1) ≤ P (A1 ∩ · · · ∩ An−2) ≤ · · · ≤ P (A1 ∩ A2) ≤ P (A1).

Or, par hypothèse, P (A1 ∩ · · · ∩ An−1) > 0, ainsi toutes les probabilités conditionnelles qui apparaissent
dans la formule de probabilités composées, sont bien définies.
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I.3. Formule des probabilités totales.

Théorème 3. Formule des probabilités totales.
Soit (Ai)i∈I est un système quasi-complet d’événements non négligeables. Alors, pour tout événement B

la famille
(
P(Ai ∩ B)

)
i∈I

est sommable et :

P(B) =
∑
i∈I

P(Ai ∩ B) =
∑
i∈I

P(Ai)PAi(B).

Démonstration. Voir chapitre précédent. 2

I.4. Formules de Bayes.

Théorème 4. Formule de Bayes.
Si A et B sont deux événements tels que P (A) ̸= 0 et P (B) ̸= 0, alors :

PB(A) = P (A) · PA(B)
P (B) .

Démonstration.
Par définition : PB(A) = P (A ∩ B)

P (B) .

Or, PA(B) = P (A ∩ B)
P (A) d’où P (A ∩ B) = P (A) · PA(B).

- 2

Remarque 3. Cette formule permet d’inverser le conditionnement, puisqu’elle permet d’exprimer PB(A)
en fonction de PA(B) ; ce qui revient souvent à inverser la chronologie des événements.

Exercice 2. On considère une épidémie. On note p la probabilité d’être affecté par cette maladie.
La population compte 95% de personnes vaccinées, et 1 malade sur 2 avait été vacciné. Quelle est la
probabilité pour une personne vaccinée de contracter cette maladie ?

Notons M l’événement “être malade” et V l’événement “être vacciné”.
D’après l’énoncé : P (M) = 1

10 , P (V ) = 95
100 et PM (V ) = 1

2 .

D’après la formule de Bayes : PV (M) = P (M) · PM (V )
P (V ) =

1
10 · 1

2
95

100
= 1

19 .

En combinant la formule de Bayes et la formule des probabilité totales, on obtient ce qu’on appelle parfois
la deuxième formule de Bayes :

Corollaire 1. Soit (Ai)i∈I est un système quasi-complet d’événements non négligeables. Alors, pour
tout événement B tel que P (B) ̸= 0, on a :

∀j ∈ I, PB(Aj) =
P (Aj) · PAj

(B)∑
i∈I

P (Ai) · PAi(B) .
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I.5. Lois conditionnelles.

Définition 2. Soit X une variable aléatoire sur (Ω, A, P) et A ∈ A un événement tel que P (A) ̸= 0.
On définit la loi de X sachant A comme la loi de X dans l’espace probabilisé (Ω, A, PA).
Cette loi est donc déterminer par la donnée de PA(X = x) pour tout x ∈ X(Ω).

Remarque 4. Si Y est une deuxième variable aléatoire sur (Ω, A, P) et si y ∈ Y (Ω) est un élément tel
que P (Y = y) ̸= 0, on s’intéressera en particulier à la loi de X sachant l’événement {Y = y}.
Autrement-dit, on s’intéressera à la donnée de P(X = x | Y = y) pour tout x ∈ X(Ω).

Exercice 3. Loi sans mémoire.
1. Soit X une variable aléatoire suivant une loi géométrique de paramètre p ∈]0, 1[. Montrer que :

∀(k, ℓ) ∈ N2, P(X > k + ℓ | X > k) = P(X > ℓ). (∗)

2. Réciproquement, soit X une variable aléatoire vérifiant (∗) et telle que X(Ω) ⊂ N∗. Montrer que X
suit une loi géométrique et préciser la valeur de son paramètre p.

" L’assertion (∗) signifie que la loi conditionnelle de X − k sachant {X > k} est la même que la loi de
X. De telles lois sont dites sans mémoires. Elles sont notamment utilisées pour modéliser la durée de vie
d’un composant sans usure.
-
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II. Événements indépendants.

II.1. Indépendance de deux événements.

Définition 3. Deux événements A et B d’un espace probabilisé (Ω, A, P) sont dits indépendants si :
P(A ∩ B) = P(A) · P(B).

Exemple 1. Si A est un événement négligeable, alors il est indépendant de tout événement B. En effet :

Remarque 5.
• Si P (A) ̸= 0 alors : A et B sont indépendants si, et seulement si, PA(B) = P(B).
• Si P (B) ̸= 0 alors : A et B sont indépendants si, et seulement si, PB(A) = P(A).

Proposition 2. Si A et B sont deux événements indépendants, alors les événements A et B, les
événements A et B et les événements A et B le sont aussi.

Démonstration. Supposons A et B indépendants.
Comme (B, B) est un SCE, on a : P (A) = P (A ∩ B) + P (A ∩ B), donc P (A ∩ B) = P (A) − P (A ∩ B).
Or, P (A ∩ B) = P (A) · P (B) puisque A et B indépendants. Ainsi, P (A ∩ B) = P (A) − P (A) · P (B) =
P (A) · (1 − P (B)) = P (A) · P (B), donc A et B sont indépendants. 2

Exemple 2. Si A est un événement presque certain, alors il est indépendant de tout événement B.
En effet :

" La notion d’indépendance est une notion probabiliste i.e. qu’elle dépend du choix de la probabilité :

Exercice 4. On lance deux fois une pièce de monnaie, et l’on note :
A : “les deux lancers donnent le même résultat” et B : “le deuxième lancer donne face”.
Étudier l’indépendance de A et B dans chacun des cas suivants :
1. La pièce est équilibrée.
2. La probabilité d’obtenir Pile lors d’un lancer est de 3

4 .

Posons Ω = {P, F}2 et Fi : “obtenir face au i-ème lancer”.
1. Pièce équilibrée : P (F1) = P (F2) = 1

2 .
A = (F1 ∩ F2) ∪ (F 1 ∩ F 2). Par incompatibilité :
P (A) = P (F1∩F2)+P (F 1∩F 2). Or, F1 et F2 sont indépendants, et de même F 1 et F 2 sont indépendants.
Donc : P (A) = P (F1) · P (F2) + P (F 1) · P (F 2) = 1

2 · 1
2 + 1

2 · 1
2 = 1

2 .

De plus P (B) = 1
2 et P (A ∩ B) = P (F1 ∩ F2) = P (F1) · P (F2) = 1

4 . On a donc P (A ∩ B) = P (A) · P (B).
2. Pièce truquée : P (F1) = P (F2) = 1

4 .
P (A) = P (F1) · P (F2) + P (F 1) · P (F 2) = 1

4 · 1
4 + 3

4 · 3
4 = 10

16 = 5
8 .

De plus P (B) = 1
4 et P (A ∩ B) = P (F1 ∩ F2) = 1

16 . On a donc P (A ∩ B) ̸= P (A) · P (B).
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II.2. Indépendance d’une famille d’événements.

Soit (Ai)i∈I une une famille quelconque d’événements d’un même espace probabilisé (Ω, A, P).

Définition 4. Les événements Ai, pour i ∈ I, sont dits deux à deux indépendants si :

∀(i, j) ∈ I2, i ̸= j ⇒ P (Ai ∩ Aj) = P (Ai) · P (Aj).

" Même si 3 événements A1, A2, A3 sont 2 à 2 indépendants, on ne sait pas toujours déterminer
P (A1 ∩ A2 ∩ A3), ce qui nous amène à une notion plus précise :

Définition 5. Les événements Ai, pour i ∈ I, sont dits sont dits mutuellement indépendants si pour
toute partie finie J ⊂ I :

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai).

" L’indépendance mutuelle implique l’indépendance deux à deux, mais la réciproque est fausse.

Remarque importante. Concrètement, lors d’une succession de n épreuves aléatoires sans aucun lien
entre-elles si, pour tout i, l’événement Ai porte sur la i-ème épreuve, alors les événements A1, . . . , An

sont mutuellement indépendants.

Proposition 3. Pour tout i ∈ I, on note Bi l’événement Ai ou Ai.
• Si les Ai, pour i ∈ I, sont deux à deux indépendants, alors les Bi aussi.
• Si les Ai, pour i ∈ I, sont mutuellement indépendants, alors les Bi aussi.

III. Couples de variables aléatoires.

III.1. Définitions.

Définition 6. On appelle couple de variables aléatoires sur l’espace probabilisable (Ω, A) toute applica-
tion :

Z : Ω −→ E1 × E2
ω 7−→ (X(ω), Y (ω)),

où X et Y sont deux variables aléatoires sur (Ω, A) à valeurs respectivement dans E1 et E2.

Exemple 3. On lance deux dés. On note X la variable aléatoire égale au plus petit des deux résultats,
et Y la variable aléatoire égale au plus grand. Alors (X, Y ) est un couple de variables aléatoires réelles.

Proposition 4.
1. Si X et Y sont deux variables aléatoires discrètes sur (Ω, A) à valeurs respectivement dans dans E1
et E2, alors le couple (X, Y ) est une variable aléatoire discrète à valeurs dans E1 × E2.
2. Réciproquement, toute variable aléatoire discrète Z à valeurs dans E1 × E2 peut s’écrire Z = (X, Y )
où X et Y sont deux variables aléatoires discrètes à valeurs respectivement dans dans E1 et E2.
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Démonstration.

- 2

Remarque 7. Si Z = (X, Y ) est un couple de variables aléatoires discrètes, alors :

Z(Ω) ⊂ X(Ω) × Y (Ω).

Cette inclusion n’est pas toujours une égalité. Il suffit de reprendre l’exemple précédent avec le couple
(2, 1) pour s’en convaincre.

Proposition 5. Soit (X, Y ) est un couple de variables aléatoires discrètes alors la famille :(
{X = x} ∩ {Y = y}

)
(x,y)∈X(Ω)×Y (Ω)

est un système complets d’événements de Ω ; c’est le SCE associé au couple (X, Y ).
En particulier, ∑

(x,y)∈X(Ω)×Y (Ω)

P
(
{X = x} ∩ {Y = y}

)
= 1

ce que l’on peut écrire : ∑
(x,y)∈X(Ω)×Y (Ω)

P
(
X = x, Y = y

)
= 1.

Rappel. On a déjà vu que si X est une variable aléatoire discrète sur (Ω, A) et si f est une application
définie sur X(Ω) alors, f(X) est une variable aléatoire discrète.

Proposition 6. Soit X et Y deux variables aléatoires discrètes sur (Ω, A) et à valeurs dans C, et soit
(a, b) ∈ C2. Alors, XY et aX + bY sont des variables aléatoires discrètes sur (Ω, A).

Démonstration.

- 2
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III.2. Loi conjointe.

Définition 7. Soit (X, Y ) est un couple de variables aléatoires discrètes.
On appelle loi conjointe de X et Y , la loi du couple (X, Y ).

Remarque importante. Comme pour n’importe quelle variable aléatoire, la loi du couple (X, Y ) est
entièrement déterminée par la donnée de :

P (X = x, Y = y) pour tout (x, y) ∈ X(Ω) × Y (Ω).

Exercice 5. On lance deux dés. On note X la variable aléatoire égale au plus petit des deux résultats,
et Y la variable aléatoire égale au plus grand. Donner la loi conjointe de X et Y . En déduire P(X = Y ).

Ω = J1, 6K2 munit de la probabilité uniforme. Soit (x, y) ∈ J1, 6K2.

P(X = x, Y = y) =

 0 si x > y
1

36 si x = y (une seule issue : (x, x))
1

18 si x < y (deux issues : (x, y) et (y, x))

P(X = Y ) = P

 ⋃
1≤k≤6

{X = k, Y = k}

 =
∑

1≤k≤6
P(X = k, Y = k) = 6 × 1

36 = 1
6.

" Ne pas confondre P(X = Y ) et P(X = k, Y = k).

Théorème 5. Soit E1 et E2 deux ensembles et (px,y)(x,y)∈E1×E2 une distribution de probabilités discrète.
Alors il existe un espace probabilisé (Ω, A, P) et un couple Z = (X, Y ) de variables aléatoires discrètes
tels que :

Z(Ω) ⊂ E1 × E2 et ∀(x, y) ∈ E1 × E2, P(X = x, Y = y) = px,y.

Démonstration. Voir théorème 5 du chapitre précédent. 2

III.3. Lois marginales.

Définition 8. Soit (X, Y ) un couple de variables aléatoires discrètes.
On appelle première marginale du couple la loi de X et deuxième marginale du couple la loi de Y .

Théorème 6. Soit (X, Y ) un couple de variables aléatoires discrètes sur l’espace probabilisé (Ω, A, P).
1. Pour tout x ∈ X(Ω), P(X = x) =

∑
y∈Y (Ω)

P(X = x, Y = y).

2. Pour tout y ∈ Y (Ω), P(Y = y) =
∑

x∈X(Ω)

P(X = x, Y = y).

Démonstration. 1. La famille d’événements ({Y = y})y∈Y (Ω) est un système complet d’événements.
2. La famille d’événements ({X = x})x∈X(Ω) est un système complet d’événements. 2
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Remarque 9. Le théorème précédent permet de retrouver les lois marginales, à partir de la loi conjointe.
En général, il n’est cependant pas possible de retrouver la loi conjointe à partir des lois marginales.

Exercice 6. On lance deux dés. On note X la variable aléatoire égale au plus petit des deux résultats,
et Y la variable aléatoire égale au plus grand. Déterminer les lois marginales, à partir de la loi conjointe
déterminée précédemment.

X(Ω) = Y (Ω) = J1, 6K. Soit k ∈ J1, 6K. En utilisant la formule des probabilités totales :

P (X = k) =
∑

k≤i≤6
P (X = k, Y = i) = P (X = k, Y = k) +

∑
k+1≤i≤6

P (X = k, Y = i)

P (X = k) =
∑

k≤i≤6
P (X = k, Y = i) = 1

36 +
∑

k+1≤i≤6

1
18

P (X = k) =
∑

k≤i≤6
P (X = k, Y = i) = 1

36 + 6 − k

18 = 13 − 2k

36 .

P (Y = k) =
∑

1≤i≤k

P (X = i, Y = k) = P (X = k, Y = k) +
∑

1≤i≤k−1
P (X = i, Y = k)

P (Y = k) =
∑

1≤i≤k

P (X = i, Y = k) = 1
36 +

∑
1≤i≤k−1

1
18

P (Y = k) =
∑

1≤i≤k

P (X = i, Y = k) = 1
36 + k − 1

18 = 2k − 1
36 .

Remarque 10. On peut résumer la loi conjointe dans un tableau à double entrée, et retrouver facilement
les lois marginales :

H
HHHHX

Y 1 2 3 4 5 6 loi de X

1 1
36

1
18

1
18

1
18

1
18

1
18

11
36

2 0 1
36

1
18

1
18

1
18

1
18

9
36

3 0 0 1
36

1
18

1
18

1
18

7
36

4 0 0 0 1
36

1
18

1
18

5
36

5 0 0 0 0 1
36

1
18

3
36

6 0 0 0 0 0 1
36

1
36

loi de Y 1
36

3
36

5
36

7
36

9
36

11
36 1

Nous avons vu qu’en général, il n’est pas possible de retrouver la loi conjointe à partir des lois marginales.
Cela sera possible lorsque les variables aléatoires X et Y sont indépendantes.
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III.4. Indépendance de deux variables aléatoires.

Définition 9. Soit X et Y deux variables aléatoires discrètes, à valeurs respectivement dans E1 et E2.
On dit que X et Y sont indépendantes, si pour toutes parties A de E1 et B de E2, les événements {X ∈ A}
et {Y ∈ B} sont indépendants, i.e. si :

P(X ∈ A, Y ∈ B) = P(X ∈ A) · P(Y ∈ B).

On note alors X ⊥⊥ Y .

Proposition 7. Les variables aléatoires X et Y sont indépendantes, si, et seulement si, pour tout
(x, y) ∈ X(Ω) × Y (Ω), les événements {X = x} et {Y = y} sont indépendants, i.e. si :

P(X = x, Y = y) = P(X = x) · P(Y = y).

Exercice 7. Les variables aléatoires X et Y de la remarque précédente sont-elles indépendantes ?

Les variables aléatoires X et Y ne sont pas indépendantes car P (X = 2, Y = 1) = 0
or P (X = 2) · P (Y = 1) = 9

36 · 1
36 , d’où : P (X = 2, Y = 1) ̸= P (X = 2) · P (Y = 1).

Remarque 11. Une variable presque sûrement constante est indépendante de toute variable aléatoire
discrète, car un événement de probabilité 0 ou 1 est indépendant de tout événement.

Exercice 8. Soit X et Y deux variables aléatoires indépendantes de loi respective B( 1
3 ) et B( 1

4 ). Déter-
miner la loi conjointe de X et de Y .

-

H
HHHHX

Y 0 1

0 1
2

1
6

1 1
4

1
12

P (X = 0, Y = 0) = P (X = 0) · P (Y = 0) = 2
3 · 3

4 = 1
2

P (X = 1, Y = 0) = P (X = 1) · P (Y = 0) = 1
3 · 3

4 = 1
4

P (X = 0, Y = 1) = P (X = 0) · P (Y = 1) = 2
3 · 1

4 = 1
6

P (X = 1, Y = 1) = P (X = 1) · P (Y = 1) = 1
3 · 1

4 = 1
12 .

III.5. Fonction de deux variables aléatoires indépendantes.

Proposition 8. Si X et Y sont deux variables aléatoires discrètes indépendantes, alors les variables
aléatoires f(X) et g(Y ) le sont aussi.

Démonstration.

- 2
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III.6. Loi de X + Y .

Lemme. Formule de Vandermonde.
Pour tout (k, n, m) ∈ N3 :

k∑
i=0

(
n

i

)(
m

k − i

)
=
(

n + m

k

)
.

Démonstration.

- 2

Proposition 9. Si X et Y sont deux variables aléatoires indépendantes, de lois respectives B(n, p) et
B(m, p), alors X + Y ∼ B(n + m, p).

Démonstration.
X et Y ont pour support respectif J0, nK et J0, mK, donc X + Y a support J0, n + mK.
Soit k ∈ J0, n + mK.

P (X + Y = k) =
k∑

i=0
P (X = i, Y = k − i)

P (X + Y = k) =
k∑

i=0
P (X = i) · P (Y = k − i), car X et Y sont indépendantes

P (X + Y = k) =
k∑

i=0

(
n

i

)
pi(1 − p)n−i ×

(
m

k − i

)
pk−i(1 − p)m−k+i

P (X + Y = k) =
k∑

i=0

(
n

i

)(
m

k − i

)
pk(1 − p)n+m−k

P (X + Y = k) = pk(1 − p)n+m−k
k∑

i=0

(
n

i

)(
m

k − i

)
P (X + Y = k) =

(
n + m

k

)
pk(1 − p)n+m−k, d’après la formule de Vandermonde.

Donc, X + Y ↪→ B(n + m, p).

- 2
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Proposition 10. Si X et Y sont deux variables aléatoires indépendantes, de lois respectives P(λ) et
P(µ), alors X + Y ∼ P(λ + µ).

Démonstration.

- 2

Remarque 12. Pour deux variables aléatoires à valeurs dans N on a utilisé :

∀n ∈ N, P(X + Y = n) =
n∑

k=0
P(X = k, Y = n − k).

Pour deux variables aléatoires à valeurs dans Z on a alors :

∀n ∈ Z, P(X + Y = n) =
n∑

k∈Z

P(X = k, Y = n − k).

III.7. Loi de Inf(X, Y ) et Sup(X, Y ).

Soit X et Y deux variables aléatoires réelles indépendantes et de même loi. Posons :

I = Inf(X, Y ) et S = Sup(X, Y ).

On a alors : X(Ω) = Y (Ω) = I(Ω) = S(Ω).
Pour tout k ∈ X(Ω),

P(S ⩽ k) = P (X ⩽ k, Y ⩽ k) = P (X ⩽ k) · P (Y ⩽ k)
P(I > k) = P (X > k, Y > k) = P (X > k) · P (Y > k)

Exercice 9. Soit X et Y deux variables aléatoires indépendantes de loi U(J1, 6K).
Déterminer la loi de I = Inf(X, Y ) et S = Sup(X, Y ).
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Soit k ∈ J1, 6K.
Par indépendance des variables aléatoires X et Y , on a :

P(S ⩽ k) = P (X ≤ k, Y ≤ k) = P (X ≤ k) · P (Y ≤ k) = k2

36 .

P(I > k) = P (X > k, Y > k) = P (X > k) · P (Y > k) =
(

1 − k

6

)2
= (6 − k)2

36 .

P(S = k) = P (S ≤ k) − P (S ≤ k − 1) = k2

36 − (k − 1)2

36 = 2k − 1
36 .

P(I = k) = P (I > k − 1) − P (I > k) = (7 − k)2

36 − (6 − k)2

36 = 13 − 2k

36 .

III.8. Généralisation au cas d’un n-uplet de variables aléatoires.

Soit n ∈ N∗.

Définition 10. On appelle n-uplet de variables aléatoires sur l’espace probabilisable (Ω, A) toute appli-
cation :

Z : Ω −→ E1 × · · · × En

ω 7−→ (X1(ω), . . . , Xn(ω)),
où pour tout i ∈ J1, nK, Xi est une variable aléatoire sur (Ω, A) à valeurs dans Ei.
On notera Z = (X1, . . . , Xn).

Dans la suite, on considère un n-uplet de variables aléatoires discrètes (X1, . . . , Xn).
Comme dans le cas des couples de variables aléatoires, on définit la loi conjointe et les lois marginales,
ainsi que la notion d’indépendance. Mais comme dans le cas des événements, quand il y a plus de deux
variables aléatoires il n’est plus possible de parler d’indépendance : il faut alors préciser s’il s’agit de
l’indépendance deux à deux ou de l’indépendance mutuelle.

Définition 11. Les variables aléatoires X1, . . . , Xn sont dites indépendantes deux à deux si pour tous
entiers distincts i et j de J1, nK, les variables aléatoires Xi et Xj sont indépendantes.

Définition 12. X1, . . . , Xn sont dites mutuellement indépendantes si pour toutes parties A1 de E1, . . . , An

de En, les événements {X1 ∈ A1}, . . . , {Xn ∈ An} sont mutuellement indépendants.

Et on montre facilement que :

Proposition 11. X1, . . . , Xn sont mutuellement indépendantes si, et seulement si, pour tous x1 de
X1(Ω), . . . , xn de Xn(Ω), les événements {X1 = x1}, . . . , {Xn = xn} sont mutuellement indépendants.

Et comme l’indépendance mutuelle des événements, implique leur indépendance deux à deux :

Proposition 12. Si X1, . . . , Xn sont mutuellement indépendantes, alors elles sont indépendantes deux
à deux.
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Proposition 13. Lemme des coalitions.
Soit X1, . . . , Xn des variables aléatoires discrètes mutuellement indépendantes à valeurs respectivement
dans E1, . . . , En. Soit un entier p tel que 1 ⩽ p < n.
Soit f une application définie sur E1 × · · · × Ep et g définie sur Ep+1 × · · · × En.
Alors les variables aléatoires f(X1, . . . , Xp) et g(Xp+1, . . . , Xn) sont indépendantes.

Démonstration.

- 2

Corollaire 2. Si X1, . . . , Xn sont des variables aléatoires mutuellement indépendantes et de loi de
Bernoulli de paramètre p, alors X1 + · · · + Xn suit la loi binomiale de paramètres n et p.

Démonstration.

- 2

Corollaire 3. Si X1, . . . , Xn sont des variables aléatoires mutuellement indépendantes et telles que pour
tout k ∈ J1, nK, Xk suit la loi de Poisson de paramètre λk, alors X1 + · · · + Xn suit la loi de Poisson de

paramètre λ =
n∑

k=1
λk.

Démonstration.

- 2
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III.9. Suites de variables aléatoires indépendantes.

Définition 13. Une suite (Xn)n∈N de variables aléatoires discrètes est appelée suite de variables aléatoires
indépendantes si, pour toute partie finie I de N , les variables aléatoires réelles discrètes Xi, avec i ∈ I,
sont mutuellement indépendantes.

" Vous aurez noté que dans le cas des suites, on laisse parfois tombé l’adverbe : “mutuellement”.

Théorème 7. Pour toute suite (Pn)n∈N de lois de probabilité discrètes, il existe un espace probabilisé
(Ω, A, P) et une suite (Xn)n∈N de variables aléatoires discrètes, indépendantes sur (Ω, A, P) tels que,
pour tout n ∈ N, la loi Xn soit (Pn).

Démonstration. Admis. 2

" Ce théorème est en particulier utile dans le cas d’une seule loi de probabilité discrète P. Il existe alors
un espace probabilisé (Ω, A, P) et une suite (Xn)n∈N de variables aléatoires discrètes, indépendantes sur
(Ω, A, P) tels que, pour tout n ∈ N, la loi de Xn soit P.
On dit alors que les variables sont indépendantes et identiquement distribuées (i.i.d. en abrégé).
Une telle suite modélise une suite d’épreuves identiques aux résultats indépendants.

Exemple 4. Une suite (Xn)n∈N de variables aléatoires discrètes indépendantes sur un espace probabilisé
(Ω, A, P) et telle que, pour tout n ∈ N, Xn suit la loi de Bernoulli de paramètre p, permet une modélisation
du jeu de pile ou face infini.

Exemple 5. Loi géométrique.
Soit (Xn)n∈N∗ une suite de variables aléatoires i.i.d. suivant la loi de Bernoulli de paramètres p.
On note T le nombre de tirages nécessaires pour obtenir un succès (i.e. un 1 ) pour la première fois et
+∞ si l’on n’a jamais de succès. Déterminons la loi de T .
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