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– Chapitre 20 : Espérance et variance. –

Toutes les variables aléatoires sont supposées discrètes et définies sur un espace probabilisé (Ω, A, P).
On notera : K = R ou C.

I. Espérance d’une variable aléatoire réelle ou complexe.

I.1. Définition.

Définition 1. Soit X une variable aléatoire discrète, à valeurs dans R+ ∪ {+∞}.
On appelle espérance de X, et l’on note E(X), la somme de la famille

(
xP(X = x)

)
x∈X(Ω) :

E(X) =
∑

x∈X(Ω)

xP(X = x).

Remarque 1. Si P(X = +∞) > 0 alors, E(X) = +∞.

Si P(X = +∞) = 0, la définition précédente utilise la convention habituelle : (+∞) × 0 = 0. Ainsi, dans
ce cas, on a : E(X) = E(X1{X<+∞}).

Remarque 2. Si X est une variable à valeurs dans N, alors :

E(X) =
+∞∑
n=0

nP(X = n).

" La série de terme général nP(X = n) n’est pas nécessairement convergente.

Définition 2. Soit X une variable aléatoire discrète, à valeurs dans K = R ou C.
On dit que X est d’espérance finie si la famille

(
xP(X = x)

)
x∈X(Ω) est sommable. Dans ce cas, on appelle

espérance de X, et l’on note E(X), la somme de la famille
(
xP(X = x)

)
x∈X(Ω) :

E(X) =
∑

x∈X(Ω)

xP(X = x).

L’espérance est aussi appelée moment d’ordre 1.

" Bien noter que si X est à valeurs positive, alors elle possède toujours une espérance qui peut être
finie ou non. Mais dans le cas où X est à valeurs dans K = R ou C, on ne parle d’espérance que dans le
cas où la famille

(
xP(X = x)

)
x∈X(Ω) est sommable.

Remarque 3.
• Dans le cas particulier où X est une variable aléatoire finie (i.e. X(Ω) est un ensemble fini), alors X
est d’espérance finie et la définition de son espérance est alors la même que celle donnée en mpsi.
• Dans le cas où X est une variable à valeurs dans N, alors X est d’espérance finie si, et seulement si, la
série de terme général nP(X = n) est convergente.
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Exemple 1.
1. Pour tout événement A, E(1A) =
2. Si X est une variable aléatoire presque sûrement égale à une constante a ∈ K, alors E(X) =

Remarque 4. En fait, l’espérance de X ne dépend que de la loi que X suit : on aurait pu parler
d’espérance d’une loi, mais l’usage veut qu’on parle d’espérance d’une variable aléatoire.

Définition 3. On note L1(Ω,K) l’ensemble des variables aléatoires discrètes d’espérance finie.

Proposition 1. Si X est une variable à valeurs dans N ∪ {+∞}, alors :

E(X) =
+∞∑
n=0

P(X > n) =
+∞∑
n=1

P(X ⩾ n).

Démonstration.

- 2

I.2. Espérance des lois usuelles.

Proposition 2. Si X ∼ U
(
Ja, bK

)
, alors : E(X) = a + b

2 .

En particulier, si X ∼ U
(
J1, nK

)
, alors : E(X) = n + 1

2 .

Démonstration.

- 2

11 février 2026. Nicolas HUBERT Page n°2.

https://www.youtube.com/channel/UCaDhFd5i-mMZHBFinsi6hFg/


Lycée Jeanne d’Albret – MP – 2025-2026. Page n°3.

Proposition 3. Si X ∼ B(p), alors : E(X) = p.

Démonstration.
- 2

Proposition 4. Si X ∼ B(n, p), alors : E(X) = np.

Démonstration.

- 2

Proposition 5. Si X ∼ G(p), avec p ∈]0, 1[ alors : E(X) = 1
p

.

Démonstration.

- 2

Proposition 6. Si X ∼ P(λ), avec λ > 0 alors : E(X) = λ.

Démonstration.

- 2
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I.3. Propriétés de l’espérance.

Théorème 1. Formule de transfert.
Soit X une variable aléatoire discrète à valeurs dans un ensemble quelconque et f est une application de
X(Ω) dans C.
Alors la variable aléatoire f(X) est d’espérance finie si, et seulement si, la famille

(
f(x)P(X = x)

)
x∈X(Ω)

est sommable. Dans ce cas :
E

(
f(X)

)
=

∑
x∈X(Ω)

f(x)P(X = x).

Démonstration.

- 2

L’intérêt de la formule de transfert est de permettre de calculer E
(
f(X)

)
à partir de la loi de X sans

avoir besoin de déterminer celle de f(X).

Remarque importante. La formule de transfert s’applique pour des variables aléatoires à valeurs dans
un ensemble quelconque. Elle s’applique en particulier à une variable à valeurs dans un produit cartésien
i.e. à un couple de variables aléatoires : Z = (X, Y ).
La formule de transfert appliquée au couple Z = (X, Y ) s’écrit de la forme :

E
(
f(X, Y )

)
=

∑
(x,y)∈Z(Ω)

f(x, y)P(X = x, Y = y),

où Z(Ω) est une partie de X(Ω) × Y (Ω).
Si (x, y) ∈ X(Ω) × Y (Ω) mais que (x, y) /∈ Z(Ω) on a :P(X = x, Y = y) = 0.
On peut donc écrire :

E
(
f(X, Y )

)
=

∑
(x,y)∈X(Ω)×Y (Ω)

f(x, y)P(X = x, Y = y).
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Exercice 1. Soit X et Y deux variables aléatoires indépendantes de loi U(J1, 6K).
Déterminer l’espérance de S = Sup(X, Y ).

-

Proposition 7. Inégalité triangulaire.
Pour tout X ∈ L1(Ω,K) : ∣∣E(X)

∣∣ ⩽ E
(
|X|

)
.

Démonstration.

- 2

Proposition 8. Soit X et Y deux variables aléatoires discrètes, respectivement complexe et réelle, telles
que |X| ⩽ Y . Si Y est d’espérance finie, alors X est d’espérance finie.

Démonstration.
C’est une conséquence immédiate d’un résultat de comparaison de familles sommables.
- 2

Théorème 2. Linéarité de l’espérance.
L’ensemble L1(Ω,K) des variables aléatoires discrètes d’espérance finie est un K-espace vectoriel, et
l’espérance est une forme linéaire sur L1(Ω,K).
Autrement-dit, si (X, Y ) ∈

(
L1(Ω,K)

)2, et si α ∈ K, alors :
E(X + Y ) = E(X) + E(Y ) et E(αX) = αE(X).
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Démonstration.

- 2

Remarque 6. La linéarité de l’espérance donne une autre preuve de l’espérance d’une variable
aléatoire suivant la loi binomiale B(n, p).

Corollaire 1. Si X est une variable aléatoire d’espérance finie et si (a, b) ∈ C2, alors :
E(aX + b) = aE(X) + b.

Démonstration. Par linéarité de l’espérance : E(aX + b) = aE(X) + E(b) = aE(X) + b. 2

Définition 4. Une variable aléatoire réelle d’espérance nulle est dite centrée.
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Proposition 9. Si X est une variable aléatoire d’espérance finie alors la variable aléatoire (X − E(X))
est une variable aléatoire centrée appelée la variable aléatoire centrée associée à X.

Démonstration. Il suffit d’appliquer le corollaire précédent avec : a = 1 et b = −E(X). 2

Proposition 10. Soit X une variable aléatoire réelle positive. Alors :
1. E(X) ⩾ 0,
2. E(X) = 0 si, et seulement si, P(X = 0) = 1. On dit alors que X est presque sûrement nulle.

Démonstration.

1. E(X) =
∑

x∈X(Ω)

x︸︷︷︸
⩾0

P (X = x)︸ ︷︷ ︸
⩾0

. Donc, E(X) ⩾ 0.

2. Une famille de réels positifs est nulle si, et seulement si, chaque terme est nul. Donc :
E(X) = 0 ⇔ ∀x ∈ X(Ω), xP (X = x) = 0
E(X) = 0 ⇔ ∀x ∈ X(Ω) \ {0}, P (X = x) = 0.

Or,
∑

x∈X(Ω)

P (X = x) = 1. Donc : E(X) = 0 ⇔ P (X = 0) = 1.

- 2

Proposition 11. Croissance de l’espérance.
Soit X et Y deux variables aléatoires réelles d’espérance finie telles que X ⩽ Y . Alors E(X) ⩽ E(Y ).

Démonstration. La variable aléatoire Y − X est L1 et positive. Ainsi, 0 ⩽ E(Y − X).
Par linéarité de l’espérance, on obtient : E(X) ⩽ E(Y ). 2

Remarque 7. Espérance d’un produit XY de deux variables aléatoires discrètes.
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Théorème 3. Si X et Y sont deux variables aléatoires discrètes indépendantes et d’espérance finie, alors
XY est d’espérance finie et :

E(XY ) = E(X)E(Y ).

Démonstration.

- 2

" Cette propriété se généralise au cas de n variables aléatoires mutuellement indépendantes.

II. Variance d’une variable aléatoire réelle.

II.1. Définition.

Dans cette partie, toutes les variables aléatoires sont supposées discrètes et à valeurs réelles.

Définition 5. On dit qu’un variable aléatoire X admet un moment d’ordre 2 si la variable aléatoire X2

est d’espérance finie.

Définition 6. On note L2(Ω,R) l’ensemble des variables aléatoires réelles discrètes admettant un moment
d’ordre 2.

Remarque 8. On a donc : X ∈ L2(Ω,R) ⇔ X2 ∈ L1(Ω,R).

" Les variables aléatoires presque sûrement constantes admettent un moment d’ordre 2.

Théorème 4. Inégalité de Cauchy-Schwarz.
Si (X, Y ) ∈ L2(Ω,R) alors XY ∈ L1(Ω,R) et :

E(XY )2 ⩽ E(X2)E(Y 2).
Il y a égalité si, et seulement si, X et Y sont proportionnelles presque sûrement.

Démonstration. L’inégalité et le cas d’égalité se démontrent comme l’inégalité de Cauchy-Schwarz dans
un espace préhilbertien. Soit (X, Y ) ∈ L2(Ω,R). Montrons que XY ∈ L1(Ω,R).

- 2
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Proposition 12. Si X admet un moment d’ordre 2, alors X est d’espérance finie.
Autrement-dit, L2(Ω,R) ⊂ L1(Ω,R).

Proposition 13. L’ensemble L2(Ω,R) est un R-espace vectoriel.

Démonstration.

- 2

Définition 7. Si X ∈ L2(Ω,R), on appelle variance de X le réel noté V (X) et défini par :
V (X) = E

(
(X − E(X))2)

.

On appelle écart type de X le réel noté σ(X) et défini par : σ(X) =
√

V (X).

" Cette définition a bien un sens puisque :

Remarque 9. La variance, comme l’espérance ne dépend que de la loi de la variable aléatoire.

Remarque 10. La variance d’une variable aléatoire réelle est l’espérance du carré des écarts à l’espérance.
La variance permet donc de mesurer la dispersion de X autour de E(X). On dit que V (X) est un
paramètre de dispersion, alors que E(X) est un paramètre de position.

II.2. Propriétés de la variance.

D’après la formule de transfert avec f : x 7→ (x − E(X))2 :

Proposition 14. Si X ∈ L2(Ω,R) alors :
V (X) =

∑
x∈X(Ω)

(x − E(X))2
P (X = x).

Mais c’est surtout l’identité remarquable suivante, qui sera utilisée :

Théorème 5. Formule de Kœnig-Huygens.
Si X ∈ L2(Ω,R) alors : V (X) = E(X2) − E(X)2.

Démonstration.
V (X) = E

(
(X − E(X))2)

= E
(
X2 − 2E(X)X + E(X)2)

V (X) = E
(
(X − E(X))2)

= E(X2) − E
(
2E(X)X

)
+E

(
E(X)2)

V (X) = E
(
(X − E(X))2)

= E(X2) − 2E(X)E(X) + E(X)2= E(X2) − E(X)2.

2
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Corollaire 2. Si X ∈ L2(Ω,R) et si (a, b) ∈ R2, alors :

V (aX + b) = a2V (X).

Démonstration.
V (aX + b) = E

((
aX + b − E(aX + b)

)2)
.

Or, aX + b − E(aX + b) = aX + b − (aE(X) + b) = a(X − E(X)).
Donc, V (aX + b) = E

(
a2(X − E(X))2)

= a2E
(
(X − E(X))2)

= a2V (X).

2

Proposition 15. Soit X ∈ L2(Ω,R). Alors :
1. V (X) ⩾ 0,
2. V (X) = 0 si, et seulement si, il existe un réel m tel que P (X = m) = 1. On dit alors que X est
presque sûrement constante.

Démonstration.
V (X) = E

(
(X − E(X))2)

or, (X − E(X))2 est une variable aléatoire positive. Donc, (voir prop. 5) :
• E

(
(X − E(X))2)

⩾ 0 i.e. V (X) ⩾ 0.
• V (X) = 0 ⇔ E

(
(X − E(X))2)

= 0 ⇔ P
(
(X − E(X))2 = 0

)
= 1 ⇔ P

(
X = E(X)

)
= 1.

2

II.3. Variance des lois usuelles.

Proposition 16. Si X ∼ U
(
J1, nK

)
, alors : V (X) = n2 − 1

12 .

Démonstration.

- 2

Proposition 17. Si X ∼ B(p), alors : V (X) = p(1 − p) = pq.

Démonstration.

- 2
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Proposition 18. Si X ∼ B(n, p), alors : V (X) = np(1 − p) = npq.

Démonstration.

- 2

Proposition 19. Si X ∼ G(p), avec p ∈]0, 1[ alors : V (X) = 1 − p

p2 = q

p2 .

Démonstration.

- 2

Proposition 20. Si X ∼ P(λ), avec λ > 0 alors : V (X) = λ.

Démonstration.

- 2
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II.4. Covariance de deux variables aléatoires réelles.

Définition 8. Soit (X, Y ) ∈
(
L2(Ω,R)

)2. On appelle covariance de X et Y , ou covariance de (X, Y ), le
réel noté Cov(X, Y ) et défini par :

Cov(X, Y ) = E
((

X − E(X)
)

·
(
Y − E(Y )

))
.

" Cette définition a bien un sens puisque :

Remarque 11. On peut remarquer que l’application Cov est une forme bilinéaire symétrique positive !
Elle est positive car : Cov(X, X) = E

((
X − E(X)

)2
)

= V (X) ⩾ 0.

Théorème 6. Formule de Kœnig-Huygens.
Si (X, Y ) ∈

(
L2(Ω,R)

)2, alors : Cov(X, Y ) = E(XY ) − E(X)E(Y ).

Démonstration.
Cov(X, Y ) = E

(
XY − E(X)Y − E(Y )X + E(X)E(Y )

)
− = E(XY ) − E(X)E(Y ) − E(Y )E(X) + E(X)E(Y )

− = E(XY ) − E(X)E(Y ). 2

Remarque 12. Cette formule permet de retrouver la formule de Kœnig-Huygens :
V (X) = E(X2) − E(X)2.

Théorème 7. Si (X, Y ) ∈
(
L2(Ω,R)

)2 alors : V (X + Y ) = V (X) + V (Y ) + 2Cov(X, Y ).

Démonstration. L’application Cov étant une forme bilinéaire symétrique :
V (X + Y ) = Cov(X + Y, X + Y ) = Cov(X, X) + Cov(Y, X) + Cov(Y, X) + Cov(Y, Y ). 2

Corollaire 3. Si (X, Y ) ∈
(
L2(Ω,R)

)2 et si X et Y sont indépendantes, alors :
Cov(X, Y ) = 0 et V (X + Y ) = V (X) + V (Y ).

Démonstration.

- 2

Définition 9. Lorsque Cov(X, Y ) = 0, on dit que les variables aléatoires X et Y sont non corrélées.

" On a donc : (X et Y sont indépendantes) ⇒ (X et Y sont non corrélées). Mais la réciproque est
fausse.
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L’application Cov étant une forme bilinéaire symétrique :

Théorème 8. Si (X1, . . . , Xn) ∈
(
L2(Ω,R)

)n alors :

V (X1 + · · · + Xn) =
n∑

k=1
V (Xk) + 2

∑
1⩽i<j⩽n

Cov(Xi, Xj).

Corollaire 4. Si de plus, les variables aléatoires sont 2 à 2 indépendantes alors :

V (X1 + · · · + Xn) =
n∑

k=1
V (Xk).

Remarque 13. On en déduit une autre preuve de la variance d’une variable aléatoire suivant la loi
binomiale B(n, p).

III. Inégalités probabilistes et loi faible des grands nombres.
Théorème 9. Inégalité de Markov.
Pour toute variable aléatoire réelle positive X, on a :

∀a > 0, P(X ⩾ a) ⩽ E(X)
a

.

Nous allons voir deux manières d’écrire la démonstration de l’inégalité de Markov.

Démonstration. 1.
E(X) =

∑
x∈X(Ω)

xP (X = x) =
∑

x∈X(Ω)
x⩾a

xP (X = x) +
∑

x∈X(Ω)
x<a

xP (X = x)

︸ ︷︷ ︸
⩾0 car X va positive

.

Donc, E(X) ⩾
∑

x∈X(Ω)
x⩾a

xP (X = x) ⩾
∑

x∈X(Ω)
x⩾a

aP (X = x) = a
∑

x∈X(Ω)
x⩾a

P (X = x) = aP (X ⩾ a).

Comme a > 0, on obtient : E(X)
a

⩾ P (X ⩾ a).

- 2
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Démonstration. 2.
Les événements {X < a} et {X ⩾ a} forment un sce.
D’où 1{X<a} + 1{X⩾a} = 1, ainsi : X = X · 1{X<a}︸ ︷︷ ︸

⩾0

+X · 1{X⩾a} ⩾ X · 1{X⩾a} ⩾ a · 1{X⩾a}.

Par croissance de l’espérance : E(X) ⩾ E
(
a · 1{X⩾a}

)
= aE

(
1{X⩾a}

)
= aP (X ⩾ a).

Comme a > 0, on obtient : E(X)
a

⩾ P (X ⩾ a).

- 2

Théorème 10. Inégalité de Bienaymé-Tchebychev.
Pour toute variable aléatoire réelle X ∈ L2(Ω,R) on a :

∀ε > 0, P
(
|X − E(X)| ⩾ ε

)
⩽

V (X)
ε2 .

Démonstration.
Les deux événements suivant sont égaux : {|X − E(X)| ⩾ ε} = {(X − E(X))2 ⩾ ε2}.
On applique l’inégalité de Markov à la variable aléatoire positive (X − E(X))2 et avec le réel ε2 :

P
(
(X − E(X))2 ⩾ ε2)

⩽
E

(
(X − E(X))2)

ε2 .
2

L’inégalité de Bienaymé-Tchebychev est qualifiée d’inégalité de concentration, car elle majore la probabi-
lité qu’une variable aléatoire dévie de son espérance.

Théorème 11. Loi faible des grands nombres.
Soit (Xn)n∈N∗ une suite de variables aléatoires discrètes i.i.d. sur un même espace probabilisé.
On suppose que X1 ∈ L2(Ω,R) et on note m = E(X1).
Pour n ∈ N∗, on définit : Sn = X1 + · · · + Xn. On a alors :

∀ε > 0, lim
n→+∞

P
(∣∣∣∣Sn

n
− m

∣∣∣∣ ⩾ ε

)
= 0.

Démonstration.

- 2
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" La variable aléatoire Sn

n
désigne la moyenne empirique. La loi faible des grands nombres signifie,

qu’en un certain sens, la suite
(

Sn

n

)
n∈N∗

converge vers m.

Exemple 2. On réalise une suite d’épreuves aléatoires identiques et indépendantes (par exemple un
lancer de dé). On s’intéresse à la réalisation ou non d’un certain événement de probabilité p, et on note
An l’événement correspondant lors de la n-ème épreuve (par exemple An serait de réaliser un 6 lors du
n-ème lancer et p = 1

6 .).
On obtient alors une suite (An)n∈N∗ d’événements mutuellement indépendants, et une suite (1An)n∈N∗

de variable aléatoire i.i.d. telles que pour tout n ∈ N∗, 1An
∼ B(p).

Comme E(1A1) =P(A1) = p, on obtient :

∀ε > 0, lim
n→+∞

P
(∣∣∣∣Sn

n
− p

∣∣∣∣ ⩾ ε

)
= 0.

Ici, la variable aléatoire Sn

n
désigne la fréquence empirique de réalisation de notre événement. La loi

faible des grands nombres signifie, qu’en un certain sens, la suite
(

Sn

n

)
n∈N∗

converge vers p.

Ceci peut-être utile lorsque l’on ne connait pas la valeur de p. La variable aléatoire Sn

n
est alors appelée

un estimateur de p.

La figure ci-dessus (obtenue en Python) illustre la convergence de la fréquence empirique de l’événement
“obtenir un 6” vers la probabilité p = 1

6 .

Exercice 2. Écrire une fonction Python simulant la répétition d’un lancer de dé équilibré et permettant
d’obtenir la figure ci-dessus ; n et p seront des paramètres de la fonction.
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-

import matplotlib.pyplot as plt
import random as rd

def frequence(n,p):
- x=0
- L=[]
- for i in range(1,n+1):
- x+=(rd.random()<p)*1
- L.append(x/i)
- plt.plot(L)
- plt.plot([0,n],[p,p])

IV. Fonctions génératrices.

IV.1. Définition.

Définition 10. Pour toute variable aléatoire X à valeurs dans N, on appelle fonction génératrice de X
la fonction GX définie sur une partie de R par :

GX(t) = E(tX) =
+∞∑
k=0

P(X = k) tk.

" La deuxième égalité est une conséquence de la formule de transfert.
" L’ensemble de définition de GX est donc l’intervalle de convergence de la série entière

∑
P(X = k) tk.

Comme pour n’importe quelle série entière, il est donc intéressant de connaître son rayon de convergence.

IV.2. Propriétés.

Proposition 21. Soit X variable aléatoire à valeurs dans N.
1. La série entière définissant GX est de rayon de convergence R ⩾ 1.
2. La convergence est normale sur [−1, 1].
3. GX est définie et continue (au moins) sur [−1, 1].

" D’après les résultats sur les séries entières, GXest même de classe C∞ sur ] − R, R[.

Démonstration.

2
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Exercice 3. Que peut-on dire dans le cas où X est une variable finie ?

-

Proposition 22. La fonction génératrice d’une variable aléatoire à valeurs dans N caractérise la loi.
Autrement-dit, pour toutes variables aléatoires X et Y à valeurs dans N, X et Y ont même loi si, et
seulement si, pour tout t ∈ [−1, 1], GX(t) = GY (t).

Démonstration.
Pour tout n ∈ N, P(X = n) = G

(n)
X

(0)
n! .

2

Théorème 12. Une variable aléatoire X à valeurs dans N est d’espérance finie si, et seulement si, GX

est dérivable en 1. Dans ce cas, on a :
E(X) = G′

X(1).

Démonstration.

2

Théorème 13. Une variable aléatoire X à valeurs dans N appartient à L2(Ω,R) si, et seulement si, GX

est deux fois dérivable en 1. Dans ce cas, on a :
G′′

X(1) = E
(
X(X − 1)

)
.

Démonstration. Admis. 2

" Dans ce cas, on a : V (X) = G
′′

X(1) + G
′

X(1) −
(
G

′

X(1)
)2

.
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IV.3. Fonctions génératrices des lois usuelles.
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-

IV.4. Fonction génératrice d’une somme de variables aléatoires indépendantes.

Les fonctions génératrices peuvent être particulièrement efficace pour déterminer la loi de la somme de
variables aléatoires indépendantes :

Théorème 14. Soit X1, . . . , Xn des variables aléatoires indépendantes à valeurs dans N.

On pose : Sn =
n∑

k=1
Xk. Soit un réel t tel que GXk

soit défini en t pour tout k ∈ J1, nK.

Alors, GSn
est défini en t et :

GSn
(t) =

n∏
k=1

GXk
(t).

" Ce théorème s’applique en particulier pour tout t ∈ [−1, 1].
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Démonstration.

2

Exercice 4. Soit X1, . . . , Xn des variables aléatoires indépendantes telles que Xk ∼ B(nk, p) pour tout

k ∈ J1, nK. Déterminer la loi de Sn =
n∑

k=1
Xk en utilisant les fonctions génératrices.

-

Exercice 5. Soit X1, . . . , Xn des variables aléatoires indépendantes telles que Xk ∼ P(λk) pour tout

k ∈ J1, nK. Déterminer la loi de Sn =
n∑

k=1
Xk en utilisant les fonctions génératrices.

-
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