
Lycée Jeanne d’Albret – MP – 2025-2026. Page n°1.

– Chapitre 21 : Fonctions vectorielles de la variable réelle –

Les fonctions sont définies sur un intervalle I de R, d’intérieur non vide. Elles sont à valeurs dans un K

espace vectoriel normé E de dimension finie égale à n ⩾ 1. K désigne R ou C.

I. Dérivation.

I.1. Dérivée en un point.

On considère une fonction f : I → E et a un point de I.

Définition 1. On dit que f est dérivable en a si la fonction taux d’accroissement de f en a, notée τa

et définie sur I \ {a} par :

τa(x) = f(x) − f(a)
x − a

admet une limite dans E quand x tend vers a.
Cette limite est alors appelée dérivée de f en a et notée f ′(a) :

f ′(a) = lim
x→a

f(x) − f(a)
x − a

ou encore f ′(a) = lim
h→0

f(a + h) − f(a)
h

.

" Bien noter que f ′(a) est un élément de E. Ainsi, f ′(a) sera souvent appelée vecteur dérivé de f en a.

Interprétation cinématique. Lorsque la fonction f représente le mouvement d’un point matériel en
fonction du temps, le vecteur f ′(t0) représente le vecteur vitesse du point à l’instant t0.

Proposition 1. La fonction f est dérivable en a si, et seulement si, il existe un vecteur ℓ ∈ E tel que :

f(x) =
a

f(a) + (x − a)ℓ + o(x − a).

On a alors : f ′(a) = ℓ.

Par conséquent, si f est dérivable en a on a alors :

f(x) =
a

f(a) + (x − a)f ′(a) + o(x − a) ou f(a + h) =
0

f(a) + hf ′(a) + o(h).

Proposition 2. Si f est dérivable en a alors elle est continue en a.

Démonstration. Il suffit de passer à la limite dans l’une des deux égalités précédentes. 2

" La réciproque est fausse. Il suffit de considérer, par exemple, la fonction x 7−→
√

x. Elle est continue
en 0 mais n’ est pas dérivable en 0.

Rappel. Fonctions coordonnées. Si l’on munit E d’une base B = (e1, . . . , en), les fonctions coordon-
nées de f dans la base B sont les fonctions f1, . . . , fn, à valeurs dans K, définies par :

∀x ∈ I, f(x) =
n∑

i=1
fi(x) ei.aaaaaa
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Proposition 3. La fonction f est dérivable en a si, et seulement si, chacune de ses fonctions coordonnées
dans la base B est dérivable en a. Dans ce cas, on a :

f ′(a) =
n∑

i=1
f ′

i(a) ei.

Démonstration.

- 2

Exemple 1. Une fonction f de I dans C est dérivable en a si, et seulement si, les fonctions Ref et Imf
sont dérivables en a et dans ce cas :

f ′(a) = (Ref)′(a) + i(Imf)′(a).

Exemple 2. L’application R : R → M2(R) définie pour tout t ∈ R par :

R(t) =
(

cos t − sin t
sin t cos t

)
,

est dérivable en tout t ∈ R, et on a :

∀t ∈ R, R′(t) =
(

− sin t − cos t
cos t − sin t

)
= R(t + π

2 ).

Comme dans le cas des fonctions à valeurs dans K on peut définir la notion de dérivation à droite et à
gauche en a :

Définition 2. Soit a un élément de I. On dit que f est :
• dérivable à droite en a si f |I ∩ [a,+∞[ est dérivable en a. On note alors f ′

d(a) sa dérivée,
• dérivable à gauche en a si f |I ∩ ]−∞,a] est dérivable en a. On note alors f ′

g(a) sa dérivée.

I.2. Fonction dérivée.

Définition 3. Lorsque la fonction f est dérivable en tout point a de I, on dit que f est dérivable sur I.
On appelle alors, fonction dérivée de f , la fonction définie sur I par x 7→ f ′(x). On la note f ′.

Théorème 1. Une fonction f est constante sur l’intervalle I si, et seulement si, elle est dérivable et de
dérivée nulle en tout point de I.

Démonstration. Il suffit d’appliquer le résultat analogue vu pour les fonctions à valeurs dans K, à
chacune des applications coordonnées. 2
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I.3. Opérations sur les fonctions dérivables.

Pour les 3 premiers résultats, il suffit d’appliquer le résultat analogue vu pour les fonctions à valeurs dans
K, à chacune des applications coordonnées :

Proposition 4. Linéarité de la dérivation.
Si f et g sont deux fonctions définies sur I et dérivables en a et si (α, β) ∈ K2 alors la fonction αf + βg
est dérivable en a, et l’on a :

(αf + βg)′(a) = αf ′(a) + βg′(a).

Autrement-dit, l’ensemble des fonctions définies sur I et dérivables en a est un sous-espace vectoriel de
F(I, E) et l’application f 7→ f ′(a) est linéaire.

Proposition 5. Soit f : I → E et λ : I → K. Si f et λ sont dérivables en a alors la fonction λf est
dérivable en a, et l’on a :

(λf)′(a) = λ′(a)f(a) + λ(a)f ′(a).

Proposition 6. Soit deux intervalles I et J , ainsi que deux fonctions f : I → E et φ : J → R telles que
φ(J) ⊂ I. Soit a ∈ I.
Si φ est dérivable en a et si f est dérivable en φ(a), alors la fonction f ◦ φ est dérivable en a, et l’on a :

(f ◦ φ)′(a) = φ′(a)f ′(φ(a)).

Proposition 7. Soit L une application linéaire de E dans un K-espace vectoriel F de dimension finie.
Si f est dérivable en a alors L ◦ f est dérivable en a et :(

L ◦ f
)′(a) = L

(
f ′(a)

)
.

Démonstration.

- 2
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Proposition 8. Soit E, F et G trois K-espaces vectoriels de dimension finie.
Soit B une application bilinéaire de E × F dans G. Soit f : I → E et g : I → F .
Si f et g sont dérivables en a alors B(f, g) est dérivable en a et :(

B(f, g)
)′(a) = B

(
(f)′(a), g(a)

)
+ B

(
f(a), (g)′(a)

)
.

Démonstration.

- 2

Exercice 1. Appliquer la propriété précédente à l’application f : t 7→ det(R(t)).

-

Corollaire 1. Soit E est un espace euclidien. Soit f et g deux fonctions de I dans E. Si f et g sont
dérivables en a, alors la fonction ⟨f, g⟩ est dérivable en a et :(

⟨f, g⟩
)′(a) = ⟨f ′(a), g(a)⟩ + ⟨f(a), g′(a)⟩ .

Remarque 1. Soit E est un espace euclidien et f : I → E une fonction dérivable sur I.
L’application ∥f∥2 est dérivable sur I et :

(
∥f∥2)′ = 2 ⟨f, f ′⟩ .

Si de plus f ne s’annule pas, la fonction racine carrée étant dérivable sur R∗
+ l’application ∥f∥ =

√
∥f∥2

est dérivable sur I et :
∥f∥′ = 2 ⟨f, f ′⟩

2
√

∥f∥2
= ⟨f, f ′⟩

∥f∥
.

" ∥f∥ est constante sur I si, et seulement si, f ′(t) est orthogonal à f(t) en tout point t ∈ I.

9 mars 2025. Nicolas HUBERT Page n°4.

https://www.youtube.com/channel/UCaDhFd5i-mMZHBFinsi6hFg/


Lycée Jeanne d’Albret – MP – 2025-2026. Page n°5.

" La proposition 8 s’étend à toute application multilinéaire. En particulier, si B est une base de E et
si f1, . . . , fn sont des fonctions dérivables sur I à valeurs dans E, alors detB(f1, . . . , fn) est dérivable sur
I et :

detB(f1, . . . , fn)′ = detB(f ′
1, f2, . . . , fn) + detB(f1, f ′

2, . . . , fn) + . . . + detB(f1, f2, . . . , f ′
n).

I.4. Fonctions de classe Ck.

Définition 4. Soit une fonction f définie sur I. En posant f (0) = f , on peut définir par récurrence la
dérivée k-ème de f sur I, notée f (k), comme étant, si elle existe, la dérivée de f (k−1) : f (k) =

(
f (k−1))′

.

Définition 5.
• Une fonction f est dite de classe Ck sur I, avec k ∈ N, si elle est k fois dérivable sur I et si f (k) est
continue sur I.
• Une fonction f est dite de classe C∞ sur I, ou indéfiniment dérivable sur I, si elle est k fois dérivable
sur I pour tout k ∈ N, autrement dit, si elle admet des dérivées de tout ordre.

Interprétation cinématique. Lorsque la fonction f représente le mouvement d’un point matériel en
fonction du temps, le vecteur f ′′(t0)représente le vecteur accélération du point à l’instant t0.

Notation. Pour k ∈ N∪ {+∞}, on note Ck(I, E) l’ensemble des fonctions de classe Ck sur I et à valeurs
dans E.

Dans toute la suite, k désigne un élément de N ∪ {+∞}.

Proposition 9. Linéarité de la dérivation.
L’ensemble Ck(I, E) est un sous-espace vectoriel de F(I, E) et si k ∈ N, l’application f 7→ f (k) est
linéaire.

Proposition 10. Soit L une application linéaire de E dans un K-espace vectoriel F de dimension finie.
Si f ∈ Ck(I, E) L ◦ f ∈ Ck(I, E) et, si k ∈ N on a :(

L ◦ f
)(k) = L ◦ f (k).

Proposition 11. Soit B = (e1, . . . , en) une base de E, et soit f1, . . . , fn les fonctions coordonnées de f
dans la base B.
La fonction f est de classe Ck sur I si, et seulement si, chacune de ses fonctions coordonnées dans la base
B le sont. De plus, si k ∈ N on a :

f (k) =
n∑

i=1
f

(k)
i ei.

Proposition 12. Formule de Leibniz.
Soit f : I → E et λ : I → K. Si f et λ sont de classe Ck sur I alors la fonction λf est de classe Ck sur I
et, si k ∈ N on a :

(λf)(k) =
k∑

j=0

(
k

j

)
λ(j)f (k−j).
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Proposition 13. Formule de Leibniz.
Soit E, F et G trois K-espaces vectoriels de dimension finie.
Soit B une application bilinéaire de E × F dans G.
Si f ∈ Ck(I, E) et g ∈ Ck(I, F ) alors B(f, g) ∈ Ck(I, G) et, si k ∈ N on a :

B(f, g)(k) =
k∑

j=0

(
k

j

)
B
(
f (j), g(k−j)).

II. Intégration sur un segment.

II.1. Fonctions continues par morceaux sur [a, b].

Définition 6. Une fonction f définie sur [a, b] et à valeurs dans E est dite continue par morceaux, s’il
existe une subdivision σ = (xi)0⩽i⩽n de [a, b] telle que pour tout i ∈ J0, n − 1K :
1. la restriction f ]xi,xi+1[ est continue sur ]xi, xi+1[,
2. la restriction f ]xi,xi+1[ est prolongeable par continuité à [xi, xi+1].
Une telle subdivision est dite adaptée à f .

" Le point 2 équivaut au fait que lim
x+

i

f et lim
x−

i+1

f existent (et soient finies).

Notations. Nous noterons CM([a, b], E) l’ensemble des fonctions continues par morceaux sur [a, b] et
à valeurs dans E.

Remarque 2.
• CM([a, b], E) est un sous-espace vectoriel de l’ensemble F([a, b], E) des fonctions définies sur [a, b].
• Toute fonction continue sur [a, b] est continue par morceaux sur [a, b], i.e.

C([a, b], E) ⊂ CM([a, b], E).

Remarque 3. Comme dans le cas des fonctions à valeurs dans K on définit la notion de fonctions en
escalier.
Une fonction f définie sur [a, b] et à valeurs dans E est dite en escalier, s’il existe une subdivision
σ = (xi)0⩽i⩽n de [a, b] telle que pour tout i ∈ J0, n − 1K, la restriction f ]xi,xi+1[ est constante.
En notant E([a, b], E) l’ensemble des fonctions en escalier sur [a, b] et à valeurs dans E on obtient :

E([a, b], E) ⊂ CM([a, b], E).

Proposition 14. Une fonction définie sur [a, b] à valeurs dans E est continue par morceaux si, et
seulement si, chacune de ses fonctions coordonnées l’est.

Démonstration. C’est une conséquence immédiate de la caractérisation de la limite et de la caractéri-
sation de la continuité d’une fonction à l’aide de ses fonctions coordonnées. 2

Proposition 15. Toute fonction continue par morceaux sur [a, b] à valeurs dans E est bornée.

" Les bornes ne sont pas nécessairement atteintes.
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II.2. Intégrale d’une fonction continue par morceaux.

Proposition 16. Soit f ∈ CM([a, b], E).
Soit B = (e1, . . . , en) une base de E, et soit f1, . . . , fn les fonctions coordonnées de f dans la base B.

Le vecteur
n∑

i=1

(∫ b

a

fi

)
ei ne dépend pas de la base de E choisie.

Ce vecteur est appelé l’intégrale de f sur [a, b] et on note :∫ b

a

f =
n∑

i=1

(∫ b

a

fi

)
ei.

Démonstration.

- 2

Proposition 17. Linéarité de l’intégrale.
L’application suivante est linéaire :

CM([a, b], E) −→ E

f 7−→
∫ b

a

f

Démonstration. C’est une conséquence immédiate de la linéarité de l’intégrale des fonctions continues
par morceaux sur un segment à valeurs dans K, que l’on applique aux fonctions coordonnées. 2
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Proposition 18. Soit L une application linéaire de E dans un K-espace vectoriel de dimension finie F .
Si f ∈ CM([a, b], E), alors L ◦ f ∈ CM([a, b], F ) et :

L

(∫ b

a

f

)
=
∫ b

a

L ◦ f.

Démonstration.

- 2

Théorème 2. Sommes de Riemann.
Pour tout f ∈ CM([a, b]) : b − a

n

n−1∑
k=0

f

(
a + k

b − a

n

)
−→

n→+∞

∫ b

a

f.

Démonstration. C’est une conséquence immédiate de la convergence des sommes de Riemann des
fonctions continues par morceaux sur un segment à valeurs dans K, que l’on applique aux fonctions
coordonnées. 2

Proposition 19. Inégalité triangulaire.
Si f une fonction continue par morceaux sur [a, b], alors ∥f∥ est continue par morceaux sur [a, b] et :∥∥∥∥∥

∫ b

a

f

∥∥∥∥∥ ⩽
∫ b

a

∥f∥.
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Démonstration.

- 2

III. Intégrale fonction de sa borne supérieure.
Proposition 20. Soit f une fonction continue par morceaux sur un intervalle I, et soit a ∈ I.
La fonction Fa définie sur I par :

∀x ∈ I, Fa(x) =
∫ x

a

f(t)dt

est continue sur I. Plus précisément, sa restriction à tout segment de I est lipschitzienne.

Démonstration. Il suffit de montrer que Fa est lipschitzienne sur tout segment de I. En effet, Fa sera
alors continue sur tout segment de I, donc continue sur I.
Soit J un segment inclus dans I.
La fonction f est alors continue par morceaux sur le segment J , donc bornée sur ce segment.
Notons M = sup

J
∥f∥. Soit (x, y) ∈ J2. Supposons par exemple que x ⩽ y.

∥Fa(y) − Fa(x)∥ =
∥∥∥∥∫ y

x

f(t)dt

∥∥∥∥ ⩽
∫ y

x

∥f(t)∥ dt ⩽
∫ y

x

Mdt = M(y − x) = M |y − x| .

- 2

Théorème 3. Soit f une fonction continue sur un intervalle I, et soit a ∈ I.
La fonction Fa définie sur I par :

∀x ∈ I, Fa(x) =
∫ x

a

f(t) dt

est dérivable sur I, de dérivée F ′
a = f .

Ainsi, Fa est l’unique primitive de f sur I s’annulant en a.

Démonstration. Il suffit de raisonner sur les fonctions coordonnées. 2
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Remarque 4. Si f est une fonction de R dans K, continue sur R et intégrable en −∞. Alors, la fonction
F définie sur R par :

∀x ∈ R, F (x) =
∫ x

−∞
f(t) dt

est dérivable sur R, de dérivée F ′ = f .

Corollaire 2. Soit f : I → E une fonction continue, et soit (a, b) ∈ I2.
Pour toute primitive F de f sur I, on a :∫ b

a

f(t) dt = F (b) − F (a)

Démonstration. L’application x 7→ F (x) − F (a) est une primitive de f sur I s’annulant en a.

D’après le théorème 3, c’est la seule et : F (b) − F (a) = Fa(b) =
∫ b

a

f(t) dt.
2

Corollaire 3. Soit f : I → E une fonction continue sur un intervalle I.
Soit (a, b) ∈ R2 avec a < b, et soit φ : [a, b] → R une fonction de classe C1 sur [a, b] telle que φ([a, b]) ⊂ I
alors : ∫ b

a

φ′(x)f(φ(x)) dx =
∫ φ(b)

φ(a)
f(y) dy.

Démonstration.

- 2

Théorème 4. Inégalité des accroissements finis.
Soit f ∈ C1(I, E). S’il existe un réel k tel que : ∀x ∈ I, ∥f ′(x)∥ ⩽ k,

alors f est k-lipschitzienne i.e. : ∀(x, y) ∈ I2, ∥f(x) − f(y)∥ ⩽ k|x − y|.

Démonstration.

- 2

Interprétation cinématique. Un véhicule ne dépassant jamais la vitesse instantanée de 60 km/h
parcourt en une heure une distance inférieure à 60 km. Par contraposée, si en une heure, il parcourt une
distance supérieure à 60 km, alors il existe au moins un instant où sa vitesse instantanée a dépassé 60
km/h.
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IV. Formules de Taylor.

Les formules de Taylor sont des formules, de la forme : f(x) =
n∑

k=0

f (k)(a)
k! (x − a)k + Rn(x).

Elles permettent d’approcher des fonctions « régulières », par des fonctions polynomiales.
Nous allons voir trois formules de Taylor (qui vont variées par leur expression du reste Rn(x)) : deux
formules globales et une formule locale.

IV.1. Formules de Taylor globales.

Théorème 5. Formule de Taylor avec reste intégral.
Soit a ∈ I, n ∈ N et soit f une fonction de classe Cn+1 sur I. Alors pour tout x ∈ I :

f(x) =
n∑

k=0

f (k)(a)
k! (x − a)k +

∫ x

a

f (n+1)(t)
n! (x − t)n dt.

Démonstration.

Soit a ∈ I. Montrons le théorème par récurrence sur n ∈ N.

Initialisation. Soit f une fonction de classe C1 sur I.

D’après le théorème fondamental : ∀x ∈ I, f(x) = f(a) +
∫ x

a

f ′(t)dt.

Donc, la propriété est vraie au rang n = 0.

Hérédité. Soit n ∈ N. Supposons la propriété vraie au rang n.
Soit f une fonction de classe Cn+2 sur I. En particulier, f est de classe Cn+1 sur I, donc d’après HR,
pour tout x ∈ I :

f(x) =
n∑

k=0

f (k)(a)
k! (x − a)k +

∫ x

a

f (n+1)(t)
n! (x − t)n dt.

Procédons à une IPP dans l’intégrale ci-dessus, en dérivant f (n+1) et en primitivant t 7→ (x − t)n, dont
une primitive est donnée par t 7→ − (x−t)n+1

n+1 . Cette IPP est justifiée car f (n+1) et t 7→ − (x−t)n+1

n+1 sont
deux fonctions de classe C1 sur I :∫ x

a

f (n+1)(t)
n! (x − t)n dt =

[
f (n+1)(t)

n! · −(x − t)n+1

n + 1

]x

a

−
∫ x

a

f (n+2)(t)
n! · −(x − t)n+1

n + 1 dt

= f (n+1)(a)
(n + 1)! (x − a)n+1 +

∫ x

a

f (n+2)(t)
(n + 1)! (x − t)n+1 dt.

-

2
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Théorème 6. Inégalité de Taylor-Lagrange.
Soit a ∈ I, n ∈ N et soit f une fonction de classe Cn+1 sur I. Si M est un majorant de

∥∥f (n+1)
∥∥ sur I

alors pour tout x ∈ I : ∥∥∥∥∥f(x) −
n∑

k=0

f (k)(a)
k! (x − a)k

∥∥∥∥∥ ⩽
M |x − a|n+1

(n + 1)! .

Démonstration.

Il suffit de majorer le reste dans la formule précédente.

Supposons a ⩽ x.∥∥∥∥∫ x

a

f (n+1)(t)
n! (x − t)n dt

∥∥∥∥ ⩽
∫ x

a

∥∥f (n+1)(t)
∥∥

n! (x − t)n dt ⩽
∫ x

a

M

n! (x − t)n dt.

Or,
∫ x

a

M

n! (x − t)n dt = M

n!

[
−(x − t)n+1

n + 1

]x

a

= M

(n + 1)! (x − a)n+1 = M |x − a|n+1

(n + 1)! .

- 2

IV.2. Formule de Taylor locale.

Théorème 7. Formule de Taylor-Young.
Soit a ∈ I, n ∈ N et soit f une fonction de classe Cn sur I. Alors pour tout x ∈ I :

f(x) =
a

n∑
k=0

f (k)(a)
k! (x − a)k + o

(
(x − a)n

)
.

Démonstration. On admettra ce théorème, mais nous pouvons le déduire facilement de l’inégalité de
Taylor-Lagrange, à condition de renforcer l’hypothèse, en supposant que f est de classe Cn+1.
En effet, dans ce cas, f (n+1) est continue, donc majorée sur tout segment. 2
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