- Programme de colle n° 10 : du 2 au 6/12 -

Les questions de cours et les exercices portent sur tout ce qui suit.

Les exercices portent principalement sur le chapitre 9, mais on pourra, par exemple, déterminer un polynôme minimal.

Chapitre 9 - Réduction (1) - version géométrique.

I. Rappels sur les racines d'un polynôme.

II. Sous-espaces vectoriels stables.

III. ÉLÉMENTS PROPRES D'UN ENDOMORPHISME, D'UNE MATRICE CARRÉE.

- III.1. Vecteurs propres et valeurs propres d'un endomorphisme.
- III.2. Cas des endomorphismes d'un espace de dimension finie.
- III.3. Vecteurs propres et valeurs propres d'une matrice carrée.
- III.4. Polynôme caractéristique d'une matrice carrée.
- III.5. Polynôme caractéristique d'un endomorphisme.

IV. ENDOMORPHISMES ET MATRICES CARRÉES DIAGONALISABLES.

- IV.1. Définitions de la notion de diagonalisation.
- IV.2. Conditions de diagonalisation.

V. Endomorphismes et matrices carrées trigonalisables.

Un endomorphisme (ou une matrice carrée) est trigonalisable si, et seulement si, son polynôme caractéristique est scindé.

Si u est trigonalisable, alors l'endomorphisme u_F induit par u sur un sous-espace vectoriel stable F est lui-même trigonalisable.

Trace et déterminant d'une matrice trigonalisable.

Chapitre 10 - Réduction (2) - Version algébrique.

I. Polynômes d'un endomorphisme, d'une matrice carrée.

L'application:

$$\varphi_u : \mathbb{K}[X] \to \mathcal{L}(E)
P \mapsto P(u)$$

est un morphisme de \mathbb{K} -algèbres. Le noyau de φ_u est un idéal de $\mathbb{K}[X]$ appelé *l'idéal annulateur* de u. On a : Ker $\varphi_u = \{P \in \mathbb{K}[X] \mid P(u) = 0_{\mathcal{L}(E)}\}$.

L'image de φ_u est $\mathbb{K}[u]$. Ainsi, $\mathbb{K}[u]$ est une sous-algèbre commutative de $\mathcal{L}(E)$. C'est la plus petite sous-algèbre de $\mathcal{L}(E)$ contenant u.

Ainsi, $\mathbb{K}[u]$ est appelée la sous-algèbre engendrée par u.

II. POLYNÔMES ANNULATEURS. POLYNÔME MINIMAL.

II.1. Polynôme annulateur et spectre.

Pour tout $P \in \mathbb{K}[X]$ et pour tout $x \in E_{\lambda}(u), P(u)(x) = P(\lambda)x$. En particulier, si P annule u, toute valeur propre de u est racine de P.

 \wedge Mais toute racine de P n'est pas nécessairement valeur propre.

II.2. Polynôme minimal d'un endomorphisme.

Tout endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie possède au moins un polynôme annulateur non nul dans $\mathbb{K}[X]$.

- II.3. Polynôme minimal d'une matrice carrée.
- II.4. Le théorème de Cayley-Hamilton.

III. LEMME DE DÉCOMPOSITION DES NOYAUX.

IV. POLYNÔMES ANNULATEURS ET RÉDUCTION.

IV.1. Critère de diagonalisation.

Théorème 🦠

Les affirmations suivantes sont équivalentes :

- 1. *u* est diagonalisable,
- 2. son polynôme minimal est simplement scindé,
- 3. u annule un polynôme simplement scindé (et non nul).

IV.2. Endomorphisme induit.

 $\pi_{u_F} \mid \pi_u$. Par conséquent, si u est diagonalisable, alors u_F est diagonalisable.

IV.3. Critère de trigonalisation.

Théorème 🦠

Les affirmations suivantes sont équivalentes :

- 1. u est trigonalisable,
- 2. son polynôme minimal est scindé sur $\mathbb{K},$
- 3. u annule un polynôme scindé (et non nul) de $\mathbb{K}[X]$.

V. Endomorphismes nilpotents, matrices nilpotentes

Théorème

Soit u un endomorphisme d'un espace vectoriel E de dimension finie égale à n. Les affirmations suivantes sont équivalentes :

- 1. u est nilpotent,
- **2.** $u^n = 0_{\mathcal{L}(E)},$
- 3. $\chi_u = X^n$,
- **4.** il existe une base \mathcal{B} de E telle que $M_{\mathcal{B}}(u)$ est triangulaire supérieure stricte,
- 5. il existe une base \mathcal{B} de E telle que $M_{\mathcal{B}}(u)$ est triangulaire inférieure stricte,
- **6.** u est trigonalisable avec pour seule valeur propre 0.

On en déduit, en particulier, que si u est nilpotent, alors son indice de nilpotence est majorée par n.

Soit u un endomorphisme nilpotent et d son indice de nilpotence. Alors : $\pi_u = X^d$.

VI. RÉDUCTION DES ENDOMORPHISMES À POLYNÔMES ANNULATEURS SCINDÉS.

Soit u un endomorphisme trigonalisable de E, et soit λ une valeur propre de multiplicité algébrique m. Le sous-espace vectoriel $F_{\lambda}(u) = \operatorname{Ker}((u - \lambda \operatorname{Id}_{E})^{m})$ est appelé le sous-espace caractéristique associé à la valeur propre λ .

 $E_{\lambda}(u) \subset F_{\lambda}(u)$ et $F_{\lambda}(u)$ est stable par u.

Si u est trigonalisable on obtient : $E = \text{Ker}((u - \lambda_1 \text{Id}_E)^{m_1}) \oplus \cdots \oplus \text{Ker}((u - \lambda_p \text{Id}_E)^{m_p})$.

Si λ une valeur propre de u de multiplicité algébrique m, alors : dim $F_{\lambda}(u) = m$.

Si u est trigonalisable, alors pour tout $i \in [1, p]$, l'endomorphisme noté u_i induit par u sur $F_{\lambda_i} = \text{Ker}((u - \lambda_i \text{Id}_E)^{m_i})$ est la somme d'une homothétie et d'un endomorphisme nilpotent.

Version matricielle de ce résultat.

⚠ Même si cela fera l'objet d'un chapitre ultérieur, le théorème spectral (version matricielle) a été énoncé, et on a vu un contre-exemple pour une matrice symétrique à coefficients complexes.