- Programme de colle n° 11 : du 9 au 13/12 -

Les questions de cours et les exercices portent sur tout ce qui suit.

Les exercices portent sur le chapitre 10 : version algébrique de la réduction.

Chapitre 10 - Réduction (2) - version algébrique.

- I. Polynômes d'un endomorphisme, d'une matrice carrée.
 - II. Polynômes annulateurs. Polynôme minimal.
- II.1. Polynôme annulateur et spectre.
- II.2. Polynôme minimal d'un endomorphisme.
- II.3. Polynôme minimal d'une matrice carrée.
- II.4. Le théorème de Cayley-Hamilton.
 - III. LEMME DE DÉCOMPOSITION DES NOYAUX.
 - IV. POLYNÔMES ANNULATEURS ET RÉDUCTION.
 - V. RÉDUCTION DES ENDOMORPHISMES À POLYNÔMES ANNULATEURS SCINDÉS.

Chapitre 11 - Suites et séries de fonctions.

A Cours uniquement.

I. Modes de convergence des suites de fonctions.

Convergence simple. Convergence uniforme.

 $\underline{\Lambda}$ Ne pas confondre la convergence uniforme sur A et la convergence dans l'espace vectoriel normé des fonctions bornées sur A ($\mathcal{B}(A,F)$, $\|\cdot\|_{\infty}$). En effet, pour la convergence uniforme ni les fonctions f_n ni la fonction f ne sont supposées appartenir à $\mathcal{B}(A,F)$. Ce qui appartient à $\mathcal{B}(A,F)$ c'est seulement $f_n - f$, et seulement à partir d'un certain rang.

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A, alors pour toute suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A on a : $f_n(a_n) - f(a_n) \underset{n \to +\infty}{\longrightarrow} 0$.

Soit $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites de fonctions qui convergent uniformément vers f et g respectivement. Alors, pour tous scalaires $(\alpha, \beta) \in \mathbb{K}^2$, $(\alpha f_n + \beta g_n)_{n\in\mathbb{N}}$ converge uniformément vers $\alpha f + \beta g$.

II. CONTINUITÉ. DOUBLE LIMITE.

Soit $a \in A$. Si les f_n sont continues en a et si $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur A, alors f est continue en a.

Théorème de la "double limite". Soit a un point adhérent à A. On suppose que :

- pour tout $n \in \mathbb{N}$, la fonction f_n admet une limite $\ell_n \in F$ en a,
- la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur A vers une fonction f.

Alors, la suite $(\ell_n)_{n\in\mathbb{N}}$ admet une limite $\ell\in F$, et la fonction f admet ℓ pour limite en a. Autrement-dit : $\lim_{n\to+\infty} \left(\lim_{x\to a} f_n(x)\right) = \lim_{x\to a} \left(\lim_{n\to+\infty} f_n(x)\right).$

$$\lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right) = \lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right)$$

III. INTÉGRATION D'UNE LIMITE UNIFORME SUR UN SEGMENT.

On suppose que I = [a, b] avec a < b et que les fonctions f_n sont continues sur I. Si la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f, alors : $\int_{[a,b]} f_n \longrightarrow \int_{n\to+\infty} \int_{[a,b]} f$.

On suppose que les fonctions f_n sont continues sur I et que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de I vers f.

Soit a un point de I. On définit φ et φ_n , pour tout $n \in \mathbb{N}$, les primitives respectivement de f et f_n qui s'annulent en a:

$$\forall x \in I, \quad \varphi(x) = \int_a^x f(t) \, dt \quad \text{ et } \quad \varphi_n(x) = \int_a^x f_n(t) \, dt.$$

Alors, φ_n converge uniformément sur tout segment de I vers φ .

IV. DÉRIVATION D'UNE SUITE DE FONCTIONS.

On suppose que :

- pour tout $n \in \mathbb{N}$, f_n est de classe \mathcal{C}^1 sur I,
- la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction f sur I,
- la suite $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de I vers une fonction g.

Alors:

- la fonction f est de classe C^1 sur I et f' = g,
- la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de I.

V. APPROXIMATION UNIFORME.

V.1. Approximation uniforme par des fonctions en escalier.

Soit f une fonction continue par morceaux sur [a, b]. Pour tout $\varepsilon > 0$, il existe une fonction ϕ en escalier sur [a, b] telle que $||f - \phi||_{\infty} \leq \varepsilon$.

Autrement-dit, toute fonction continue par morceaux sur un segment y est limite uniforme d'une suite de fonctions en escalier.

V.2. Approximation uniforme par des fonctions polynomiales.

Théorème de Weierstrass. Toute fonction continue sur un segment y est limite uniforme d'une suite de fonctions polynomiales.

VI. SÉRIES DE FONCTIONS.

- VI.1. Convergence simple, uniforme et normale d'une série de fonctions.
- VI.2. Continuité. Double limite.
- VI.3. Intégration terme à terme d'une série.
- VI.4. Dérivation terme à terme d'une série.

Savoir prouver que la fonction zêta de Riemann est de classe \mathcal{C}^{∞} sur $]1,+\infty[$.