
TP Images

Aller sur https://cahier-de-prepa.fr/mpsi-kju/docs?rep=124 (Informatique/Documents à télécharger/Pour
les MP/images) et y télécharger les trois images stinkbug.png, poivrons.png et babouin.png. Lancer bien sûr
spyder et poursuivre votre lecture.

1 Chargement, affichage d’une image

Une image informatique peut être de deux natures différentes : matricielle (ou bitmap) ou vectorielle.

Une image vectorielle est associée à un langage permettant de décrire des formes, des segments, des arcs de
cercle, des courbes de Bézier par exemple. L’affichage d’une image vectorielle consiste à dessiner l’ensemble des
objets qui la constituent. Cette opération peut être coûteuse en mémoire et en temps de calcul, mais l’avantage
est qu’une telle image ne souffre pas de l’effet de pixelisation associé au images matricielles (les seules que l’on
étudiera...)

Une image matricielle est quant à elle constituée d’un rectangle de pixels dont la couleur est codée avec une
certaine précision (le plus souvent 24 bits par pixel répartis en 8 bits selon les trois composantes rouge, vert et
bleu, ou pour le noir et blanc, en niveaux de gris, le plus souvent codés sur 8 bits)

On associe souvent à une image matricielle sa résolution, exprimée en points par pouce, qui combinée à sa
définition (i.e. le nombre de pixels en largeur et en hauteur) détermine la taille que l’image est supposée occuper
sur un écran, ou à l’impression.

Les formats les plus classiques pour le stockage d’images matricielles sont :
• Bitmap (extension bmp) : format non compressé, sans compression
• Gif : format compressé, mais sans perte. De plus en plus rare (limité à 256 couleurs pour une image)
• Png : format compressé, également sans perte.
• Tiff : format compressé ou non (le plus souvent utilisé sans compression, conduisant à des fichiers de grosse

taille)
• jpeg (extension jpg) format compressé, avec perte. Le facteur de compression est ici bien meilleur que les

formats compressés précédents, mais l’image restituée n’est pas exactement identique à l’originale...
Avec le module PIL, il est facile d’importer dans une session python une image de l’un ou l’autre des formats
précédents. (Sans le module PIL, on a seulement accès aux images png par le biais de fonctions de matplotlib)

Ouvrir et exécuter un script en lui donnant le nom TP5. Assurez-vous que le script et les images sont dans
le même répertoire.

>>> from PIL import Image

>>> img = Image.open(’stinkbug.png’)

img est alors un objet de type PIL mais on va le convertir en un tableau numpy :

>>> A = array(img); A.shape

(375, 500, 3)

>>> import matplotlib.pyplot as mpl; mpl.imshow(A)

(375 lignes de 500 pixels, chacun ayant trois attributs de 8 bits pour les trois couleurs primaires rouge, vert et bleu)

On ne va travailler que sur des images en niveaux de gris, et en pratique on ne va garder qu’une seule des
trois composantes. Le choix fait est généralement celui de la couche verte, car c’est sur celle-ci que l’on a le plus
d’information (à commencer par le fait que sur un capteur cmos traditionnel, il y a autant de photosites verts que
de rouges et de bleus réunis). Dans l’exemple présent, le choix de la couche n’a aucune importance, car elles sont
ici identiques, l’image n’étant dès l’origine formée que de niveaux de gris.

>>> punaiseGris = A[:, :, 1]; mpl.imshow(punaiseGris); mpl.colorbar()

A noter que le tableau gris, désormais constitué de 375 lignes de 500 valeurs en uint8 (autrement dit des entiers
de 0 à 255) est ici interprété comme une information en luminance, et par défaut de petites valeurs sont affichées
avec des couleurs « froides » (le bleu) et des grandes valeurs avec des valeurs « chaudes » (le rouge).

On peut obtenir de la fonction imshow (de matplotlib.pyplot) un autre palette de couleurs, ou ici plutôt, en
l’occurrence, en dégradé de gris :

>>> mpl.figure(); mpl.imshow(punaiseGris, cmap = ’gray’); mpl.colorbar()

Il est deux autres arguments nommés de imshow qui nous seront utiles : vmin et vmax car une normalisation est
faite avant l’affichage que nous ne souhaitons pas, donc rajoutez au script TP5 les lignes suivantes puis exécutez
le script :

import numpy as np

from PIL import Image

import matplotlib.pyplot as mpl

def affiche(A):

mpl.figure()

mpl.imshow(A, cmap = ’gray’, vmin = 0, vmax = 255)

img = Image.open(’stinkbug.png’)

punaiseGris = np.array(img)[:, :, 1]

img = Image.open(’babouin.png’)

babouinGris = np.array(img)[:, :, 1]

img = Image.open(’poivrons.png’)

poivronsGris = np.array(img)[:, :, 1]

(Bien sûr, si vous êtes curieux, n’hésitez pas à utiliser une autre composante primaire pour comparer : par exemple
définir aussi poivronsGris2 = np.array(img)[:, :, 2], afficher et comparer. Pour afficher l’image initiale, en
couleurs pour le babouin et les poivrons, juste après Image.open faites imshow(img), tout simplement)

2 Traitement

2.1 Courbe de couleur

2.1.1 Ajustement de l’exposition

Un histogramme nous informe sur la répartition des luminances dans l’image :

>>> mpl.figure(); mpl.hist(punaiseGris.flatten(), 256)

(flatten() est une méthode d’un tableau numpy qui retourne un tableau constitué des mêmes coefficients, mais
unidimensionnel, ce dont on a besoin avec hist)

Une courbe en cloche est attendue. Si celle-ci se concentre sur des petites valeurs : l’image est sous-exposée,
et sera sans doute bien sombre, si elle se concentre sur de grandes valeurs, elle est sur-exposée.

Exemple :

>>> surexpose = 1.8*punaiseGris; affiche(surexpose)

Essayer les traitements suivants :

>>> surexpose = 1.5*babouinGris

>>> affiche(surexpose)

>>> sousexpose = 0.5*babouinGris

>>> affiche(sousexpose)

2.1.2 Ajustement non linéaire

Les photographes connaissent bien cette astuce : pour élargir la courbe en cloche dessinant la répartition des
luminances dans l’image et gagner alors en contraste, on peut appliquer une fonction, dite en S :

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Une bonne approximation d’une telle fonc-
tion est donnée par une sinusoïde, telle que par exemple : x 7→ (sin

(
π x
256.0 − π

2

)
+ 1)× 128

Appliquer cette fonction aux trois images proposées, et afficher le résultat.

2.2 Un produit de convolution

On peut souhaiter, d’une image donnée :
• En réduire le « bruit »
• Flouter l’image
• En améliorer au contraire la netteté
• Détecter des contours

Un moyen simple est d’utiliser une convolution de l’image à l’aide d’un noyau bien choisi. Les noyaux considérés
seront ici des matrices à coefficients réels de 3 lignes et colonnes ou bien 5 lignes et colonnes et dont la somme des
coefficients vaut 1 (en fait, nous testerons un exemple où cette propriété n’est pas satisfaite)

Par exemple si le noyau est K =

−1 0 −1
0 5 0
−1 0 −1

 et si la matrice des luminances est A =

2 3 0 1
1 3 5 2
2 5 2 0

,

alors le produit de convolution de A par K est la matrice (bi,j) telle que, par exemple : b2,2 = −a1,1−a1,3+5a2,2−
a3,1 − a3,3 = 9, b2,3 = 5 ∗ 5− 3− 1− 5 = 16.

(En d’autres termes, la nouvelle luminance pour le pixel obtenu est une combinaison linéaire de sa luminance
initiale et de celle de ses pixels adjacents, les coefficients de cette combinaison linéaire étant ceux du noyau...)

On choisit de mettre à zéro les coefficients des première et dernière colonnes et lignes de B. Une autre
approche serait de considérer que A peut être élargie avec des coefficients nuls, mais ce n’est pas celle que l’on
adoptera ici.

Ecrire alors une fonction, qu’on nommera convolution admettant deux arguments : un tableau bidimen-
sionnel A correspondant aux luminances d’une image à traiter, et un second tableau carré comportant un nombre
impair de lignes et colonnes K : le noyau de convolution.

On commencera par initialiser un nouveau tableau numpy, aux même dimensions que A, à l’aide de la fonction
zeros de numpy (on obtiendra alors par défaut une matrice de flottants, mais ce n’est pas plus mal pour les calculs
qui vont suivre) puis on ajustera, avec quatre boucles imbriquées (!) tous les coefficients intérieurs de cette nouvelle
matrice (en laissant leur valeur initiale nulle aux coefficients sur les bords).

Par exemple, en reprenant les exemples numériques précédents :

>>> convolution(A, K)

array([[0., 0., 0., 0.],

[0., 9., 16., 0.],

[0., 0., 0., 0.]])

Tester désormais sur les images importées les noyaux suivants :

1

9

1 1 1
1 1 1
1 1 1

 ,
1

10

1 1 1
1 2 1
1 1 1

 ,

 0 −1 0
−1 5 −1
0 −1 0

 ,

1 1 1
1 −8 1
1 1 1


A noter que les calculs sont longs (sans doute de l’ordre d’une quinzaine de secondes). Bien sûr, on affichera

pour chaque exemple l’image obtenue après transformation.

Pourquoi le dernier noyau de convolution conduit-il à une image essentiellement noire ? Comment l’obtenir
en négatif ? (Donc essentiellement blanche...)

3 Décomposition en valeurs singulières et compression

Comme on l’a vu, toute matrice A réelle, carrée ou non, admet une décomposition en valeurs singulières
A = UΣtV où U et V sont orthogonales (pas forcément de même dimensions !) et où Σ est diagonale de termes
diagonaux positifs et décroissants σ1 ⩾ σ2 ≥ . . . σr > 0 où r bien sûr est le rang de A.

En d’autres termes, si A compte n lignes et p colonnes, et si on note C1, . . . , Cp les colonnes de V , C ′
1, . . . , C

′
n

les colonnes de U , alors A = σ1C
′
1
tC1 + · · ·+ σrC

′
r
tCr.

Si les σi décroissent assez vite, on peut penser qu’on peut négliger la fin de la somme précédente et obtenir
une matrice (de rang strictement inférieur à celui de A) proche de A (au sens de la norme 2, ou n’importe quelle
norme bien sûr).

Obtenir cette décomposition avec numpy est très facile :

>>> from numpy.linalg import svd

>>> (u, s, v) = svd(A)

La matrice v obtenue correspond plutôt à la matrice transposée de V de l’expression précédente, si bien que, aux
erreurs de calcul près, on retrouve la matrice initiale, si elle est carrée, par

>>> dot(u, dot(diag(s), v))

(Bien sûr, dans le script, on préfixera les fonctions dot et diag issues de numpy par np.)

Ecrire une fonction qu’on pourra nommer reconstruit, admettant quatre paramètres u, s, v, k où u, s, v

sont les valeurs de retour obtenues par l’appel à svd et où k est un entier, et qui retourne la matrice constituée de
la somme précédente jusqu’à la k-ième valeur singulière.

Cela revient en fait à multiplier trois matrices : la matrice formée des k premières colonnes de u, celle carrée
de termes diagonaux σ1, . . . , σk et enfin celle formée des k premières colonnes de v.

A noter que si la matrice initiale A compte n lignes et p colonnes, et si k = min(n, p), alors avec :
reconstruit(u, s, v, k) on doit retrouver la matrice A... (Une valeur plus grande que ce k conduira bien sûr à
une erreur)

Calculer les décompositions en valeurs singulières des matrices représentant les images importées et afficher
les images obtenues en approchant celles-ci avec plusieurs nombres de valeurs singulières (de 5 en 5 peut-être, ou
comme vous voulez).

	Chargement, affichage d'une image
	Traitement
	Courbe de couleur
	Ajustement de l'exposition
	Ajustement non linéaire

	Un produit de convolution

	Décomposition en valeurs singulières et compression

