ITC 2¢™ année — TDO : Chiffrement et déchiffrement de messages

Etape 3 : Méthode de Métropolis

3.1. Il apparait que le déchiffrement réalisé a I’étape 2 ne soit pas trés performant. En effet, le
message est trop court pour que la fréquence des lettres dans le message ne soit
représentative. Nous allons maintenant utiliser une méthode différente en regardant la
fréquence de bigrammes, ie |la fréquence de 2 caractéres consécutifs. Nous allons créer une
matrice de transition Mat dans laquelle seront stockées les fréquences du caractére i suivi
du caractére j a la position Mat;.

Cette matrice de transition sera définie sous forme d’un tableau a 2 dimensions (array)

Ecrire la fonction frequenceBigrammes qui calcule et renvoie une matrice comportant les fréquences
des bigrammes du texte passé en parametre.

3.2. Afficher le résultat a I'aide de plt.imshow(). Vérifier que les fréquences sont cohérentes.
(Pour davantage de lisibilité, vous pouvez choisir d’afficher la racine cubique de la matrice)

3.3. Grace a la matrice de transition, nous allons définir la mesure de plausibilité d’un message.
Soient ¢4, Cy,... Cy la liste des caractéres du message déchiffré. La mesure de plausibilité

N-1
Z logMat c;iciq
i=1

vaut :
1
N
Un message correspondant bien aux statistiques des bigrammes en frangais aura une plausibilité
élevée. La méthode de Metropolis que nous allons utiliser consiste a chercher un code tel que le
message déchiffré maximise la plausibilité (« algorithme de recuit-simulé »). De maniére générale
I’algorithme cherche une clé qui améliore la plausibilité du chiffrement en échangeant aléatoirement
2 caracteres dans la clé de chiffrement courante. Si la nouvelle clé ainsi constituée améliore la

plausibilité, on conserve I'échange de caractéres. Sinon, on peut toujours accepter la clé avec une
certaine probabilité qui dépend de I'augmentation de la plausibilité.

Ecrire la fonction permute qui :

e prend en parametres les indices i et j, ainsi que la liste code
e etrenvoie une liste dans laquelle les cases i et j ont été permutées.

3.4. Ecrire la fonction calculePlausibilite qui renvoie la plausibilité du texte passé en
parametre selon la matrice Mat elle aussi passée en parametre.

3.5. Implémenter la méthode de Métropolis en vous appuyant sur I'algorithme suivant écrit en
pseudo-code, afin de déchiffrer le message initial.

Vous pouvez tester avec une plausibilité de -2.1 et un nombre maximal d’itérations de 10000.

ITC 2¢™ année — TDO : Chiffrement et déchiffrement de messages

Metropolis
Entrées :
Mat : matrice de transition
texte : message a déchiffrer
plausibiliteMax: valeur maximale de la plausibilité
MAX_ITER :nombre maximal d’itérations

#initialisation

codeCourant = générer code aléatoire

traductionCourante = dechiffrer texte avec codeCourant

scoreCourant = calculer la plausibilite de traductionCourante a I'aide de Mat
codeMax = copie de codeCourant

traductionMax = traductionCourante

scoreMax = scoreCourant

TANT QUE scoreMax < plausibiliteMax et nb_iter < MAX_ITER

i,j = déterminer de maniére aléatoire les 2 indices a permuter
codeCandidat = permuter les caractéres aux indices i et j de codeCourant
traductionCandidat = dechiffrer texte avec codeCandidat
scoreCandidat= calcul de la Plausibilite de traductionCandidat avec Mat
Sl scoreCourant > scoreMax ALORS
codeCourant = copie de codeCandidat
traductionCourante = traductionCandidat
scoreCourant = scoreCandidat
codeMax = copie de codeCourant
traductionMax = traductionCourante
scoreMax = scoreCourant
SINON SI random() < exp((scoreCandidat — scoreCourant) x taille(texte)) ALORS
codeCourant = copie de)codeCandidat
traductionCourante = traductionCandidat
scoreCourant = scoreCandidat
FINSI
nb_iter = nb_iter +1
FINTANTQUE
RETOURNER codeMax, traductionMax

