
ITC 2ème année – TD0 : Chiffrement et déchiffrement de messages

5

Etape 3 : Méthode de Métropolis

3.1. Il apparait que le déchiffrement réalisé à l’étape 2 ne soit pas très performant. En effet, le
message est trop court pour que la fréquence des lettres dans le message ne soit
représentative. Nous allons maintenant utiliser une méthode différente en regardant la
fréquence de bigrammes, ie la fréquence de 2 caractères consécutifs. Nous allons créer une
matrice de transition Mat dans laquelle seront stockées les fréquences du caractère i suivi
du caractère j à la position Matij.

Cette matrice de transition sera définie sous forme d’un tableau à 2 dimensions (array)

Ecrire la fonction frequenceBigrammes qui calcule et renvoie une matrice comportant les fréquences
des bigrammes du texte passé en paramètre.

3.2. Afficher le résultat à l’aide de plt.imshow(). Vérifier que les fréquences sont cohérentes.

(Pour davantage de lisibilité, vous pouvez choisir d’afficher la racine cubique de la matrice)

3.3. Grâce à la matrice de transition, nous allons définir la mesure de plausibilité d’un message.
Soient 𝑐ଵ, 𝑐ଶ,… 𝑐ே la liste des caractères du message déchiffré. La mesure de plausibilité
vaut :

1

𝑁
෍ log 𝑀𝑎𝑡 𝑐௜𝑐௜ାଵ

ேିଵ

௜ୀଵ

Un message correspondant bien aux statistiques des bigrammes en français aura une plausibilité
élevée. La méthode de Metropolis que nous allons utiliser consiste à chercher un code tel que le
message déchiffré maximise la plausibilité (« algorithme de recuit-simulé »). De manière générale
l’algorithme cherche une clé qui améliore la plausibilité du chiffrement en échangeant aléatoirement
2 caractères dans la clé de chiffrement courante. Si la nouvelle clé ainsi constituée améliore la
plausibilité, on conserve l’échange de caractères. Sinon, on peut toujours accepter la clé avec une
certaine probabilité qui dépend de l’augmentation de la plausibilité.

Ecrire la fonction permute qui :

 prend en paramètres les indices i et j, ainsi que la liste code
 et renvoie une liste dans laquelle les cases i et j ont été permutées.

3.4. Ecrire la fonction calculePlausibilite qui renvoie la plausibilité du texte passé en
paramètre selon la matrice Mat elle aussi passée en paramètre.

3.5. Implémenter la méthode de Métropolis en vous appuyant sur l’algorithme suivant écrit en
pseudo-code, afin de déchiffrer le message initial.

Vous pouvez tester avec une plausibilité de -2.1 et un nombre maximal d’itérations de 10000.

ITC 2ème année – TD0 : Chiffrement et déchiffrement de messages

6

Metropolis
Entrées :
 Mat : matrice de transition
 texte : message à déchiffrer
 plausibiliteMax: valeur maximale de la plausibilité
 MAX_ITER : nombre maximal d’itérations

#initialisation
codeCourant = générer code aléatoire
traductionCourante = dechiffrer texte avec codeCourant
scoreCourant = calculer la plausibilite de traductionCourante à l’aide de Mat
codeMax = copie de codeCourant
traductionMax = traductionCourante
scoreMax = scoreCourant
TANT QUE scoreMax < plausibiliteMax et nb_iter < MAX_ITER

 i,j = déterminer de manière aléatoire les 2 indices à permuter
codeCandidat = permuter les caractères aux indices i et j de codeCourant

 traductionCandidat = dechiffrer texte avec codeCandidat
 scoreCandidat= calcul de la Plausibilite de traductionCandidat avec Mat
 SI scoreCourant > scoreMax ALORS

 codeCourant = copie de codeCandidat
 traductionCourante = traductionCandidat
 scoreCourant = scoreCandidat
 codeMax = copie de codeCourant
 traductionMax = traductionCourante
 scoreMax = scoreCourant

 SINON SI random() < exp((scoreCandidat – scoreCourant) x taille(texte)) ALORS
 codeCourant = copie de)codeCandidat
 traductionCourante = traductionCandidat
 scoreCourant = scoreCandidat

 FINSI
 nb_iter = nb_iter +1
FINTANTQUE
RETOURNER codeMax, traductionMax

