
Fonction genereCode() -> list

- Création d'une liste contenant les entiers de 1 à 27
- Mélange la liste (possibilité d’utiliser shuffle (opération en place donc
agit directement sur la liste)
- Ajout du 0 à la liste
- Liste retournée

Principe de la fonction chiffrer :

Entrées :
Chaine : BONJOUR
cle : [0, 5, 13, 3, 2, 25, 19, 9, 20, 16, 14, 15, 8, 4, 6, 22, 18, 1, 23, 26, 10, 21, 11, 24, 17, 12, 7]

B O N J O U R
Etape 1 : [2, 15, 14, 10, 15, 21, 18]
=> appel à la fonction encode

Etape 2 : [13, 22, 6, 14, 22, 21, 23]
=> recherche de la correspondance d’indices => remplissage liste des indices chiffrés
Exemple : A l’indice 2, on trouve la valeur 13 dans la clé,…

Etape 3 : M V F N V U W
=> appel à la fonction decode

Principe de la fonction dechiffrer :

Entrées :
Chaine : MVFNVUW
cle : [0, 5, 13, 3, 2, 25, 19, 9, 20, 16, 14, 15, 8, 4, 6, 22, 18, 1, 23, 26, 10, 21, 11, 24, 17, 12, 7]

M V F N V U W
Etape 1 : [13, 22, 6, 14, 22, 21, 23]
=> appel à la fonction encode

Etape 2 : [2, 15, 14, 10, 15, 21, 18]
=> recherche de la correspondance d’indices => remplissage liste des indices déchiffrés

Exemple : 13 est à l’indice 2 de la clé, …

Etape 3 : B O N J O U R
=> appel à la fonction decode

Rappels : Lecture dans un fichier

Principe du tri à bulles :
On compare répétitivement les éléments consécutifs
d'une liste ou d’un tableau,
et on les permute lorsqu'ils sont mal triés.

Il doit son nom au fait qu'il déplace rapidement les plus grands éléments en fin de
tableau, comme des bulles d'air qui remonteraient rapidement à la surface d'un
liquide.
Principe simple mais algorithme lent (0(n2))
tri_bulles(tab)
pour i de 1 à taille(tab)-1

pour j de 0 à taille(tab)- i-1
si tab[j+1] < tab[j]

tab[j+1], tab[j] = tab[j], tab[j+1] #permutation
finpour

finpour

Attention : Ici, tri par ordre croissant

Optimisation : Interrompre dès qu'un parcours des éléments possiblement encore en désordre
(boucle interne) est effectué sans la moindre permutation : cela signifie que tout le tableau est trié.
Cette optimisation nécessite une variable supplémentaire (drapeau/flag).

tri_bulles_optimise(tab)
…. #flag initialisé à false pour entrer dans la boucle tant que
i = ….
tant que ….

….
pour j de 0 à taille(tab)- i-1

si tab[j+1] < tab[j]
tab[j+1], tab[j] = tab[j], tab[j+1]
…. #indique qu’au moins une permutation a été effectuée

finsi
finpour

i= ….
fintantque

Optimisation : Interrompre dès qu'un parcours des éléments possiblement encore en désordre
(boucle interne) est effectué sans la moindre permutation : cela signifie que tout le tableau est trié.
Cette optimisation nécessite une variable supplémentaire (drapeau/flag).

tri_bulles_optimise(tab)
est_trie = false #flag initialisé à false pour entrer dans la boucle tant que
i = 1
tant que i <taille(tab) – 1 et est_trie == false

est_trie = true
pour j de 0 à taille(tab)- i-1

si tab[j+1] < tab[j]
tab[j+1], tab[j] = tab[j], tab[j+1]
est_trie = false

#indique qu’au moins une permutation a été effectuée
finsi

finpour
i= i+1

fintantque

frequencesCaracteres(texte : str) -> np.array
• Création d’un tableau tab_frequences de 27 cases ne comportant que des 0

Utilisation possible de la fonction np.zeros

• Transformation du texte en liste d’entiers

(manipulation plus simple avec des entiers qu’avec des caractères) => fonction encode

• Parcours d’une boucle de 0->26 pour remplir tab_frequences

A l’indice 0, on cherche le nombre de fois que l’on trouve un 0 (possibilité d’utiliser la fonction count sur la
liste d’entiers)

…. Et on le stocke à la position 0 de tab_frequences

A l’indice i, on cherche le nombre de fois que l’on trouve la valeur i

…. Et on le stocke à la position i de tab_frequences

….

• Suppression de la case correspondant à 0 (espace) : on ne veut pas stocker la fréquence des espaces

• Calcul de la fréquence : Pour chaque élément de tab_frequences, on divise le nombre d’éléments par le
nombre total de caractères (hors espaces) => possibilité d’utiliser la fonction sum des np.array qui
permet d’obtenir la somme des valeurs contenues dans un tableau.

• Tableau tab_frequences retourné.

BONJOUR
[2,15,14,10, 15, 21, 18]

0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 2 0 … 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 1 2 0 … 0 0 0 0

afficheFrequences(freq : np.array)

• Importer la librairie matplotlib.pyplot pour les tracés de graphiques

• Création d’une liste par compréhension comportant les caractères A-Z (qui servira pour afficher sur
l’axe des abscisses)

possibilité de générer la liste en utilisant les codes ASCII des caractères

• Appel à la fonction bar pour définir le graphique à tracer en transmettant la liste de caractères de A
à Z, le tableau de fréquences et la couleur

• Définition des titres des abscisses et ordonnées (fonctions xlabel et ylabel) et du titre (fonction
title)

• Affichage (fonction show)

def trieFrequencesCaracteres(frequences: np.array)-> list:

• Création d’une liste indices des indices initialisée de 0 à 25

• Tri à bulles (par ordre décroissant)
• Penser à agir sur les valeurs de la liste indices en plus des valeurs dans le tableau frequences

(même permutations à effectuer)

• Liste indices à retourner

