Fonction

- Création d'une liste contenant les entiers de 1 a 27

- Mélange la liste (possibilité d’utiliser (opération en place donc
agit directement sur la liste)

- Ajout du O a la liste

- Liste retournée

Principe de |a fonction chiffrer :

Entrées :

Chaine : BONJOUR

cle : [0,5,13, 3, 2, 25,19, 9, 20, 16, 14, 15, 8,4, 6, 22,18, 1, 23, 26, 10, 21, 11, 24,17, 12, 7]
B @ N J O U R

Etape 1: [2, 15, 14, 10, 15, 21, 18]

=> appel a la fonction encode

Etape 2 : [13, 22, 6, 14, 22, 21, 23]
=> recherche de |la correspondance d’indices => remplissage liste des indices chiffrés
Exemple : Al'indice 2, on trouve la valeur 13 dans la clé,...

Etape 3 : M V F N V U W
=>appel a la fonction decode

Principe de |a fonction dechiffrer :

Entrées :

Chaine : MVFNVUW

cle : [0, 5,13, 3, 2,25,19,9, 20, 16, 14, 15, 8,4, 6, 22,18, 1, 23, 26, 10, 21, 11, 24,17, 12, 7]
M V F N V U W

Etape 1: [13, 22, 6, 14, 22, 21, 23]

=> appel a la fonction encode

Etape 2 : [2, 15, 14, 10, 15, 21, 18]
=> recherche de la correspondance d’indices => remplissage liste des indices déchiffrés
Exemple : 13 est a I'indice 2 de la clg, ...

Etape 3 : B @) N J @) U R
=> appel a la fonction decode

Rappels : Lecture dans un fichier

fic = open(’'C:\\Users\\eclermont\\CPGE IPT\\EC\\ITC_S3_TD@\\ducote.txt', 'r')
texte_reference = fic.read() # ' b by
fic.close()

rt os.path
chemin_dossier = os.path.abspath(os.path.dirname(__file_)) #
print(chemin_dossier) # affiche c:\Use aclermont\CPG

chemin_complet = os.path.join(chemin_dossier, "ducote.txt")
print(chemin_complet) Ficl : PGt

fic = open(chemin_complet, "r")

texte_reference = fic.read() #
fic.close()

with open(chemin_complet) as fic:
texte _reference = fic.read()

Principe du tri a bulles :

On compare répétitivement les éléments consécutifs

d'une liste ou d’un tableau,

et on les permute lorsqu'ils sont mal triés. Array 6 3

Il doit son nom au fait qu'il déplace rapidement les plus grands éléments en fin de
tableau, comme des bulles d'air qui remonteraient rapidement a la surface d'un

liguide.
Principe simple mais algorithme lent (0(n?))
tri_bulles(tab)
pouride 1 ataille(tab)-1
pour j de O a taille(tab)- i-1
si tab[j+1] < tab[j]
tab[j+1], tab[j] = tablj], tab[j+1] #permutation

Attention : Ici, tri par ordre croissant

finpour
finpour

Optimisation : Interrompre des qu'un parcours des éléments possiblement encore en désordre
(boucle interne) est effectué sans la moindre permutation : cela signifie que tout le tableau est trié.
Cette optimisation nécessite une variable supplémentaire (drapeau/flag).

tri_bulles_optimise(tab)
#flag initialisé a false pour entrer dans la boucle tant que

pour j de O a taille(tab)- i-1
si tab[j+1] < tablj]
tab[j+1], tabl[j] = tab[j], tab[j+1]
#indigue qu’au moins une permutation a été effectuée
finsi
finpour

Optimisation : Interrompre des qu'un parcours des éléments possiblement encore en désordre
(boucle interne) est effectué sans la moindre permutation : cela signifie que tout le tableau est trié.
Cette optimisation nécessite une variable supplémentaire (drapeau/flag).

tri_bulles_optimise(tab)
#flag initialisé a false pour entrer dans la boucle tant que

pour j de O a taille(tab)- i-1
si tab[j+1] < tab[j]
tab[j+1], tab[j] = tab[j], tab[j+1]

#indigue qu’au moins une permutation a été effectuée
finsi
finpour

frequencesCaracteres(texte : str) -> np.array
» Création d’un tableau tab_frequences de 27 cases ne comportant que des 0

—>Utilisation possible de la fonction np.zeros nunnnaunumnmnnnnn_nnnn

* Transformation du texte en liste d’entiers

BONJOUR

(manipulation plus simple avec des entiers qu’avec des caracteres) => fonction encode
[2,15,14,10, 15, 21, 18]

* Parcours d’'une boucle de 0->26 pour remplir tab_frequences

A l'indice 0, on cherche le nombre de fois que lI'on trouve un 0 (possibilité d’utiliser la fonction count sur la
liste d’entiers)

.... Et on le stocke a la position 0 de tab_frequences

A l'indice i, on cherche le nombre de fois que I'on trouve la valeur i

.... Et on le stocke a la position i de tab_frequences nnnnmnuumnnnnnnan—nunn

» Suppression de la case correspondant a O (espace) : on ne veut pas stocker la fréquence des espaces

0100/0j00j0l0/1j0l0j0l12l0] .. _|0j0j0l0

e Calcul de la fréquence : Pour chaque élément de tab_frequences, on divise le nombre d’éléments par le
nombre total de caracteres (hors espaces) => possibilité d’utiliser la fonction sum des np.array qui
permet d’obtenir la somme des valeurs contenues dans un tableau.

* Tableau tab frequences retourné.

Importer la librairie matplotlib.pyplot pour les tracés de graphiques

Création d’une liste par compréhension comportant les caracteres A-Z (qui servira pour afficher sur
I’axe des abscisses)

possibilité de générer la liste en utilisant les codes ASCII des caracteres

Appel a la fonction pour définir le graphique a tracer en transmettant la liste de caracteres de A
a Z, le tableau de fréquences et la couleur

Définition des titres des abscisses et ordonnées (fonctions et) et du titre (fonction

)
Affichage (fonction)

e Création d’une liste indices des indices initialisée de 0 a 25

* Tri a bulles (par ordre décroissant)

* Penser a agir sur les valeurs de la liste indices en plus des valeurs dans le tableau frequences
(méme permutations a effectuer)

* Liste indices a retourner

