S0L — LANGAGE D'INTERROGATION DE
DONNEES (LID)

Informatique Tronc Commun

Bases de données
E. CLERMONT

O Le langage SQL (Structured Query Language) est le langage
normalisé de gestion de tout type de bases de données .
relationnelles; contrairement aux assistants fournis par certains
logiciels (par exemple Access).

En fait, lorsqu’on réalise une requéte en mode graphique (assistant
graphique), le SGBD génere le code SQL associe.

O Le langage SQL comporte une subdjvision ,regroupant les éléments
nécesgaires a la realisation de requétes d’inferrogation des
onnees :

le Langage d’Interrogation des Données.

O Une requéte d’interrogation est une extraction de données issues
une combinaison de¢ sélections et/ou opérations portant sur une
ou plusieurs tables d’une base de données.

O Le résultat de la requéte est lui-méme une table dont I’existence est
cependant éphemere (le temps de la requéte).

()

= Pour illustrer les notions abordées, nous nous plagons dans la
société LOC VACANCES qui est une agence immobiliere
spécialisée dans la location d’appartements meublés.

= Pour la gestion de son parc locatif, elle a fait le choix de mettre
en place une base de données évolutive sur laquelle
s’appuieront progressivement tous les traitements que
nécessitent une gestion immobiliére de ce type (planning des
locations, réservations d’appartements, publipostages des
confirmations, gestion des acomptes, facturation, etc. ..).

Représentation graphique du schéma relationnel associé

n g loc_vacances saison
CodeSaison : varchar(1) [\ g loc. -es tarification
@ LibSaison : varchar(20) o NumAppart - int(11) n & 1oc - appartement
4 3 CodeSaison : varchar(1) @ NumAppart : int(11)
= Prix/Semaine : varchar(6) #|dentAppart : int(11)
sMonteeAppart : varchar(1)
u#EtageAppart - int(11)
@ TypeAppart : varchar(2)
ﬂ @ loc_vacances immeuble < ExpoAppart : varchar(1) n — e
@ Numimm : int(11) r | Terrasse(o/n) : varchar(4) i i - .
3 Nomlmm : varchar(20) ¢ ¢Numimm : int(11) / aNumbrop k(1)
5 Adrlmm : varchar(50) «NumProp - int(11) @NomProp : varchar(7)

2 DistMer : varchar(20) ©RueProp : varchar(26)

#CpostProp : int(5)
@ VilleProp : varchar(8)
- Chaque attribut composant la clé primaire est précédé d'une clé
-Chaque clé étrangére est representée par un lien entre table
-DistMer : distance de I'appartement jusqu’a la mer
SAISON (CodeSaison, LibSaison)
PROPRIETAIRE (NumProp,NomProp,RueProp,CPostProp, VilleProp)
IMMEUBLE (NumImm, NomImm, AdrImm, DistMer)
APPARTEMENT (NumAppart,
IdentAppart,MonteeAppart,EtageAppart, TypaAppart,ExpoAppart,T
errassa(o/n),NumImm#, NumProp#)
TARIFICATION (NumAppart#, CodeSaison#, Prix/Semaine)

SOMMAIRE

1-Interrogation portant sur une seule table
1.1- Projection
1.2- Restriction
1.3-Tri
1.4-Alias du Select
1.5- Limit et Offset
1.5- Calculs
2-Fonctions agrégats
3-Interrogation simple portant sur plusieurs tables
4-Regroupement

5-Les conditions sur regroupement

[Syntaxe générale d’une requéte d’interrogation simple
sur une table :

SELECT [DISTINCT] champl [, champ2 ...]

FROM table

[WHERE conditionl [OR/AND condition2...]]

[ORDER BY champl [[ASC]/DESC] [, champ?2 [[ASC]/DESC]...]11;

Remarques :
Les instructions notées entre [] sont facultatives.

Dans la clause ORDER BY, le classement par défaut est ascendant (ASC).

Les points de suspension indique une répétition possible n fois.

1.1- La projection

La projection est une opération relationnelle qui consiste, au travers d’une
requéte, a ne retenir que certains champs (colonnes) dans la table
résultat(s).

Chl Ch2 | Ch3 Ch4

I’ordre d’affichage dépend de I’ordre d’énumération dans la clause SELECT.
Exemplel : Requéte R1.1_1 « Liste des appartements (toutes les

informations)»

REQUETE SQL EXPLICATIONS
SELECT : opérateur de projection

SELECT * Le caractere * permet d’afficher TOUS les

FROM APPARTEMENT champs de la table précisée dans la clause
FROM.
La clause FROM est suivie du nom des
tables utiles a la réalisation de la requéte.

exemple? : Requéte R1.1_2 «Liste des appartements (Type d’appartement
et numéro d’appartement)y.

REQUETE SQL EXPLICATIONS

SELECT TypeAppart, SELECT : opérateur de projection
IdentAppart Il est suivi de la liste des attributs a
FROM APPARTEMENT projeter séparés par une virgule

Exemple3 : Requéte R1.1 3 «Liste des différents types d’appartements en
location chez LOC_VACANCES».

REQUETE SQL EXPLICATIONS

SELECT DISTINCT SELECT : opérateur de projection
TypeAppart Il est suivi de la clause DISTINCT qui
FROM APPARTEMENT permet d’afficher uniquement les lignes

de résultat ayant des valeurs distinctes.

Si plusieurs appartements de type T2
sont a la location, le type T2 ne sera
affiché qu’une seule fois dans le résultat P
si DISTINCT est présent.

1.2- La restriction

La restriction est une opération relationnelle qui vise, au travers d'une
requéte, a ne retenir que les tuples (lignes) de la table satisfaisant le(s)
critére(s) de restriction.

Chl |Ch2 |Ch3 |Ch4

Les restrictions portant sur des champs de type texte devront étre
mentionnées entre guillemets.

Exemplel : Requéte R1.2_1 « Appartements situés au rez-de-chaussée ».

REQUETE SQL EXPLICATIONS
SELECT * *WHERE est suivi de l’ensemble des
FROM APPARTEMENT restrictions (conditions) de la requéte.

WHERE EtageAppart = 0

Requéte R1.2_1b « Appartements orientés au Nord ».
SELECT *

FROM APPARTEMENT

WHERE ExpoAppart = 'N'

Les conditions peuvent étre construites a partir :

O d’expressions constituées de noms de champs ou de valeurs et
éventuellement d’opérateurs arithmétiques (+, -, /, *) et fonctions
prédéfinies (somme, moyenne, ...)

O d’opérateurs de comparaison : >, <, >=, <=, <> (différent)
O d’opérateurs logiques : AND, OR, NOT
(o] d’opérateurs SQL : BETWEEN... AND, IN, LIKE

Il est également possible de tester si un champ n’est pas renseigné
(valeur indéfinie) grace a la valeur NULL.

Pour exprimer ce type de condition I’opérateur = n’est pas accepté on
devra écrire :

WHERE NomChamp IS NULL

Attention :

Lorsque un champ contient la valeur zéro ou un espace (qui (@)
correspond a une chaine vide : " "), la valeur est définie.

Exemple? : Requéte R1.2_2 «Liste des appartements situés au 1°f étage

et exposés au Sud (codé ‘S’)».
REQUETE SQL

SELECT *

FROM APPARTEMENT
WHERE EtageAppart = 1
AND ExpoAppart ='S'

Exempled : Requéte R1.2_3 «Liste des appartements non exposés
au nord (codé "N")».

REQUETE SQL version 1 REQUETE SQL version 2
SELECT * SELECT *
FROM APPARTEMENT FROM APPARTEMENT

WHERE NOT ExpoAppart ='N' WHERE ExpoAppart IN ('S', 'E','O")
Ou
WHERE ExpoAppart <> 'N' \-.)

Exemple4 : Requéte R1.2_4 «Liste des noms de propriétaires habitant

| _dans le département 64».
Code postal est de type Code postal est de type alphanumérique
alphanumeérique (texte)
SELECT NomProp SELECT NomProp
FROM PROPRIETAIRE FROM PROPRIETAIRE
WHERE CpostProp LIKE ‘64%’ | WHERE CpostProp>=64000 AND CpostProp <
65000
ou
SELECT NomProp
FROM PROPRIETAIRE

WHERE CpostProp BETWEEN 64000 AND 64999

Le "joker" % remplace de 0 a n caractéres quelconques.
Exemple : Si l'on écrit apres la commande WHERE attribut LIKE “F%”, la condition
portera sur toutes les valeurs de ’attribut dont la premiere lettre commence par F.

Le "joker" remplace un caractere quelconque et un seul.

Exemple : Si l'on écrit aprés la commande WHERE attribut LIKE “F_ ”, la condition
portera sur toutes les valeurs de ’attribut dont la premiére lettre commence par F et
ayant ensuite seulement 2 autres caracteres.

Dans la clause ORDER BY, le sens de classement peut prendre 2
valeurs :

- ASC (ascendant ou croissant)
- ou DESC (descendant ou décroissant).

Le sens par défaut est le sens ascendant.

Exemplel : Requéte R1.3_1 «Liste des numéros (IdentAppart) de tous
les appartements par exposition».

SELECT ExpoAppart, IdentAppart SELECT ExpoAppart, IdentAppart
FROM APPARTEMENT FROM APPARTEMENT
ORDER BY ExpoAppart ORDER BY 1

Exemple?2 : Requéte R1.3_2 «Liste des appartements triés par
exposition (décroissant) puis par niveau (du plus élevé au moins
élevé)y.

SELECT *
FROM APPARTEMENT @
ORDER BY ExpoAppart DESC, EtageAppart DESC

La commande LIMIT permet de spécifier le nombre maximum de
résultats que 1’'on souhaite obtenir,

Exemple : « Afficher les 10 premiers appartements »
SELECT *

FROM APPARTEMENT

LIMIT 10

Exemple : « Afficher les numéros des 3 appartements les plus chers
en haute-saison »

SELECT NumAppart, ‘Prix/Semaine’

FROM tarification

WHERE CodeSaison ='H'

ORDER BY "Prix/Semaine’ DESC

LIMIT 3

La commande Offset s’utilise en complément de la commande LIMIT
Elle permet d'effectuer un décalage sur I'ensemble des résultats
obtenus avec la commande LIMIT en décalant le nombre de résultats.

Exemple : « Afficher 10 appartements a partir du 4°™ey

SELECT *

FROM APPARTEMENT
LIMIT 10

OFFSET 3

1.5- Les alias du SELECT (pour I’affichage)

Il est possible de renommer, temporairement pour une requéte, I’en-

éte d’'une colonne (une expression ou un champ d’une table)
dans la table résultat grace a la clause AS.

Si le nom spécifié est composé de plusieurs mots, il faudra 1’encadrer
par des crochets sous Access (mais cela peut étre different avec
d’autres SGBD).

L'alias défini dans le SELECT ne peut pas étre utilisé dans les autres
clauses de la requéte (impossible d’y faire r?ference, il faudra
réécrire I'expression ou le champ associé (cf. 1.5)).

Exemple : Requéte R1.4 «Prix de chaque appartement en haute
Saisomny.

REQUETE SQL RESULTAT

SELECT NumAppart, ‘Prix/Semaine” AS 'Prix haute Mismhppart :::;a"te -
saison' 655:53

FROM TARIFICATION 823.22

823.22
609.80

WHERE CodeSaison= ‘H’

487.84
ART RA

N oo B W N =

1.5- Les alias du SELECT (pour les calculs)

Des expressions arithmétiques ou logiques (booléennes) peuvent étre

présentes dans le SE%ECT.

Elles sont traitées de la méme maniére que les champs issus de tables.
L'en-téte de colonne des champs « calculés » n’ayant pas de nom affiche le

calcul effectué.

Ces calculs sont appelés « calculs en ligne » car ils sont répétés de

maniére independante sur chaque enregistrement.

Exemplel :Requéte R1.5_1 «Prix de deux semaines de location pour

chaque appartementy.

REQUETE SQL RESULTAT
NumAppart CodeSaison Total
SELECT NumAppart,CodeSaison, U R
"Prix/Semaine *2 AS Total 1 H 975.68
FROM TARIFICATION 1 M 1000.00
2 B 54882 — |

Exemple?2 : Requéte R1.5_2 «Appartements dont le prix de location

pour deux semaines en haute saison est inférieur a 950 €».

REQUETE SQL RESULTAT
SELECT NumAppart, 'Prix/Semaine’*2 NumAppart (Px hte *2}<950€
AS *(Px hte *2)<950€" 12 800.50
FROM TARIFICATION
WHERE CodeSaison="H' 2o
34 914.70

AND (‘Prix/Semaine *2) <950

Ici, un alias a été utilisé afin de donner un nom explicite a la colonne résultat.
Cependant, cet alias ne peut pas étre utilisé dans le critére de restriction. Il n’est

valable que dans la clause SELECT.

®

Des fonctions prédéfinies peuvent également étre utilisées :

YEAR(champ)

Renvoie I’année d’une valeur stockée dans un champ de type date

ROUND(champ, nombre décimales)

Renvoie la valeur arrondie d’une valeur stockée dans un champ
numérique en conservant un nombre spécifié de décimales. Si le second
parametre n’est pas mentionné, la valeur par défaut est 0. Ceci signifie que la

fonction renverra la valeur entiére supérieure.

Exemple3 : Requéte R1.5 3 «Prix de location de deux semaines

pour chaque appartementy.

REQUETE SQL

SELECT NumAppart,CodeSaison,

ROUND(Prix/Semaine*2) AS 'Px
arrondi'

FROM tarification ;

RESULTAT

NumAppart CodeSaison Px arrondi
1 B 364
1 H 974
17 M 1000
2 B 548

10

Les opérations ensemblistes en SQL, sont celles définies dans I’'algébre
relationnelle. Elles sont réalisées grace aux opérateurs :

= UNION

= INTERSECT (ne fait pas partie de la norme SQL =>pas implémenté dans
tous les SGBD)

= EXCEPT (ne fait pas partie de la norme SQL =>pas implémenté dans tous
les SGBD)
Syntaxe : SELECT ...
{UNION | INTERSECT | EXCEPT}
SELECT ...

Dans une requéte utilisant des opérateurs ensemblistes :

*Tous les SELECT doivent avoir le méme nombre de colonnes sélectionnées,

et leur types doivent étre un a un identiques.

* Les doublons sont éliminés (DISTINCT implicite).

* Les noms de colonnes sont ceux du 1¢* SELECT.

* La largeur des colonnes est la plus grande parmi tous les SELECT.

* On ne peut trouver qu'un seul ORDER BY. S'il est présent, il doit étre mis dans

le dernier SELECT et il ne peut faire référence qu'aux numéros des colonnes

et non pas a leurs noms (car les noms peuvent étre différents dans chacune @
des interrogations)

L'opérateur UNION

= Cet opérateur permet d'effectuer une UNION des tuples sélectionnés
par deux clauses SELECT (les deux tables sur lesquelles on travaille
devant avoir le méme schéma).

SELECT ...FROM ... WHERE ...

UNION

SELECT ... FROM ... WHERE ...

= Par défaut les doublons sont automatiquement éliminés. Pour
conserver les doublons, il est possible d'utiliser une clause UNION
ALL

= Exemple :Requéte R1.6_1 «Liste des appartements qui sont soit au
sud soit au 1°* étage ».

SELECT * FROM appartement
WHERE EtageAppart =1

UNION
SELECT * FROM appartement
WHERE ExpoAppart ='S' @

11

L'opérateur INTERSECT

Cet opérateur permet d'effectuer une INTERSECTION des
tuples sélectionnés par deux clauses SELECT (les deux tables
sur lesquelles on travaille devant avoir le méme schéma).
SELECT ...FROM ... WHERE ...

INTERSECT

SELECT ... FROM ... WHERE ...

= Exemple :Requéte R1.6_2 «Liste des appartements qui sont
soit A la fois orientés au sud et au rez-de -chaussée ».

SELECT * FROM APPARTEMENT | SELECT * FROM APPARTEMENT
_ WHERE EtageAppart =0
WHERE EtageAppart =0 AND ExpoAppart ='S"

INTERSECT Ou
SELECT * FROM APPARTEMENT
SELECT * FROM APPARTEMENT | \WHERE EtageAppart =0

WHERE ExpoAppart ='S' AND NumAppart IN (
SELECT NumAppart

FROM APPARTEMENT @
WHERE ExpoAppart ='S')

L'opérateur EXCEPT

et opérateur permet d'effectuer une DIFFERENCE entre les
tuples sélectionnés par deux clauses SELECT, c'est-a-dire
sélectionner les tuples de la premiére table n'appartenant pas a
la seconde (les deux tables devant avoir le méme schéma).

SELECT ... FROM ... WHERE ...
EXCEPT
SELECT ... FROM ... WHERE ...

= Exemple :Requéte R1.6_2 «Liste de tous appartements qui ne
sont pas orientés au nord ».

SELECT * SELECT * FROM APPARTEMENT
FROM APPARTEMENT \(/)VHERE ExpoAppart <>N’

u
EXCEPT SELECT * FROM APPARTEMENT
SELECT * WHERE NumAppart NOT IN (

SELECT NumAppart

FROM APPARTEMENT FROM APPARTEMENT
WHERE ExpoAppart="N’ WHERE ExpoAppart =N) (&)

12

Le produit cartésien

permet de retourner chaque ligne d’une table avec toutes les

lignes d’une autre table.

SELECT ...

FROM tablel, table2 [...]
WHERE ...

= Exemple :

SELECT *

SELECT ...

FROM table1 CROSS JOIN table2

[.]
WHERE ...

SELECT *

FROM saison CROSS JOIN

appartement

FROM saison, appartement

zf@ o= @ = 5 = o

LibSait pp: IdentAppart
101
101
101
102
102
102
103
103
103

Basse Saison
Haute Saison
Moyenne Saison
Basse Saison
Haute Saison
Moyenne Saison
Basse Saison

Haute Saison

(RN R OO R R

Moyenne Saison

MonteeAppart EtageAppart TypeAppart ExpoAppart

G 1T S
G 1T S
G 1M S
G 1 T2 S
G 1 T2 S
G 1 T2 S
G 1. T6 S
G 1 T6 S
G 1 T6 S

Terrasse(o/n) Numimm
oui

o
=

@
O N N R N

A manier avec précaution

NumProp

SOMMAIRE

1-Interrogation portant sur une seule table

2-Fonctions agrégats

3-Interrogation simple portant sur plusieurs tables

4-Regroupement

5-Les conditions sur regroupement

13

Elles permettent d'effectuer des calculs verticaux (en colonne)
pour l'ensemble ou un sous-ensemble des valeurs d'une
colonne.

(Le calcul porte sur un champ unique, mais concerne plusieurs
enregistrements).

Les fonctions principales sont :

Fonctions | Symboles

SUM permet d'effectuer la somme des valeurs d'une colonne
numérique

AVG permet d'effectuer la moyenne des valeurs d'une colonne
numérique

MAX permet de rechercher la valeur maximale d'une colonne
numérique

MIN permet de rechercher la valeur minimale d'une colonne
numérique

COUNT | permet de compter le nombre de valeurs d'une colonne
numérique

Exemplel :Requéte R2_1 «Nombre d’appartements en location».
SELECT COUNT(*) AS ‘Nombre d appartements’

FROM APPARTEMENT

ou

SELECT COUNT(NoAppart) AS ‘Nombre d appartements’

FROM APPARTEMENT

ExemPleZ :Requéte R2_2 «Nombre d’appartements de type T2 en
ocationy.

SELECT COUNT(*) as ‘Nombre de T2®
FROM APPARTEMENT
WHERE TypeAppart = '"T2'

Pour compter le nombre de valeurs distinctes }\)Inses par une
colonne, il faut indiquer I'argument DISTINCT suivi de
I'argument considere.

ExemgleS :Requéte R2_3 «Nombre de types différents
appartementsy.

SELECT COUNT (DISTINCT TypeAppart) AS ‘Nombre de types d
appartements

FROM APPARTEMENT
©

Exemple4 : Requéte R2_4 «Prix minimum, moyen et maximum
des locations en haute-saison». (CodeSaison :’H ’dans la
table Saison)

SELECT MIN('Prix/Semaine”) as Minimum,
AVG('Prix/Semaine”) as Moyen,
MAX('Prix/Semaine’) as Maximum

FROM tarification

WHERE CodeSaison = 'H'

SOMMAIRE

1-Interrogation portant sur une seule table
2-Fonctions agrégats
3-Interrogation simple portant sur plusieurs tables
3.1- Equi-jointure
3.2- Alias du FROM
3.3- Jointure réflexive
3.4- Requéte imbriquée
4-Regroupement

5-Les conditions sur regroupement

15

Dés lors que ’on gsouhaite obtenir des informations provenant de plusieurs
tables, il va étre necessaire d’établir les liens existants (champs en
commun) entre ces tables.

=> jointures

Sy{ltgice générale d’une requéte d’interrogation portant sur plusieurs
ables!

SELECT champl [, champ2 ...]

FROM tablel

JOIN table2 [,...]

ON....

[WHERE conditionl [OR/AND condition2...]]]
[ORDER BY champl [sens] [, champ2 [sens]...]];

Remarques : les instructions notées entre [| sont facultatives.
Les points de suspension indique une répétition possible n fois.

3.1- Equi-jointure

Une jointure naturelle ou équi-jointure rapproche deux tables
grace a deux champs ayant un méme sens : il s’agit
généralement de lier la clé primaire d’une table avec la clé
étrangere qui y fait référence dans une autre table.

Cette opération associe, a chaque tuple de la premiere table, tous
ceux de la seconde qui satisfont le critére de jointure.

Cette jointure ne sera possible que si les deux champs
appartiennent au méme domaine de valeurs (type de
données et taille).

16

Exemplel : Requéte R3.1_1 «lListe des appartements (IdentAppart,
TypeAppart, Terrasse(o/n),ExpoAppart) triés par nom d’immeuble ».

SELECT NomlImm, IdentAppart, TypeAppart, "Terrasse(o/n)’, ExpoAppart
FROM APPARTEMENT
JOIN IMMEUBLE

ON IMMEUBLE.NumImm = APPARTEMENT.NumImm ‘ Conjonction d’égalité

ORDER BY NomImm

Remarque : Lorsqu’un attribut est présent dans 2 tables avec le méme
nom, il doit étre précédé du nom de sa table d’origine.

Ex : Appartement.NumImm ou Immeuble.NumImm
u © loc vacances saison

2 CodeSaison : varchar(1) " i ﬂ & loc_vacances tarification

2 LibSaison : varchar(20) \.\ 2NumAppart : int(11) n @ loc_vacances appartement
\
4 ¢ CodeSaison : varchar(1) @NumAppart : int(11)
@Prix/Semaine : varchar(6) #ldentAppart : int(11)

2MonteeAppart : varchar(1)

gEtageAppart : int(11)

@ TypeAppart : varchar(2)
‘u @ loc_vacances immeuble

mExpofippart ; varchar(f) ﬂ {3 loc_vacances proprietaire

@Numimm : int(11) r oTerrasse(o/n) : varchar(4) :
) i 2 NumProp : int(11)
@NomlImm : varchar(20) ¢ ¢Numimm : int(11)

_) = NomProp : varchar(7)
o Adrimm : varchar(50) #NumProp : int(11)

=RueProp : varchar(26)
4 CpostProp : int(5)

= DistMer : varchar(20)

Exemple?2 : Requéte R3.1_2 «lListe des appartements (IdentAppart) de
type T2 triés par nom d’immeubley.

SELECT NomlImm, IdentAppart

FROM APPARTEMENT

JOIN IMMEUBLE

ON IMMEUBLE.NumImm = APPARTEMENT.NumImm
WHERE TypeAppart="T2'

ORDER BY NomImm

17

Exempled : Requéte R3.1_3 «Liste des appartements (IdentAppart) de
type T2 ou plus, triés par nom d’'immeuble (NumImm et Nom car
des homonymes sont possibles dans les noms d’immeubles)».

SELECT APPARTEMENT.NumImm, NomImm, IdentAppart

FROM APPARTEMENT

JOIN IMMEUBLE

ON IMMEUBLE.NumImm=APPARTEMENT.NumImm

WHERE TypeAppart<>'T1'

ORDER BY APPARTEMENT.NumImm, NomImm

Remarque :On pourrait utiliser aussi TypeAppart IN ("T1","T2",...)
ou (TypeAppart="TI1" OR TypeAppart="T2".....)

Exemple4 : Requéte R3.1_4 «Nom et adresse des immeubles d’Arcachon
ou d’Anglet dans lesquels M. Dupouy a des appartementsy.

SELECT NomImm, AdrImm
FROM (PROPRIETAIRE
JOIN APPARTEMENT
ON PROPRIETAIRE.NumProp=APPARTEMENT.NumProp)
JOIN IMMEUBLE
ON IMMEUBLE.NumImm=APPARTEMENT.NumImm
WHERE NomProp ='Dupouy’
AND AdrImm LIKE '%Arcachon%' OR AdrImm LIKE '%Anglet%'

18

3.2 - Alias du FROM (pour le traitement)

Il est possible de renommer, temporairement pour une requéte,
une ou plusieurs table(s) utilisées grace a la clause AS.

La table renommée (associée a un alias) ne pourra plus étre
désignée par son vrai nom dans la requéte concernée par

le renommage.

Il faudra encadrer le nom spécifié par des " ..."ou des [...] (selon le
SGBD utilisé) si celui-ci est composé de plusieurs mots.

Exemple : Re uéte R3.2 «Nom des propriétaires, des appartements de
1mmeu le "Arlas" (numéro des appartements, numero et nom

varnomde

ropriétaire»

Requéte sans alias

Requéte avec alias

SELECT NomProp, NumAppart,
Immeuble.NumImm, NomImm

FROM (PROPRIETAIRE
JOIN APPARTEMENT

ON PROPRIETAIRE.NumProp=
APPARTEMENT.NumProp)

JOIN IMMEUBLE

ON IMMEUBLE.NumImm=
APPARTEMENT.NumImm

WHERE NomImm = 'Arlas'
ORDER BY NomProp

SELECT NomProp, NumAppart,
[.NumImm, NomImm

FROM (PROPRIETAIRE AS P
JOIN APPARTEMENT AS A
ON P.NumProp= A.NumProp)
JOIN IMMEUBLE AS 1
ON [.NumImm= A.NumlImm
WHERE NomImm = 'Arlas'
ORDER BY NomProp

Remarques : La projection de APPARTEMENT.NumImm donnera le méme résultat que
celle de IMMEUBLE.NumImm. Ces champs, méme s’ils renvoient les mémes résultats
ne sont pas identiques pour I’interpréteur SQL. Lorsque I’on utilise des attributs
homonymes dans une requéte, il convient donc de les préfixer avec le nom de leur table
d’origine (ou son alias).

3.3 - Jointure réflexive (d’une table avec elle-méme)

Il est nécessaire de faire une jointure réflexive si 1’on souhaite rassembler
des informations venant d’'une ligne d’une table avec des informations
venant d’'une autre ligne de la méme table.

Partons d'un schéma relationnel] un peu plus comglet de la base de
données de LOC-VACANCES gérant également les locataires des
appaxtem)ents (uniquement pour des ldcations supérieures a trois
seinaines).

PERSONNE (NumPers, NomPers, RuePers, CpostPers, VillePers)
Clé primaire : NumPers
APPARTEMENT (NumApp_1art, IdentA; H\tftrt MontéeF#)RIart, EtageAppart,

EypeApa}t)r,t, ExpoAppart, Terasse(O/N), NumProp#, Numimm#,
umLocataire#

Clé primaire : NumAppart

Cl¢é étrangere : NumImm de la relation APPARTEMENT en référence a
NumlImmm de la relation IMMEUBLE
d

Cl¢é étrangere : NumProp de la relation APPARTEMENT en référence a
NumPeTs de la relation PERSONNE

Clé étrangére : NumLocataire de la relation APPARTEMENT en référence
a NumPers de la relation PERSONNE

Exemple : Requéte R3.3 «Nom du propriétaire et du locataire de
chaque appartement (NumAppart)».

SELECT NumAppart, PROPNomPers, LOC.NomPers
FROM PERSONNE PROP
JOIN APPARTEMENT
ON PROP.NumPers = APPARTEMENT.NumProp
JOIN PERSONNE LOC
ON LOC.NumPers = APPARTEMENT.NumLocataire;

Remarques :
Le nom d’alias peut étre composé de plusieurs lettres.

Le mot clé « AS » est facultatif.

20

3.4 - Requéte imbriquée

Le langage SQL permet de faire appel, dans la clause WHERE, au résultat
d’une autre requéte d’interrogation. ’'opérateur permettant d’exprimer
le critére reliant la sous-requéte a la requéte principale sera différent
selon que le résultat de la sous-requéte comporte une ou plusieurs
lignes.

3.4.1 Sous-requéte a résultat unique

Exemple : Requéte R3.4.1 «Appartements les moins chers en basse
saison)».

SELECT NumAppart
FROM TARIFICATION
WHERE CodeSaison = 'B'
AND "Prix/Semaine’ = (SELECT MIN(Prix/Semaine")
FROM TARIFICATION
WHERE CodeSaison ='B')

Remarques :

- larequéte imbriquée ne renvoyant qu’'un seul résultat (le plus petit prix
trouve) on peut utiliser le signe « = » pour comparer les Prix/semaine.

Dans le cas contraire, il faudra remplacer le signe « = » par ’opérateur
« IN » (voir exemple suivant).

3.4.2 Sous-requéte a résultats multiples

Exemple : Requéte R3.4.2 «Locataires qui sont aussi propriétaires
(d’appartements différents)».

SELECT NumlLocataire

FROM APPARTEMENT

WHERE NumlLocataire IN (SELECT DISTINCT NumProp
FROM APPARTEMENT)

21

SOMMAIRE

1-Interrogation portant sur une seule table
2-Fonctions agrégats

3-Interrogation simple portant sur plusieurs tables
4-Regroupement

5-Les conditions sur regroupement

Le regroupement permet de répartir les enregistrements d'une table en
s?l%_s-?nsembles dans le but én géneral de fealiser des calculs
statistiques.

Il s'exprime en SQL par la clause GROUP BY suivie du nom des colonnes
servant de criteres de regroupement.

Une opération effectuée dans l'instruction SELECT avec une clause de
regrqxt1pement pourra delivrer plusieurs lignes dans le résultat de la
requéte.

Exemplel :Requéte R4_1 «Nombre d’appartements de chaque immeuble
N uImI mm)».

SELECT NumImm , COUNT(NumAppart) AS Nbre Appart
FROM APPARTEMENT
GROUP BY NumImm

22

Exemple?2 : Requéte R4_2 «nombre d’appartements de chaque
propriétaire dans chaque immeuble (NumProp, NumImm)».

SELECT NumProp, NumImm, COUNT(NumAppart) AS Nbre_Appart
FROM APPARTEMENT
GROUP BY NumProp, NumImm

Remarque : Tous les attributs de la clause SELECT (sauf ceux utilisés
par les fonctions agrégats) devront étre placés dans la clause
GROUP BY. (I'inverse n’est pas vrai !)

SOMMAIRE

1-Interrogation portant sur une seule table
2-Fonctions agrégats

3-Interrogation simple portant sur plusieurs tables
4-Regroupement

5-Les conditions sur regroupement

23

Lorsqu’une condition de restriction porte sur un ensemble de lignes
obtenu Bar regroupement, celle-ci est exprimee avec la clause
HAVING.

Cette clause suit la clause GROUP BY.

Elle ne doit pas étre confondue ayec la clause WHERE qui exprime une
restriction portant sur chaque ligne d'une table.

Exemplel : Requéte R5_1 «Numéro des immeubles contenant plus de
eux appartéments (avec le nombre d’appartements de chacun).

SELECT NumImm, COUNT(NumAppart) AS NbAppart
FROM APPARTEMENT

GROUP BY Num/mm

HAVING COUNT (NumAppart)>2

Remarque : (rappel sur les alias), Il n’est pas possible de faire référence a
Ialids NbAppart dans la requéte (méme dans le HAVING).

Exemple?2 : Requéte R5_2 «Nombre d’appartements de tgpe T2 par
immeuble (NumImm, NomImm), uniquement si le nombre est compris
entre un et troisy.

SELECT APPARTEMENT NumImm, NomImm, COUNT (NumAppart)
FROM APPARTEMENT

JOIN IMMEUBLE

ON IMMEUBLE.NumImm=APPARTEMENT NumImm

WHERE TypeAppart='T2'

GROUP BY APPARTEMENT.NumImm, NomImm

HAVING COUNT(NumAppart) BETWEEN I AND 3

Ou

SELECT APPARTEMENT NumImm, NomImm, COUNT (NumAppart)
FROM APPARTEMENT

JOIN IMMEUBLE

ON IMMEUBLE.NumImm=APPARTEMENT NumImm

WHERE TypeAppart='T2'

GROUP BY APPARTEMENT.NumImm, NomImm

HAVING COUNT(NumAppart) <=3

24

