MANIPULATION DE FICHIERS

Informatique Tronc Commun — 1°™ année

E.Clermont

INTERET DE LA MANIPULATION DE FICHIERS

= La lecture ou I'écriture dans un fichier texte peut servir pour réaliser beaucoup de
taches.

Exemples : effectuer des calculs, tracer des graphiques.

= Ce que vous serez amenés a réaliser le plus souvent consistera a extraire de fichiers
textes des listes de données numériques issues d'un systéme de mesures quelconque
permettant I’exportation au format texte (exemple : accélérations d’un accélérometre
permettant de remonter a la vitesse et la position...).

= Selon les logiciels utilisés, les données seront regroupées et séparées différemment.
Souvent, a chaque temps de mesure ou chaque mesure sera associée une ligne. Pour
chaque ligne, les différentes données peuvent étre séparées par différents
« séparateurs », virgule, point-virgule, espace, tabulation...

* Objectifs du cours : apprendre a
= Lire et extraire des données notamment sous forme de listes,
= Créer un fichier et y ajouter les valeurs d’une liste.

LECTURE D'UN FICHIER

* Ouverture d’un fichier
Pour ouvrir un fichier texte en lecture en python, on peut écrire :

fichier = open(Nom_Fichier, "r")

= A la variable fichier est associé le fichier texte

L'objet fichier créé est ce qu’on appelle un flux.

= ’option r signifie« read » :le fichier est ouvert uniquement en lecture.

(=>on ne peut donc pas écrire a l'intérieur).

e

LECTURE D'UN FICHIER

* Ouverture d’un fichier fichier = open(Nom_Fichier, "r")

= Nom_Fichier est une variable contenant le chemin du fichier a ouvrir :
= En chemin relatif : dans le méme dossier sont présents le code python et le fichier texte.

Exemple : Nom_Fichier = "Exemple.txt "

Ce chemin relatif peut également étre constitué du nom du fichier précédé d’un ou plusieurs
noms de dossiers.

Exemple : Nom_Fichier = "Files\\resu\\ Exemple.txt"

(Le fichier Exemple.txt se trouve alors dans le dossier resu qui se trouve dans le dossier File)

= En chemin absolu : on veut ouvrir un fichier dans I’ordinateur a un endroit spécifique, on
précise alors le chemin complet.

Exemple : Nom_Fichier = "C:\\Users\\ec\\Desktop\\ Exemple.txt"
Veiller a doubler les anti-slashs

* Remarque : On pourrait ne pas passer par la variable Nom_Fichier mais écrire directement
fichier = open("Exemple.txt", "r")

LECTURE D'UN FICHIER

= Lecture compléte ou partielle

= Les caractéres sont lisibles uniquement les uns apres les autres, sans possibilité de retour
en arriére ni de saut en avant. => pas trés pratique.

= Besoin de convertir ce flux en chaine de caractéres.
Un moyen simple est d’utiliser la fonction read, qui lit le flux dans son entier et le convertit
en chaine de caractéres.

= Soit le fichier Exemple.txt :

CPGE - Informatique tronc commun
Moyenne de la classe S1 :
10 chaine = fichier.read()

M de la classe S2: s
];Wmme ©laclasse fichier.close()

fichier = open("Exemple.txt","r")

chaine vaut : ‘CPGE - Informatique tronc commun \nMoyenne de la classe S1:\n
10\nMoyenne de la classe S2:\nl12’

Rappel :Dans une chaine de caractéres, le passage a la ligne est représenté par le caractére
spécial "\n"

e

LECTURE D'UN FICHIER

* Lecture compléte ou partielle

= Cette méthode est la plus simple, mais n’est évidemment adaptée que si le fichier contient
un texte court.

= Si nécessaire, on peut préciser en argument de la fonction read le nombre de caractéres
que I’on souhaite lire.

= Exemple de lecture des caractéres par groupes de 5 :

fichier = open("Exemple.txt","r")

P p - liste = []

PGE - Informatique tronc commun txt = fichier.read(5)

Moyenne de la classe S1 : g

10 while len(txt) > 0:

Moyenne de la classe S2: liste.append (txt)

12 txt = fichier.read(%)
fichier.close()

= Affichage obtenu :
[[CPGE ', - Inf, 'ormat', ique ', 'tronc',' comm', 'un\nMo', 'yenne',' de I','a cls', 'se S1'," : \nl',
'0\nMoy', 'enne ', 'de 1a',' clas', 'se S2',' :\n12']

(a)

LECTURE D'UN FICHIER

* Lecture par lignes
= Lecture ligne par ligne

= On peut parcourir chacune des lignes du fichier a I'aide d’une boucle for :
for Ligne in fichier :
Ligne est alors associée a une ligne du fichier au format chaine de caractéeres (str).

= Exemple de lecture ligne par ligne:

CPGE - Informatique tronc commun
Moyenne de la classe S1 :

10

Moyenne de la classe S2: for Ligne in fichier:

fichier = open("Exemple.txt","r")

1z print(Ligne)
fichier.close()

Cette écriture permet de parcourir toutes les lignes du fichier, les unes apres les autres.
Attention, Ligne n’est pas un nombre, c’est le contenu d’une ligne du fichier !

e

LECTURE D'UN FICHIER

* Lecture par lignes
= Lecture ligne par ligne

= Un retour a la ligne est spécifié en fin de ligne par "\n" (visible en affichant la liste des
lignes par la méthode readlines).

= On peut tester la présence d’une ligne vide (hormis la derniére) a I’aide de la commande :
if Ligne == "\n": . Cela peut permettre de mettre fin a une lecture de fichier dont la fin
contient plusieurs lignes vides par exemple.

Pour la derniére ligne, on peut écrire : if Ligne ==": ou if Ligne == "":

= Si besoin, on peut ajouter un compteur afin d’identifier les numéros de lignes pour n’en
traiter qu’une partie.

= Attention :lorsque I’on parcourt le fichier avec for Ligne in fichier:
le fichier a été parcouru et ne peut pas I'étre une 2™ fois.
Le programme ne renvoie pas d’erreur pour autant, le for n’exécute juste rien.

Pour parcourir 2 fois le fichier, il faut ouvrir une 2°™¢ fois le fichier.

Qgg

LECTURE D’UN FICHIER

= Lecture par lignes
* Lecture compléte de I’ensemble des lignes

= Il est possible de récupérer directement I’ensemble des lignes d’un fichier en écrivant :
Liste_Lignes = fichier.readlines()

Attention : Il faudra toutefois effectuer le post-traitement de chaque ligne par la suite. C’est trés
pratique car en 3 lignes, on obtient toutes les lignes qu’il faudra post-traiter.

fichier = open("Exemple.txt","r™)
Liste Lignhes = fichier.readlines()
print(Liste_Lignes)
fichier.close()

géneére l'affichage :
[Informatique tronc commun \n','Moyenne de la classe S1 :\n','10\n’', 'Moyenne de la classe S2:\n', '12']

* Chaque élément de la liste Liste_Lignes est alors une chaine de caractéres contenant une des lignes
du texte ouvert.

= Attention, la fin de chaque ligne, sauf la derniére contient un "\n".

&
* Remarque :le fichier se termine aprés le nombre 12 sans nouvelle ligne vide, ie sans retour a 1@
liane

LECTURE D’UN FICHIER

* Lecture par lignes
= Lecture compléte de I’ensemble des lignes

= Attention :lorsque I’on parcourt le fichier avec fichier.readlines(), le fichier a été parcouru
et ne peut pas ’étre une 2é™e fois.

Il ne renvoie pas d’erreur pour autant, le for n’exécute juste rien...

Si vous voulez parcourir 2 fois le fichier, il faut ouvrir 2 fois le fichier... Sinon, aucune erreur
n’est affichée, mais le fichier n’est pas relu

= Remarque : Aprés avoir ouvert un fichier sous Python, écrire au singulier fichier.readline(),
permet de lire une ligne.

On peut ainsi aisément ne pas lire la premiére ligne en écrivant
fichier.readline()

puis

Lignes = fichier.readlines() pour récupérer toutes les autres lignes du fichier.

=> peut étre utile si le fichier comporte un en-téte qui ne sont pas utiles a récupérer.

—

LECTURE D’UN FICHIER

= Découpage des données de chaque ligne

= Il faut alors s’adapter au cas de figure afin d’en extraire les données importantes. La fonction
utile dans notre cas est la fonction split.

= Exemples d’utilisation :
Ligne ="10 20 30"

Ligne.split() Résultat : ['10', '20', '30']
Ligne = "10;20;30"
Ligne.split(";") Résultat : ['10', '20', '30']

= Sans arguments dans la fonction split, il y a un découpage chaque fois qu’il y a un ou
plusieurs espaces, ou des tabulations

= Avec argument, il y a découpage chaque fois que I'argument mis entre guillemets est
rencontré. Dans I’exemple :;

LECTURE D'UN FICHIER

= Découpage des données de chaque ligne
Liste_Totale = []

fichier = open("Exemple.txt","r")
for Ligne in fichier:

= Exemple:

Liste_Ligne = Ligne.split()
print ("Liste_ligne : ",Liste_Ligne)
Liste_Totale.append(Liste_Ligne)
fichier.close()
print("Liste_Totale : ",Liste_Totale)
= Ce programme géneére 'affichage :
Liste_ligne : [‘CPGE’,'Informatique’, 'tronc', 'commun']
Liste_ligne : ['Moyenne', 'de', '1a', 'classe','S1',":']
Liste_ligne : ['101]
Liste_ligne : ['Moyenne', 'de', '1a', 'classe', 'S2:']
Liste_ligne : ['12"]
Liste_Totale : [[Informatique', 'tronc','commun'], [Moyenne', 'de', '1a', 'classe', 'S1',":'], ['10'], [Moyenne', 'de', '1a',

'classe', 'S2:'1, ['12' . N \ .
= On o’bt?‘ezI t[alzo]rs une liste de chaines de caractéres liste_Totale.

= => On peut récupérer les valeurs associées en appelant chaque terme de la liste et en le
transformant (si besoin) en entier (int) ou flottant (float).

LECTURE D'UN FICHIER

= Suppression du retour a la ligne

= Chaque ligne d’'un fichier contient a la fin un retour a la ligne \n. La derniére ligne peut
d’ailleurs ne pas en avoir.

= Ainsi, pour le retirer, il existe 2 solutions :

= Ligne = Ligne[0,len(Ligne)-1] ou Ligne[:len(Ligne)-1] qui ne fonctionnera que si la ligne
contient un retour a la ligne

(Attention : la derniére ligne des fichiers peut ne pas en contenir)

= Remarque : Quand une donnée numérique est stockée sous forme de chaine de caractéres
et que I’on utilise une conversion de type telle que int() ou float() car on a besoin de
manipuler une valeur numérique,
le « \n » sera automatiquement supprimé R gl ST

>>> float(ch)
1.0

>>> int(ch)
1,

LECTURE D'UN FICHIER

= Fermeture d’un fichier

= Aprés avoir lu un fichier texte, il faut le refermer sous Python avec la fonction close :

fichier.close()

= Attention : Lorsqu’un fichier a été ouvert en Python avec la commande open sans étre
refermé avec la commande close,

=> Risque d’avoir des problémes pour le supprimer ultérieurement.

LECTURE D'UN FICHIER

= Ouverture d’un fichier

= Mode ajout : ouvre le fichier et ajoute du texte apres ce qui est présent (impossible de lire
ce qui est avant avec ce mode) :

fichier = open(Nom_Fichier, "a")
= Mode écrasement : ouvre le fichier en écrasant son contenu.

fichier = open(Nom_Fichier, "w"

Remarques :
= Si le fichier n’existe pas, il est créé.
= Avec ces deux modes d’ouverture, les fichiers ne peuvent étre lus en méme temps.

= En mode a, python se place ala fin du fichier pour y ajouter des données.

LECTURE D'UN FICHIER

= Ouverture d’un fichier

Il existe en Python un autre moyen d’ouvrir un fichier avec le mot-clé with qui permet
d'ouvrir et de fermer un fichier de maniére efficace.

Sil'ouverture ou la lecture du fichier conduit a une erreur, l'utilisation de with garantit la
bonne fermeture du fichier.

= Exemple :

with open("Exemple.txt","r") as fichier :
for Ligne in fichier:
print(Ligne)

CREATION ET ECRITURE DANS UN FICHIER

* Ajout de lignes
= Pour ajouter du texte a un fichier texte, il suffit d’utiliser la commande write
Exemple dans lequel on ajoute I'un des termes d’une liste de nombres
fichier.write(str(Liste[i]))

= Attention: Il faut que 'argument de la fonction write soit une chaine de caractéres.

= Si ce que 'on ajoute doit étre une ligne, on ajoute "\n" a la fin pour indiquer un retour a la
ligne :

fichier.write(str(Liste[i]) + "\n")
Pour ajouter uniquement un retour a la ligne, il suffit donc d’écrire :

fichier.write("\n")

* Remarque : pour afficher la chaine « \n » dans un texte et donc ne pas créer de retour a la
ligne, il faut doubler I’antislash : fichier.write("\\n").

CREATION ET ECRITURE DANS UN FICHIER

= Fermeture
= Pour finaliser un fichier texte, il faut le fermer avec la commande close:

fichier.close()

MANIPULATION DE FICHIERS

Informatique Tronc Commun — 1°™ année
E.Clermon t

10

