
1

Informatique Tronc Commun

E. CLERMONT

Les types simples :

 Les entiers : int

 Les flottants : float

 Les booléens : bool

 Les chaines de caractères : str

Particularité : chaque caractère de la chaine possède un indice => ce système d’indice
permet d’accéder à une partie de la chaine (séquence).

Les types composés ou construits :

 Les p-uplets : tuples

 Les listes : list

 Les tableaux: array

 Les dictionnaires : dict

2

Eléments indexés par une suite d’entiers
=> Séquences

2

3

En python, les types des variables se divisent en 2 catégories :
 les types mutables
 les types immutables.

 Un type est immutable (ou immuable ou persistant) si la valeur d'une variable de ce type ne
peut changer que par l'affectation d'une nouvelle valeur à cette variable.

 Dans le cas contraire, il sera mutable.

 int, float, str, bool, tuple : sont immutables Les valeurs des variables de ce type ne peuvent
être modifiées que par une affectation.

 Les listes et les dictionnaires sont mutables.

Les opérations de modification d'une liste le démontrent : ajout d'un nouvel élément (append),
suppression d'une élément (del), ... Ces opérations ne sont pas des affectations .

De plus, la valeur de l'élément particulier d'une liste peut être modifiée par l'affectation d'une
nouvelle valeur à cet élément. Indirectement, cela modifie également la valeur de la liste. Bien
qu'il s'agisse d'une affectation, cela montre également que les listes sont mutables, car le membre
gauche de cette affectation n'est pas la liste elle même.

 Exemple: Soit la liste L a pour valeur [1,9,6,1]. Pour modifier cette valeur en [1,9,6,4], on n’est
pas obligé d’écrire L = [1,9,6,4] : L[3]=4 suffit. 4

3

5

Types Simple Construit /
composé

Séquence Mutable Immutable

int

float

bool

str

tuple

list

array

dict

Types Simple Construit /
composé

Séquence Mutable Immutable

int  

float  

bool  

str   

tuple   

list   

array   

dict  

 Un dictionnaire ou tableau associatif : type Python qui permet de stocker des
données.

 Contrairement aux listes ou aux tuples, où les éléments sont indexés par des entiers,

les éléments (ou valeurs) d’un dictionnaire sont indexés par des clés qui peuvent être de
n’importe quel type (non mutable).

 Par exemple, on peut utiliser des chaînes de caractères pour les clés.

 Un dictionnaire est alors un ensemble de couples clé : valeur

 Exemples de dictionnaires

lesFruits = {"poire": 3, "pomme": 4, "orange": 2}

lesEtudiants = {110:’Marie',111:'Jane',‘112':'Remi',113:'Rena'}

6

4

Création d’un dictionnaire

 Création d’un dictionnaire vide :

dico = { } ou avec la fonction dict : dico = dict()

 Initialisation d’un dictionnaire tout en le créant :

annuaire = {"Julie" : "067898734" , "Carla" : "0799910783" , "Leo" : "0669842704" }

 Il est alors possible d’ajouter autant d’éléments qu’on le veut, que le dictionnaire soit
vide ou non.

Exemple :

annuaire["Romain"]= "0765333165"

print(annuaire)

Le dictionnaire contient alors :

{'Julie': '067898734', 'Carla': '0799910783', 'Leo': '0669842704', 'Romain': '0765333165'}
7

 On peut stocker n’importe quel type de données dans un dictionnaire.

Exemples :

Eleve= { }

Eleve['nom'] = 'Matthieu'

Eleve['classe'] = 'MPSI'

Eleve['notes info'] = [17,12,10]

Eleve['age'] = 18

print (Eleve)

#affiche {'nom': 'Matthieu', 'classe': 'MPSI', 'notes info': [17, 12, 10], 'age': 18}

8

5

 Exemple de valeur de type dictionnaire

9

Détermination du nombre d’éléments d’un dictionnaire : fonction len(…)

Exemple :

annuaire = {'Julie': '067898734', 'Carla': '0799910783', 'Leo': '0669842704', 'Romain': '0765333165'}

lg = len(annuaire)

print(lg)

lg vaut 4 : nombre de couples clé/valeur présents dans annuaire.

10

6

Récupération de valeurs à partir de la clé

 Pour récupérer la valeur associée à une clé,

on utilise les crochets [] comme pour une liste ou un tuple dans lesquels on
précise la clé recherchée.

Exemple :

annuaire['Julie'] #correspond à '067898734‘

 Une erreur « KeyError » est générée si la clé fournie n’existe pas dans le dictionnaire.

11

Parcours de dictionnaires

12

Affichage des clés
for cle in Eleve:

print(cle)
for cle in Eleve.keys():

print(cle)
nom
classe
notes info
age

Affichage des clés Affichage des valeurs de chaque clé
for cle in Eleve:

print(cle)
for cle in Eleve:

print(Eleve[cle])
for cle in Eleve.keys():

print(cle)
for val in Eleve.values():

print(val)
nom
classe
notes info
age

Matthieu
MPSI
[17, 12, 10]
18

Affichage des clés Affichage des valeurs de chaque clé
for cle in Eleve:

print(cle)
for cle in Eleve:

print(Eleve[cle])
for cle in Eleve.keys():

print(cle)
for val in Eleve.values():

print(val)
nom
classe
notes info
age

Matthieu
MPSI
[17, 12, 10]
18

Affichage des clés et des valeurs
for cle, val in Eleve.items():

print(cle,val)
nom Matthieu
classe MPSI
notes info [17, 12, 10]
age 18

Eleve = {'nom': 'Matthieu', 'classe': 'MPSI', 'notes info': [17, 12, 10], 'age': 18}

7

Exercice 1

 On considère un dictionnaire dont :
 les clés sont les noms des élèves
 les valeurs sont les moyennes générales obtenues.

Ecrire un programme qui :

 crée un tel dictionnaire

 puis le partitionne en 2 dictionnaires :
 etudiants_Admis dont les clés sont les étudiants admis et les valeurs des clés sont

les moyennes obtenues (moyenne supérieure ou égales à 10).
 etudiant_NonAdmis dont les clés sont les étudiants non admis et les valeurs des

clés sont les moyennes obtenues (moyenne inférieure à 10).

 Et enfin affiche :
 le nom des étudiants admis et non admis, ainsi que leur note.
 puis le nom des étudiants admis (sans leur note)

13

14

8

Exercice 2 : Inversion de dictionnaires

1 - Ecrire une fonction inverseDictionnaire qui :

 prend en paramètres un dictionnaire,

 retourne un dictionnaire dans lequel les valeurs sont devenues les clés.

Exemple d’exécution :

2- Le dictionnaire résultant a-t-il la même longueur que le dictionnaire initial?

Justifier la réponse.

15

16

9

17

2- Si le dictionnaire d’entrée a pour longueur lg_init, il y a lg_init instructions
dict_res[valeur] = cle.
Le dictionnaire résultant a au maximum une longueur de lg_init.

Si 2 valeurs sont égales (comme sur le 2ème exemple pour MPSI et PCSI), une seule clé
est créée.
Le dictionnaire résultant aura une longueur lg_res telle que lg_res < lg_init.

Si une valeur ne peut pas être une clé (par exemple une liste), une erreur est provoquée
et le dictionnaire résultant ne contient alors que les éléments insérés avant survenue de
l’erreur donc lg_res < lg_init.
Si l’erreur se produit dès le 1er élément, le dictionnaire résultant sera alors vide. Lg_res
vaudra alors 0

Présence d’une clé dans un dictionnaire

 Pour vérifier si une clé (pas une valeur) existe dans un dictionnaire,

on peut utiliser le test d’appartenance avec l’instruction in qui renvoie un booléen.

Exemple :

print('age' in Eleve) #affiche True

print('tel' in Eleve) #affiche False

18

10

 Exercice 3 : Nombre d’occurrences des lettres dans un mot

Ecrire une fonction determine_nb_occurences qui :

 prend en paramètres un mot

 et qui retourne un dictionnaire qui comporte le nombre d’occurrences de chaque
lettre présente dans le mot.

Exemple d’exécution :

print (determine_nb_occurences("bonjour"))

affiche {'b': 1, 'o': 2, 'n': 1, 'j': 1, 'u': 1, 'r': 1}

19

 Exercice 3 : nombre d’occurrences des lettres dans un mot - correction

20

11

Suppression d’un couple clé,valeur

 Pour supprimer un élément d’un dictionnaire, on utilise la fonction del.

del dico[cle]

 Exemple :

Eleve = {'nom': 'Matthieu', 'classe': 'MPSI', 'notes info': [17, 12, 10], 'age': 18}

del Eleve['classe']

print (Eleve)

affiche {'nom': 'Matthieu', 'notes info': [17, 12, 10], 'age': 18}

21

Copie de dictionnaires

 Les dictionnaires sont des objets mutables. Donc si l’on souhaite copier un
dictionnaire, on ne peut pas utiliser l’opérateur d’affectation =.

Exemple :

 On peut utiliser la fonction copy :

d = {…..}

d2 = d.copy()

 Exemple :

22

12

Copie de dictionnaires

 Attention si certaines valeurs sont des objets mutables.

Exemple :

 Dans ce cas, il est recommandé d’utiliser la copie en profondeur avec deepcopy
(module copy)

Exemple :

23

Exercice 4 : Chiffres d’affaires de commerciaux

On dispose d’un dictionnaire associant à des noms de commerciaux d’une entreprise le
montant des ventes qu’ils ont réalisées.

 Exemple :

ventes={"Jeff Bezos":10, "Bill Gates Jobs":13, "Mark Zuckerberg":8, "Elon Musk":15}

 Écrire la fonction chiffre_Affaires qui prend en entrée ce dictionnaire et renvoie le chiffres
d’affaires, ie le montant total de ventes.

 Écrire la fonction meilleur_Commercial qui prend en entrée un dictionnaire et renvoie le
nom du vendeur ayant réalisé le montant de ventes le plus élevé, ainsi que le montant. Si
plusieurs vendeurs sont ex-aequo sur ce critère, la fonction devra retourner l’ensemble
des commerciaux.

 Écrire la fonction supprime_PireCommercial qui prend en entrée un dictionnaire et
supprime le (ou les pires) des commerciaux (ie celui quia vendu le moins) si plusieurs
vendeurs sont ex-aequo.

24

13

 Fonction chiffre_Affaires

 Fonction meilleur_Commercial

25

 fonction supprime_PireCommercial

 Approche sans effet de bord

26

14

 Fonction supprime_PireCommercial - Approches avec effet de bord

 Tentative 1 :

Echec : on ne peut pas modifier directement le contenu du dictionnaire dans la boucle.

 Tentative 2 :

27

 fonction supprime_PireCommercial

 Approches avec effet de bord

 Tentative 3 :

=> Echec

28

15

 Exercice 5 : nombre de points d’un mot au Scrabble

Vous disposez du dictionnaire suivant :

dico_scrabble={"A":1,"B":3,"C":3,"D":2,"E":1,"F":4,"G":2,"H":4,"I":1,"J":8,"K":10,"L":1,"M
":2,"N":1,"O":1,"P":3,"Q":8,"R":1,"S":1,"T":1,"U":1,"V":4,"W":10,"X":10,"Y":10,"Z":10}

Créer une fonction score_scrabble qui :

 prend en paramètres un mot et un dictionnaire

 et retourne le nombre de points correspondant au mot.

Exemple d’exécution:

print (score_scrabble("bonjour", dico_scrabble)) # affiche 16

29

 Exercice 5 : nombre de points d’un mot au Scrabble - correction

30

16

 Contrairement à ce que l’on pourrait croire, l’accès aux éléments d’un dictionnaire est très
efficace (grâce à l’utilisation d’une fonction de « hachage » qui associe un entier à chaque
élément du dictionnaire).

 Points à retenir (en simplifiant, notamment sur la fonction de hachage)

Soit n la taille de la liste ou du dictionnaire

 Une liste est intéressante lorsque l’ordre des éléments est important, ou que
l’indexation par des entiers est importante.
A l’opposé, un dictionnaire permet d’avoir un ensemble de clés totalement quelconque,

 Le test d’appartenance (in) est en 𝑂(1) pour un dictionnaire, alors qu’il peut être en 𝑂(𝑛)
pour une liste.

 Les temps d’accès à un élément donné est en 𝑂(1) pour les listes et les dictionnaires(un
peu plus rapide pour les listes),

 le temps de suppression d’un élément est en 𝑂(1) pour un dictionnaire et en 𝑂(𝑛) pour
une liste (sauf si c’est le dernier élément qu’on retire avec pop())

 Aparté sur les tableaux et listes chainées

 Principe d’un tableau (numpy.array)

Un tableau est un conteneur possédant un nombre fixe d’éléments d’un même type. Le
nombre et le type des éléments sont définis à la création et ne sont pas modifiables.

Chaque élément du tableau est directement accessible en un temps 0(1):

les données sont stockées dans des espaces contigus en mémoire.

L’élément tab[i] est directement accessible.

32

17

 Tableaux et listes chainées

Principe de liste chainée

 Une liste chainée est un conteneur éventuellement vide donc chaque élément
contient une donnée et une adresse mémoire de la cellule suivante.

Il est possible de :

 créer un liste vide,

 ajouter un élément dans la liste,

 supprimer un élément,

 insérer un élément à une position donnée

 accéder à la position de tête

 accéder au successeur d’une cellule.

33

34

Un moyen simple de gérer un ensemble de valeurs est la liste dynamique Python.
Gérées par adressage direct.
L’univers des clés est un ensemble d’entiers de 0 à 𝑛 − 1
et on a directement accès à la case 𝑘,
puis à sa donnée correspondante :

On pourrait mettre en place une structure analogue pour les dictionnaires mais « avec des trous »,
lorsqu’on a un ensemble fini de clés possibles mais qu’elles ne sont pas toutes utilisées :
Avantage : grande souplesse
Inconvénient : si l’ensemble des clés possibles est très grand,
on aura réservé un tableau d’adresses très grand
(donc beaucoup de place mémoire) pour peu de cases
réellement utilisées.

Exemple :pour des clés qui sont des chaînes de 5 caractères, on aurait 265 (presque 12 millions)
cases à réserver pour n’en utiliser que quelques centaines/milliers.

18

Hachage

 Le hachage est un mécanisme permettant de transformer la clé en un nombre
unique permettant l'accès à la donnée, un peu à la manière d'un indice dans un tableau.

 La notion de hachage est omniprésente en informatique et est centrale dans le
fonctionnement des dictionnaires.

 Exemple d’utilisations du hachage

• Stockage des mots de passe dans un système informatique un peu sécurisé : le mot de
passe ne doit pas être stocké en clair. Une empreinte est générée avec une fonction
de hachage, afin que si le service est piraté et que les comptes sont dérobés, il ne soit
pas possible de reconstituer le mot de passe à partir de l'empreinte.

35

Hachage

 Définition d'une fonction de hachage

Une fonction de hachage est une fonction qui
calculer une empreinte unique à partir de la
donnée fournie en entrée.

36

La fonction de hachage doit respecter les règles suivantes :
• La longueur de l'empreinte (valeur retournée par la fonction de hachage) doit être

toujours la même, quelle que soit la donnée fournie en entrée.
• Connaissant l'empreinte, il ne doit pas être possible de reconstituer la donnée d'origine
• Des données d’entrée différentes doivent donner dans la mesure du possible des

empreintes différentes.
• Des données d’entrée identiques doivent donner des empreintes identiques.

19

Il existe une fonction hash en Python.

Exemple d’utilisation:

37

Table de hachage
L’idée est de réduire l’ensemble des clés grâce à une fonction de hachage,
c’est-à-dire une fonction ℎ qui part du domaine des clés et renvoie un entier entre 0 et m − 1 de
sorte que pour les clés utilisées, les valeurs de ℎ soient différentes.

 Soit U l’ensemble des clés envisageables.

 L’idée fondamentale de la table de hachage est de se ramener au cas de l’adressage direct,

càd à des clés qui correspondant à des indices dans un tableau.

Soit m, entier pas trop grand (idéalement un entier de l’ordre du nombre d’éléments
d’informations que l’on compte gérer)

On se donne une fonction de hachage h :

h : U → {0, …, m−1}

 L’idée est de ranger l’élément de clé k non pas dans

une case de tableau t[k], comme dans l’adressage direct

(cela n’a d’ailleurs aucun sens si k n’est pas un entier) ,

mais dans t[h(k)]. 38

20

Table de
hachage

0

m-1

k1

h(k1)

Fonction
de hachage

h

k2
h(k2)

Clés

Valeurs
hachées
(valeurs
comprises
entre 0 et
m-1

k3 h(k3)

v1

v2

v3

k4

= h(k4)
v4? Collision

Table de hachage pour les dictionnaires

A la création d’un dictionnaire,

 une fonction de hachage h est choisie

 et un tableau de taille m est créé.

Chaque élément de ce tableau sera nommé alvéole.

 A chaque insertion d’un couple clé-valeur, h(k) est calculée.

La valeur obtenue est comprise entre 0 et m-1.

 Une 1ère approche serait de placer le couple-clé, valeur dans l’alvéole

mais le tableau est de taille limitée.

=> Il y a aura donc forcément des collisions :
plusieurs clés auront nécessairement les mêmes
valeurs de hachage.

40

21

-

Table de
hachage

0

m-1

k1

h(k1)

Fonction
de hachage

h

k2
h(k2)

Clés

Valeurs
hachées
(valeurs
comprises
entre 0 et
m-1

k3 h(k3)

k4

= h(k4)

Résolution par chainage
(utilisation d’une liste chaînée)

v1

-v2

k1

k2

v3k3 v4k4

Table de hachage pour les dictionnaires – Gestion des collisions

 Approche choisie pour gérer des collisions inévitables : Résolution par chainage

Placer dans les alvéoles des pointeurs (ie des adresses) vers des listes chainées

dans lesquelles les couples-clés, valeurs sont ajoutés ou supprimés au fur et à mesure
des actions effectuées sur le dictionnaire

42

22

Table de hachage pour les dictionnaires – Gestion des collisions

 Approche choisie pour gérer des collisions inévitables : Résolution par adressage ouvert

On cherche à calculer une autre place libre ou la 1ère place libre qui suit.
La position de ces cases est déterminée par une méthode de « sondage ».

Lors d'une recherche, si la case obtenue par hachage direct ne permet pas d'obtenir la bonne
clé, une recherche sur les cases obtenues par une méthode de sondage est effectuée jusqu'à
trouver la clé, ou non, ce qui indique qu'aucune clé de ce type n'appartient à la table.

Méthodes de sondage courantes :
 le sondage linéaire : l'intervalle entre les cases est fixe, souvent 1. on parcourt les alvéoles

successivement jusqu'à ce qu'on en trouve une vide. On revient au début de la table si la fin a
été atteinte.

 le sondage quadratique : l'intervalle entre les cases augmente linéairement (les indices des
cases augmentent donc quadratiquement), ce qui peut s'exprimer par la formule :

hi(k) = k + i2

 le double hachage : l'adresse de la case est donnée par une deuxième fonction de hachage,
ou hachage secondaire. 43

-

Table de
hachage

0

m-1

k1

h(k1)

Fonction
de hachage

h

k2
h(k2)

Clés

Valeurs
hachées
(valeurs
comprises
entre 0 et
m-1

k3 h(k3)

k4

= h(k4)

Résolution par adressage ouvert
(sondage)

v1

- -v2

k1

k2

v3k3

v4k4

k5

= h(k5)

v5k4

Sondage linéaire (intervalle de 2)

23

Table de hachage pour les dictionnaires

 Lorsque le nombre de clés augmente fortement,

la table est alors redimensionnée avec un nouveau choix de fonction de hachage et de m.

 La performance d’une table de hachage dépend de la fonction de hachage choisie.

En général, on cherche à limiter le nombre de collisions tout en optimisant le taux
d’occupation des alvéoles.

=> le taux ou le facteur de remplissage :

α = n/m

où n est le nombre de clés (ou de couples clés-valeurs)

et m la longueur du tableau.

 En Python, les clés peuvent être de type entier, flottant, chaines de caractères (mais surtout
pas de types mutables tels que des listes)

Dans la pratique, les clés transmises sont transformées en entier si elles ne sont pas de type
entier puis la valeur de hachage est calculée sur cet entier (ce fonctionnement est également
appliqué pour la compression et le cryptage). On effectue donc un prétraitement pour
obtenir un entier.

45

Exemples classiques de fonctions de hachage :

 Division h (k) = k%m

La qualité du hachage dépend fortement de la valeur de m choisie si les clés ont une
répartition non aléatoire. En pratique, on choisit des nombres premiers loin de puissances
de 2.

 Multiplication h(k) = partieEntiere (m * frac(k * c))

Dans la méthode de multiplication, on multiplie la clé k par un nombre réel constant c
dans la plage 0 < c < 1 et on extrait la partie fractionnaire de k * c . Ensuite, on multiplie
cette valeur par la taille de la table m et prend la partie entière.

Il faut cependant toujours choisir une constante, qui peut faire varier l'efficacité de la
compression. Knuth suggère que pour c =(√5−1)/2, la fonction marchera bien dans la
plupart des cas.

46

24

Exercice 6

 Dans cet exercice, les clés sont de type chaînes de caractères. On cherche à transformer ces
clés en s’appuyant sur le codage ASCII de chaque caractère.
Pour obtenir le code ASCII associé à chaque caractère, Python propose la fonction ord.

ord(c): renvoie le nombre entier représentant le code Unicode du caractère passé en paramètre.

Exemples : ord('a') renvoie le nombre entier 97

ord('€') (symbole euro) renvoie 8364.

1- Ecrire une fonction transforme_chaine_entier(chaine) qui prend en paramètre une chaine
de caractères chaine et retourne la valeur :

෍𝑜𝑟𝑑 𝑐ℎ𝑎𝑖𝑛𝑒 𝑖 ∗ 256௜
௡ିଵ

௜ୀ଴

Exemples d’exécution :

print ("test devient ", transforme_chaine_entier("test"))

affiche test devient 1953719668

print ("dico devient ", transforme_chaine_entier("dico"))

affiche dico devient 1868786020
47

 Les entiers obtenus sont donc de très grande taille.

 Il va donc falloir les transformer pour les stocker dans la table de hachage.

2- Ecrire la fonction hachage(nb, m) telle que :

hachage : nb -> nb%m avec m qui correspond à la longueur de la clé de hachage.

 Appliquées aux 2 valeurs entières précédentes, pour une clé de longueur 256, on
obtient respectivement: 116 et 100

3- Ecrire et tester hachage_mult (nb, m) qui réalise cette fonction de hachage par
multiplication (cf planche 43):

Hachage_mult : nb , k -> partieEntiere (m * frac(k * c))

Exemple d’exécution :

print ("test devient après hachage multiplication", hachage_mult(nbtest1, longueur_cle , c))

#test devient après hachage multiplication 80

dico devient après hachage multiplication 15
48

25

49

 Exercice Multiplication correction

50

26

Implémentation d’une table de hachage
On souhaite créer une table de hachage permettant de manipuler des données issues d’un
fichier qui recense les capitales des pays du monde entier. Cette table doit donc traiter des clefs
de type str (le nom du pays) et des valeurs de type str (le nom de la capitale).

Les données concernant les pays du monde
et leur capitale se trouvent
dans le fichier capitalesMonde.csv dont le format est le suivant :

51

Implémentation d’une table de hachage

Écrire une fonction recup_Donneescsv(fichier, separateur) qui importe les données d’un
fichier dont le chemin est passé en paramètre.Cette fonction renvoie une liste de tuples.

 En-tête de la fonction :

def recup_Donneescsv(fichier, separateur=","):

"""recup_Donneescsv(fichier : str, separateur: str):lst

entrees : fichier, chaine qui correspond au chemin du fichier à ouvrir

separateur, chaine qui indique le separateur de colonnes. Par defaut ","

sortie : liste de tuples contenues dans le fichier

"""

52

27

Implémentation d’une table de hachage : fonction recup_Donneescsv(fichier, separateur)

53

Implémentation d’une table de hachage

 Écrire une fonction créer_TableHachage(liste, taille_table, fonction_hachage) qui
renvoie une table de hachage (liste contenant des listes) remplie à l’aide d’une liste de
tuples liste, passée en paramètre en utilisant la fonction de hachage dont le nom est passé
en paramètre.

54

28

Implémentation d’une table de hachage

55

Implémentation d’une table de hachage

Écrire une fonction obtenir_Valeur(cleCherchee, tableHachage) qui permet de récupérer la
valeur de la clé cle_Cherchee à l’aide de la table de hachage tableHachage.

56

29

Implémentation d’une table de hachage

57

Implémentation d’une table de hachage

 Créer l’ensemble de toutes les valeurs de hachage (indice des alvéoles) de la table pour

lesquelles il existe une valeur, puis parcourir la table à partir de cet ensemble.

Les capitales apparaissent-elles dans un ordre quelconque ?

 Déterminer le nombre d’alvéoles utilisées si on utilise hachage_d ?

 Faire apparaître les sous-listes de la table s’il y en a (même valeur de hachage obtenue).

58

30

Implémentation d’une table de hachage

59

Exercice 7 : Algorithme de compression LZ78

 L’algorithme de compression Lempel-Ziv '78, est l’un des tout premiers algorithmes
de compression génériques.

 Il a rapidement été adopté dans de nombreux logiciels commerciaux et libres.

 Il est par exemple à la base du format de compression zip.

 Il s’agit d’un algorithme basé sur un dictionnaireௗ:

les suites de symboles dans la source sont encodées par un dictionnaire
dynamique, qui est rempli au fur et à mesure que l’on parcourt le texte.

60

31

 Exercice : Algorithme de compression LZ78 – Principe de la compression

abracadabrarabarabaran

code : ‘’ 61

Entrée (Clé) Index (valeur) Chaine à ajouter

‘’ 0 -

 Exercice : Algorithme de compression LZ78 – Principe de la compression

a|bracadabrarabarabaran

code : ‘0,a|’ 62

Entrée (Clé) Index (valeur) Chaine à ajouter

‘’ 0 -

a 1 0,a

32

 Exercice : Algorithme de compression LZ78 – Principe de la compression

a|b|racadabrarabarabaran

code : ‘0,a|0,b|’ 63

Entrée (Clé) Index (valeur) Chaine à ajouter

‘’ 0 -

a 1 0,a

b 2 0,b

 Exercice : Algorithme de compression LZ78 – Principe de la compression

a|b|r|acadabrarabarabaran

code : ‘0,a|0,b|0,r|’ 64

Entrée (Clé) Index (valeur) Chaine à ajouter

‘’ 0 -

a 1 0,a

b 2 0,b

r 3 0,r

33

 Exercice : Algorithme de compression LZ78 – Principe de la compression

a|b|r|ac|adabrarabarabaran

code : ‘0,a|0,b|0,r|1,c|’ 65

Entrée (Clé) Index (valeur) Chaine à ajouter

‘’ 0 -

a 1 0,a

b 2 0,b

r 3 0,r

ac 4 1,c (1 correspond à
l’index de a)

 Exercice : Algorithme de compression LZ78 – Principe de la compression

a|b|r|ac|ad|abrarabarabaran

code : ‘0,a|0,b|0,r|1,c|’ 66

Entrée (Clé) Index (valeur) Chaine à ajouter

‘’ 0 -

a 1 0,a

b 2 0,b

r 3 0,r

ac 4 1,c

ad 5 1,d

34

 Exercice : Algorithme de compression LZ78 – Principe de la compression

a|b|r|ac|ad|ab|ra|rab|ar|aba|ran|

code : ‘0,a|0,b|0,r|1,c|1,d|1,b|3,a|7,b|1,r|6,a|7,n|’ 67

Entrée (Clé) Index (valeur) Chaine à ajouter
‘’ 0 -
a 1 0,a
b 2 0,b
r 3 0,r

ac 4 1,c
ad 5 1,d
ab 6 1,b
ra 7 3,a
rab 8 7,b
ar 9 1,r
aba 10 6,a
ran 11 7,n

 Exercice : Algorithme de compression LZ78

1- Compression
Créer la fonction compressionLZ78(texte) qui effectue la compression du texte
passé en paramètre et retourne le code, ainsi que le dictionnaire.

2- Décompression

L'algorithme de décompression fonctionne en sens inverse.
À partir de la liste alternée, appelée code, il faut reconstruire le dictionnaire au fur et
à mesure.
Créer la fonction decompressionLZ78(code, dico) qui effectue la décompression.

Astuce : Pour faciliter la programmation, on peut inverser le dictionnaire utilisé pour
la compression : les valeurs deviennent clés et les clés deviennent valeurs.

68

35

69

70

