LES DICTIONNAIRES

Informatique Tronc Commun
E. CLERMONT

RAPPELS SUR LES TYPES EN PYTHON

Les types simples :

» Les entiers : int

= Les flottants : float

» Les booléens : bool

* Les chaines de caractéres : str

Particularité : chaque caractére de la chaine posséde un indice => ce systéme d’indice
permet d’accéder a une partie de la chaine (séquence).

Les types composés ou construits :
= Les p-uplets : tuples
= Les listes : list ‘— Eléments indexés par une suite d’entiers

=> A
= Les tableaux: array Séquences

= Les dictionnaires : dict

TYPES EN PYTHON — MUTABLE/IMMUTABLE

1 # Exemples de types immutables

2 # avec des nombres

3 nl- =5

< n2 = nl

5 nl =6

6 peint (. ni, "™, N2) # affiche : 6 5
i

8 # avec des tuples

9 tuplel (152:3:4)

1e tuple2 = tuplel

11 tuplel = tuplel + (5,6)

12 print (tuplel, " ", tuple2) # affiche : (2 Zi 3y & 55 6) Ly 25 3, .4)
13

14 # Exemples de types mutables

15 11 | 2,2,34]

16 12:= 11

17 11[8] = 5

18 print (. 11; 12) # affiche : ESy 25 35 4] [5; 25 35 &)
19

20 12 =11.copy()

21 11[e] = -1

22 11.append(7) @
23 print (11, 12) # affiche : [=25 25 3; 4; T1 [5: 25 3; 4]

TYPES EN PYTHON — MUTABLE/IMMUTABLE

En python, les types des variables se divisent en 2 catégories :
= les types mutables
= les types immutables.

= Un type est immutable (ou immuable ou persistant) si la valeur d'une variable de ce type ne
peut changer que par l'affectation d'une nouvelle valeur a cette variable.

= Dans le cas contraire, il sera mutable.

= int, float, str, bool, tuple : sont immutables Les valeurs des variables de ce type ne peuvent
étre modifiées que par une affectation.

= Les listes et les dictionnaires sont mutables.

Les opérations de modification d'une liste le démontrent : ajout d'un nouvel élément (append),
suppression d'une élément (del), ... Ces opérations ne sont pas des affectations .

De plus, la valeur de 1'élément particulier d'une liste peut étre modifiée par l'affectation d'une
nouvelle valeur a cet élément. Indirectement, cela modifie également la valeur de la liste. Bien
qu'il s'agisse d'une affectation, cela montre également que les listes sont mutables, car le membre
gauche de cette affectation n'est pas la liste elle méme.

= Exemple: Soit la liste L a pour valeur [1,9,6,1]. Pour modifier cette valeur en [1,9,6,4], onn’e
pas obligé d’écrire L = [1,9,6,4] : L[3]=4 suffit. @

TYPES EN PYTHON - BILAN

Types Construit / | Séquence
composé
int

v 4
float v v
bool 4 v
str v v v
tuple v v v
list v v v
array v v v
dict v v

MANIPULATION DE DICTIONNAIRES

* Un dictionnaire ou tableau associatif :type Python qui permet de stocker des
données.

= Contrairement aux listes ou aux tuples, oul les éléments sont indexés par des entiers,

les éléments (ou valeurs) d’un dictionnaire sont indexés par des clés qui peuvent étre de
n’importe quel type (non mutable).

= Par exemple, on peut utiliser des chaines de caractéres pour les clés.
= Un dictionnaire est alors un ensemble de couples clé : valeur
= Exemples de dictionnaires

lesFruits = {"poire": 3, "pomme": 4, "orange": 2}
lesEtudiants = {110:'Marie',111:'Jane','112"'Remi',113:'Rena'}

MANIPULATION DE DICTIONNAIRES

Création d’un dictionnaire

= Création d’un dictionnaire vide :
dico ={} ou avec la fonction dict: dico = dict()
= Initialisation d’un dictionnaire tout en le créant :
annuaire = {"Julie" : "067898734" , "Carla" : "0799910783" , "Leo" : "0669842704" }

= Il est alors possible d’ajouter autant d’éléments qu’on le veut, que le dictionnaire soit
vide ou non.

Exemple :
annuaire["Romain"]= "0765333165"
print(annuaire)
Le dictionnaire contient alors :
{TJulie':'067898734', 'Carla':'0799910783', 'Leo': '0669842704', 'Romain': '0765333165'}

()

MANIPULATION DE DICTIONNAIRES

= On peut stocker n’importe quel type de données dans un dictionnaire.

Exemples :

Eleve= {}

Eleve[mom'] = 'Matthieu'

Eleve['classe'] = MPST'

Eleve[notes info'] =[17,12,10]

Eleve['age'] =18

print (Eleve)

#affiche {'nom':'Matthieu’, 'classe':'MPSI', 'notes info':[17, 12, 10], 'age': 18}

MANIPULATION DE DICTIONNAIRES

= Exemple de valeur de type dictionnaire

Eleves= {
'Matthieu' : { 'Math' : 12, 'Physique':11, 'Informatique’':18, 'Anglais' : 14 } ,
‘Ambre’:{ 'Math' : 14, 'Physique':16, 'Informatique':28, 'Anglais' : 1@ },

"Chloe':{ 'Math' : 9, 'Physique':12, 'Informatique':11, 'Anglais' : 18 }

Eleves['Ambre']["Anglais'] = 15

MANIPULATION DE DICTIONNAIRES

Détermination du nombre d’éléments d’un dictionnaire : fonction len(...)

Exemple :
annuaire = {'Julie':'067898734', 'Carla':'0799910783', 'Leo':'0669842704', Romain'": '0765333165"}
lg = len(annuaire)
print(lg)
lg vaut 4 : nombre de couples clé/valeur présents dans annuaire.

MANIPULATION DE DICTIONNAIRES

Récupération de valeurs a partir de la clé

= Pour récupérer la valeur associée a une clé,

on utilise les crochets [] comme pour une liste ou un tuple dans lesquels on

précise la clé recherchée.

Exemple :

annuaire['Julie']

#correspond a '067898734*

» Une erreur « KeyError » est générée si la clé fournie n’existe pas dans le dictionnaire.

©

MANIPULATION DE DICTIONNAIRES

Parcours de dictionnaires

Eleve = {'nom': 'Matthieu', 'classe":'MPSI, notes info': [17, 12, 10], 'age': 18}

Affichage des clés

Affichage des valeurs de chaque clé

for cle in Eleve:

for cle in Eleve:

print(cle) print(Eleve[cle])

for cle in Eleve.keys(): for val in Eleve.values():
print(cle) print(val)

nom Matthieu

classe MPSI

notes info [17,12,10]

age 18

Affichage des clés et des valeurs
for cle, val in Eleve.items():
print(cle,val)

nom Matthieu

classe MPSI

notes info [17, 12, 10]
age 18

EXERCICES APPLICATIFS

Exercice 1

= On considére un dictionnaire dont :
= les clés sont les noms des éléves
= les valeurs sont les moyennes générales obtenues.

Ecrire un programme qui :
= crée un tel dictionnaire

= puis le partitionne en 2 dictionnaires :

= etudiants_ Admis dont les clés sont les étudiants admis et les valeurs des clés sont
les moyennes obtenues (mmoyenne supérieure ou égales a 10).

= etudiant_ NonAdmis dont les clés sont les étudiants non admis et les valeurs des
clés sont les moyennes obtenues (moyenne inférieure a 10).
= Et enfin affiche :
= le nom des étudiants admis et non admis, ainsi que leur note.
* puis le nom des étudiants admis (sans leur note)

ADPDIIORTT .)
AL A MLUELA LA W, "V AL,

EXERCICE

TION

"Briant" : 9 , "Clore" : 15 ,
"Drouin” : 14 , "Flion" : 16 , "Garrouste" : 12 ,
"Lion™ : 15 , “Martin" :; 14 , "Muller" : 9 ,
"BapraT™ & 12 “Poulavd” 48 , TRUSEIAY LT
"Trillet” : 15 , ;i ¥

etudiants = {"Arua" : 13 ,
"Curare" : 8 ,

"Baltazar" : 17 ;

"Larrere" : 13 ,
"NroEEIn® & Te
"Tavard” : 12 , "Varret" : 9 , "Yimez"

on crée 2 dictionnaires vides :

un pour les admis et 1'autre pour les non-admis

etudiants_Admis = dict()
etudiants_NonAdmis = dict()

on parcourt la liste des clés et des valeurs
si la clé est < 10 l'étudiant sera ajouté au
sinon 1l'étudiant sera ajouté au dictionnaire
for cle , valeur in etudiants.items():
if(valeur < 18)
etudiants_NonAdmis[cle] = valeur
else:
etudiants_Admis[cle] = valeur

#affichage des dictionnaires => Clé et valeurs
print("Liste des etudiants admis et notes: " ,

print("Liste des etudiants non admis et notes: "

affichage uniquement de clés

print("Liste des etudiants admis™)

for cle in etudiants_Admis.keys():
print(cle)

simultanément:
dictionnaire etudiants_NonAdmis des étudiants non admis
etudiants_Admis des étudiants admis

etudiants_Admis)
, etudiants_NonAdmis)

EXERCICES APPLICATIFS

Exercice 2 : Inversion de dictionnaires

1 - Ecrire une fonction inverseDictionnaire qui :
= prend en parameétres un dictionnaire,

= retourne un dictionnaire dans lequel les valeurs sont devenues les clés.

Exemple d’exécution :

di={ 'MPSI' : 43, 'PCSI': 42, 'MP':41, 'PC':32 }

print (inverseDictionnaire(d1)) # affiche {43: 'MPSI', 42: 'PCSI', 41: 'MP',

2- Le dictionnaire résultant a-t-il la méme longueur que le dictionnaire initial?

Justifier la réponse.

32:

"PC

©

EXERCICE APPLICATIF - CORRECTION

def inverseDictionnaire(dict_init

def inverseDictionnaire(dict_init : dict)-> dict
entrées : dict_init dictionnaire dont on veut inverser clé et valeur
sortie : dict_res dictionnaire inversé
dict_res={}
for cle, valeur in dict_init.items()
dict_res[valeur] = cle
return dict_res
di={ 'MPSI' : 43, 'PCSI': 42, 'MP':41, 'PC':32 }
print (inverseDictionnaire(d1))

d1={ 'MPSI' : 43, 'PCSI': 43, 'MP':41, 'PC':32 }
print(di)
print (inverseDictionnaire(d1))

di={ 'MPSI' : 43, 'PCSI': 43, 'MP':41, 'PC':32,'MP2I' : [10,15] }
print(di)
print (inverseDictionnaire(d1))

EXERCICE APPLICATIF - CORRECTION

2- Si le dictionnaire d’entrée a pour longueur Ig init,il y a 1g_init instructions
dict_res[valeur] = cle.
Le dictionnaire résultant a au maximum une longueur de Ig_init.

Si 2 valeurs sont égales (comme sur le 2°™¢ exemple pour MPSI et PCSI), une seule clé
est créée.
Le dictionnaire résultant aura une longueur Ig_res telle que Ig_res < Ig _init.

Si une valeur ne peut pas étre une clé (par exemple une liste), une erreur est provoquée
et le dictionnaire résultant ne contient alors que les éléments insérés avant survenue de
Perreur donc Ig_res < Ig_init.

Sil'erreur se produit dés le 1°f élément, le dictionnaire résultant sera alors vide. Lg_res
vaudra alors 0

MANIPULATION DE DICTIONNAIRES

Présence d’une clé dans un dictionnaire

= Pour vérifier si une clé (pas une valeur) existe dans un dictionnaire,

on peut utiliser le test d’appartenance avec l'instruction in qui renvoie un booléen.

Exemple :
print(‘age' in Eleve) #affiche True

print('tel' in Eleve) #affiche False

EXERCICES APPLICATIFS

= Exercice 3 : Nombre d’occurrences des lettres dans un mot

Ecrire une fonction determine_nb_occurences qui :
= prend en parameétres un mot

= et qui retourne un dictionnaire qui comporte le nombre d’occurrences de chaque
lettre présente dans le mot.

Exemple d’exécution :
print (determine_nb_occurences("bonjour"))

affiche {'b:1,'0:2,'n": 1, 1,"a": 1,'r'": 1}

EXERCICES APPLICATIFS

= Exercice 3 : nombre d’occurrences des lettres dans un mot - correction

def determine_nb_occurences(mot):

determine_nb_occurences(mot : str) -> dict
entree : mot, chaine de caracteres dont on veut connaitre le nb d occurences

sortie : dict_occurences le dictionnaire dict_occurences comportant les couples caractere, nb d'occur

dict_occurences = {}
for car in mot
if(car in dict_occurences):
dict_occurences[car] = dict_occurences[car] + 1
else :
dict_occurences[car] = 1
return dict_occurences

10

MANIPULATION DE DICTIONNAIRES

Suppression d’un couple clé,valeur

= Pour supprimer un élément d'un dictionnaire, on utilise la fonction del.

del dico|cle]

= Exemple :

Eleve = {'nom': 'Matthieu', 'classe":'MPSI, notes info': [17, 12, 10], 'age': 18}
del Eleve['classe']

print (Eleve)

affiche {'nom':'Matthieu', 'notes info": [17, 12, 10], 'age': 18}

MANIPULATION DE DICTIONNAIRES

Copie de dictionnaires

= Les dictionnaires sont des objets mutables. Donc si l’on souhaite copier un
dictionnaire, on ne peut pas utiliser I’opérateur d’affectation =.

Eleve = {'nom': 'Matthieu', 'classe': 'MPSI', 'age': 18}

Elevel = Eleve

Eleve['age'] = 20

print (Eleve, Elevel)

affiche {'nom’': 'Matthieu', 'classe': 'MPSI', 'age': 2@}

{'nom': 'Matthieu', 'classe': 'MPSI', 'age': 20}

Exemple :

* On peut utiliser la fonction copy :

d2 = d.copy()

Eleve = {'nom': 'Matthieu’, ‘classe': 'MPSI', 'age': 18}
Eleve2 = Eleve.copy()

Eleve['age'] = 19

print (Eleve, Eleve2)

affiche {'nom': 'Matthieu', 'classe': 'MPSI', ‘age': 19}
{'nom': 'Matthieu', 'classe': 'MPSI', ‘'age': 18}

= Exemple :

e

11

MANIPULATION DE DICTIONNAIRES

Copie de dictionnaires

= Attention si certaines valeurs sont des objets mutables.

Exemple -Eleve = {'nom': 'Matthieu', 'classe': 'MPSI', 'notes info': [17, 12, 1], 'age': 18}
Eleve2 = Eleve.copy()
Eleve['age'] = 19
Eleve['notes info'][2] = 12
print (Eleve, Eleve2)
affiche {'nom': 'Matthieu', 'classe': 'MPSI', 'notes info': [17, 12, 12], 'age': 19}
B {'nom': 'Matthieu', ‘'classe': 'MPSI', 'notes info': [17, 12, 12], 'age': 18}

= Dans ce cas, il est recommandé d’utiliser la copie en profondeur avec deepcopy
(module copy)

Exemple :
import copy
Eleve3 = copy.deepcopy(Eleve)
Eleve['age'] = 19
Eleve['notes infe'][2] = 20
Eleve['notes info'].append(19)
print (Eleve, Eleve3)
affiche {'nom': 'Matthieu’, ‘'classe': 'MPSI', 'notes info': [17, 12, 28, 19], ‘age': 19}
{'nom': 'Matthieu', 'classe': 'MPSI', 'notes info': [17, 12, 12], 'age': 18}

EXERCICES APPLICATIFS

Exercice 4 : Chiffres d’affaires de commerciaux

On dispose d’un dictionnaire associant a des noms de commerciaux d’une entreprise le
montant des ventes qu’ils ont réalisées.

= Exemple :
ventes={"Jeff Bezos":10, "Bill Gates Jobs":13, "Mark Zuckerberg":8, "Elon Musk":15}

« Ecrire la fonction chiffre_Affaires qui prend en entrée ce dictionnaire et renvoie le chiffres
d’affaires, ie le montant total de ventes.

= Ecrire la fonction meilleur Commercial qui prend en entrée un dictionnaire et renvoie le
nom du vendeur ayant réalisé le montant de ventes le plus élevé, ainsi que le montant. Si
plusieurs vendeurs sont ex-aequo sur ce critére, la fonction devra retourner I’ensemble
des commerciaux.

« Ecrire la fonction supprime_PireCommercial qui prend en entrée un dictionnaire et
supprime le (ou les pires) des commerciaux (ie celui quia vendu le moins) si plusieurs
vendeurs sont ex-aequo.

o

12

EXERCICES APPLICATIFS : CORRECTION

= Fonction chiffre_Affaires

ventes={"Jeff Bezos":1@, "Bill Gates Jobs":13, "Mark Zuckerberg":8, "Elon Musk":15}
def chiffre_Affaires(dict):

ca=29
for val in dict.values()
ca+= val
return ca from numpy import inf
print (chiffre_Affaires(ventes)) def max_Ventes(dict) :

maxi = -inf
for val in dict.values() :
. X . if val > maxi
= Fonction meilleur Commercial .
maxi= val
return maxi
def meilleur_Commercial(dict):
dict_meilleurs ={}
maxi = max_Ventes(dict)
for cle, valeur in dict.items() :
if valeur == maxi
dict_meilleurs[cle] = valeur
return dict_meilleurs

print ("Meilleur commercial", meilleur Commercial(ventes))

EXERCICES APPLICATIES : CORRECTION

= fonction supprime_PireCommercial

= Approche sans effet de bord
def min_Ventes(dict) :
mini = inf
for val in dict.values() :
if val < mini
mini= val
return mini
def supprime_PireCommercial(dictC): # Approche sans effet de bord
""" supprime_PireCommercial(dictC : dict)-> dic
entrees : dictC dictionnaire comportant les couples nom/Montant des commerciaux
sorties : dict_res dictionnaire comportant les couples nom/Montant des commerciaux
de dictC. dict_res ne contient pas le ou les pires commerciaux
dict_res = dictC.copy()
mini = min_Ventes(dictC)
for cle, valeur in dictC.items()
if valeur == mini
del dict_res[cle]
return dict_res # retour du dictionnaire ne contenant pas le(s) pire(s) commercial(aux)
ventes = supprime_PireCommercial(ventes)

e

13

EXERCICES APPLICATIFS : CORRECTION

= Fonction supprime_PireCommercial - Approches avec effet de bord

= Tentative 1 :
def supprime_PireCommercial(dict): #tentative d'effet de bord
mini = min_Ventes(dict)
for cle, valeur in dict.items() :
if valeur == mini
del dict[cle] #RuntimeError: dictionary changed size during iteration
supprime_PireCommercial(ventes)

Echec : on ne peut pas modifier directement le contenu du dictionnaire dans la boucle.

= Tentative 2 :
def supprime_PireCommercial(dict): # avec effet de bord
#modification du CONTENU du dictionnaire dict
dict_res = dict.copy() # dans ce cas dict_res sert 3 copier les clés/valeurs
#pour les reaffecter a dict

mini = min_Ventes(dict)

dict.clear() # vidage d'une dictionnaire initial

for cle, valeur in dict_res.items() : # puis remplissage avec les couples non minimaux

if valeur != mini
dict[cle] = valeur # ajout au dictionnaire initial quand ce n'est pas le mini

supprime_PireCommercial(ventes)
print ("avec effet de bord" , ventes)

EXERCICES APPLICATIFS : CORRECTION

= fonction supprime_PireCommercial
= Approches avec effet de bord

= Tentative 3 :

def supprime_PireCommercial(dict): # tentative d'effet de bord en reaffectant
l'adresse du dictionnaire
dict_res = dict.copy() # dans ce cas dict_res est une variable locale qui doit servir
a reaffecter dict
mini = min_Ventes(dict)
for cle, valeur in dict.items() :
if valeur == mini
del dict_res[cle]

print (dict_res)

dict = dict_res

print (dict) # affiche pas le bon résultat : dictionnaire non modifié
supprime_PireCommercial(ventes) # n'affiche pas le bon résultat : dictionnaire non modifié

=> echec de la tentative

=> Echec

14

EXERCICES APPLICATIFS

= Exercice 5 : nombre de points d’un mot au Scrabble

Vous disposez du dictionnaire suivant :

dico_scrabble:{llAn: 1 ,"B":3,"C":3,"D":2,"E": 1 ,"F":4,"G":Z,"H":4,"I": 1 ’H]'H:S,HKH: 10,”].]": 1 ,”M
IV:Z,HNH: 1 ,IIOH: 1 ,HP":S’HQH:S’HRH: 1 ,HSH: 1 ,HTH: 1 ,HUH: 1 ’HVH:4,IVWH: IO’HXH: 10,”Y”: lo’Hzll: 10}

Créer une fonction score_scrabble qui :
= prend en parameétres un mot et un dictionnaire

= et retourne le nombre de points correspondant au mot.

Exemple d’exécution:

print (score_scrabble("bonjour", dico_scrabble)) # affiche 16

EXERCICES APPLICATIFS

def score_scrabble(mot, dico_scrabble) :
score_scrabble(mot : str, dico_scrabble : dict) -»>int
entrées : mot, chaine de caracteres sur laguelle on veut obtnir le nb de points
: dico_scrabble, dictionnaire qui a pour clé la lettre et pour valeur le nb de points associés

sortie : score, entier, qui corespont au score du mot au scrabble

score = @

for car in mot :
score += dico_scrabble[car.upper()]

return score

dico_scr‘abble={"A” :l,"B":3,"C" . BJHDII :2, "E":l, "F" :4’I(Gl| : 2,"H”:4J ||I|| :1_, “]":8_, "K”:le, "L":l, "M” :ZJI(NH . 1,“0“:1, ||P|| :3-1\

"Q":aj"R":1,"5":1,"T":l,"U":l,"V”:q-J”W”:19,"x":leJ"Y":leJ"Z":le}
print (score_scrabble("bonjour", dico_scrabble)) # affiche 16

e

15

COMPARAISON LISTES ET DICTIONNAIRES

= Contrairement a ce que I’on pourrait croire, I’accés aux éléments d’un dictionnaire est trés
efficace (grace a l'utilisation d’une fonction de « hachage » qui associe un entier a chaque

élément du dictionnaire).

= Points a retenir (en simplifiant, notamment sur la fonction de hachage)

Soit n la taille de la liste ou du dictionnaire

= Une liste est intéressante lorsque ’ordre des éléments est important, ou que

I’indexation par des entiers est importante.

A l'opposé, un dictionnaire permet d’avoir un ensemble de clés totalement quelconque,

= Le test d’appartenance (in) est en 0(1) pour un dictionnaire, alors qu'’il peut étre en 0(n)

pour une liste.

= Les temps d’accés a un élément donné est en 0(1) pour les listes et les dictionnaires(un

peu plus rapide pour les listes),

= le temps de suppression d’un élément est en 0(1) pour un dictionnaire et en 0(n) pour
une liste (sauf si c’est le dernier élément qu’on retire avec pop())

®

FONCTIONNEMENT DES DICTIONNAIRES

= Aparté sur les tableaux et listes chainées

= Principe d’un tableau (numpy.array)

Un tableau est un conteneur possédant un nombre fixe d’éléments d’un méme type. Le
nombre et le type des éléments sont définis a la création et ne sont pas modifiables.

Chaque élément du tableau est directement accessible en un temps 0(1):

les données sont stockées dans des espaces contigus en mémoire.

I’élément tab[i] est directement accessible.

1[0.1.2.3.4.5.6] |

[[24 25 26 27]
[28 29 30 31]]

1 1D array

» 2D array

((fo123]

(4567
[8 91011]

[12 13 14 15]] | 3D array

[[16 17 18 19]

(20 21 22 23]
[24 25 26 27]
(28 29 30 31]]]

16

FONCTIONNEMENT DES DICTIONNAIRES

= Tableaux et listes chainées

Principe de liste chainée

= Une liste chainée est un conteneur éventuellement vide donc chaque élément
contient une donnée et une adresse mémoire de la cellule suivante.

11 est possible de :
= créer un liste vide,

. L, . Tableau standard
= ajouter un élément dans la liste, ‘ o i B I 3 |

* supprimer un élément,

= insérer un élément a une position donnée | | e simplement chainée

= accéder a la position de téte La |, Lz [,] ENR L2 [,]

= accéder au successeur d’une cellule.

RDRESSAGE DIRECT

Un moyen simple de gérer un ensemble de valeurs est la liste dynamique Python.

Gérées par adressage direct. L l 0 | N | | | | I | m |
. , , . R n-
L'univers des clés est un ensemble d’entiersde0an—1

et on a directement accés a la case k,

puis a sa donnée correspondante : 0 | valeurl

| 1 | valeur 2 | n-1| valeur n-1

On pourrait mettre en place une structure analogue pour les dictionnaires mais « avec des trous »,

lorsqu’on a un ensemble fini de clés possibles mais qu’elles ne sont pas toutes utilisées :

n-1

Avantage : grande souplesse

réellement utilisées.

L o | 1| 2 | 3 i I Kk |
Inconvénient : si’ensemble des clés possibles est trés grand,
on aura réservé un tableau d’adresses trés grand
(donc beaucoup de place mémoire) pour peu de cases 5| medRs
[[]

Exemple :pour des clés qui sont des chaines de 5 caractéres, on aurait 265 (presque 12 milli@
cases a réserver pour n’en utiliser que quelques centaines/milliers.

3 valeur k

17

FONCTIONNEMENT DES DICTIONNAIRES

Hachage

* Le hachage est un mécanisme permettant de transformer la clé en un nombre
unique permettant l'accés a la donnée, un peu a la maniére d'un indice dans un tableau.

= La notion de hachage est omniprésente en informatique et est centrale dans le
fonctionnement des dictionnaires.

= Exemple d’utilisations du hachage

Stockage des mots de passe dans un systéme informatique un peu sécurisé : le mot de
passe ne doit pas étre stocké en clair. Une empreinte est générée avec une fonction
de hachage, afin que si le service est piraté et que les comptes sont dérobés, il ne soit
pas possible de reconstituer le mot de passe a partir de l'empreinte.

FONCTIONNEMENT DES DICTIONNAIRES

Hachage
= Définition d'une fonction de hachage
Univers {7 des clés :
Une fonction de hachage est une fonction qui) K U(’]"'“““
. . Y . e e
calcu,ler une .empremt’e unique a partir de la Ly = | hachage
donnée fournie en entrée. ke ») h

ko®

La fonction de hachage doit respecter les régles suivantes :

* Lalongueur de l'empreinte (valeur retournée par la fonction de hachage) doit étre
toujours la méme, quelle que soit la donnée fournie en entrée.

* Connaissant 'empreinte, il ne doit pas étre possible de reconstituer la donnée d'origine

* Des données d’entrée différentes doivent donner dans la mesure du possible des
empreintes différentes.

* Des données d’entrée identiques doivent donner des empreintes identiques.

> niJ I: #.'-_, .:I
» hiky)
F

fi | 1.'31 |
= fekg)

e

18

FONCTIONNEMENT DES DICTIONNAIRES

Il existe une fonction hash en Python.

Exemple d’utilisation:

unentier = 1
unechaine = ‘dictionnaire’
unflottant = 4.55

print("La valeur de hachage de 1l'objet integer est:"+ str(hash(unentier)))
print("La valeur de hachage de 1'objet string est:"+ str(hash(unechaine)))
print("La valeur de hachage de 1l'objet float est:"+ str(hash(unflottant)))

G ommmee e e ey
La valeur de hachage de l'objet integer est:1

La valeur de hachage de 1l'objet string est:-3411529©410835809772
La valeur de hachage de 1l'objet float est:1268213655067531268

()

FONCTIONNEMENT DES DICTIONNAIRES

Table de hachage
L'idée est de réduire I’ensemble des clés grace a une fonction de hachage,
c’est-a-dire une fonction / qui part du domaine des clés et renvoie un entier entre O etm — 1 de

sorte que pour les clés utilisées, les valeurs de / soient différentes.
= Soit Ul’ensemble des clés envisageables.
= I'idée fondamentale de la table de hachage est de se ramener au cas de I’adressage direct,
cad a des clés qui correspondant a des indices dans un tableau.

Soit m, entier pas trop grand (idéalement un entier de I’ordre du nombre d’éléments
d’informations que I’on compte gérer)

On se donne une fonction de hachage h :
h:U—-{0,....,m-1}
I

= I'idée est de ranger I'élément de clé k non pas dans kye

Univers U des clés

une case de tableau t[k], comme dans I’adressage direct ' ko
(cela n’a d’ailleurs aucun sens si k n’est pas un entier) ,

mais dans t[h(k)].

LT T

0
h(ks)

h(ky)

h[}\‘u]

m—1

19

FONCTIONNEMENT DES DICTIONNAIRES

Valeurs
hachées Table de
5 (valeurs hachage
Cles comprises
Fonction entre 0 et
m-1
kl de hachage
T h(kl) vl
_——— h(k2 va
k2 (k2)
w o —nee | va [N Colision
7 __— =h&$
k4
m-1

FONCTIONNEMENT DES DICTIONNAIRES

Table de hachage pour les dictionnaires
A la création d’un dictionnaire,
* une fonction de hachage h est choisie
= et un tableau de taille m est créé.
Chaque élément de ce tableau sera nommé alvéole.
= A chaque insertion d’un couple clé-valeur, h(k) est calculée.
La valeur obtenue est comprise entre 0 et m-1.
= Une 1% approche serait de placer le couple-clé, valeur dans I’'alvéole

mais le tableau est de taille limitée. P :)
* Univers U des clés . —

=> Il y a aura donc forcément des collisions : | e \
plusieurs clés auront nécessairement les mémes | ki =1 @
valeurs de hachage. T

20

FONCTIONNEMENT DES DICTIONNAIRES

Résolution par chainage
(utilisation d’une liste chainée)

— k2 |v2 -

— k3 |v8 |

G]

Valeurs
hachées Table de
S (valeurs hachage
e comprises
Fonction entre 0 et
m-1
kl de hachage
e]
——— h(k2
k2 (k2)
k3 _—— hk3
=h(k4)
k4
m-1

FONCTIONNEMENT DES DICTIONNAIRES

Table de hachage pour les dictionnaires — Gestion des collisions

= Approche choisie pour gérer des collisions inévitables : Résolution par chainage

Placer dans les alvéoles des pointeurs (ie des adresses) vers des listes chainées

dans lesquelles les couples-clés, valeurs sont ajoutés ou supprimés au fur et a mesure

des actions effectuées sur le dictionnaire

Univers U des clés . —

ko o =
\ ky——0

k3 e [=

Kois=)

FLHL LT

21

FONCTIONNEMENT DES DICTIONNAIRES

Table de hachage pour les dictionnaires — Gestion des collisions
= Approche choisie pour gérer des collisions inévitables : Résolution par adressage ouvert

On cherche & calculer une autre place libre ou la 1°* place libre qui suit.
La position de ces cases est déterminée par une méthode de « sondage ».

Lors d'une recherche, si la case obtenue par hachage direct ne permet pas d'obtenir la bonne
clé, une recherche sur les cases obtenues par une méthode de sondage est effectuée jusqu'a
trouver la clé, ou non, ce qui indique qu'aucune clé de ce type n'appartient a la table.

Méthodes de sondage courantes :

= le sondage linéaire :l'intervalle entre les cases est fixe, souvent 1. on parcourt les alvéoles
successivement jusqu'a ce qu'on en trouve une vide. On revient au début de la table sila fin a
été atteinte.

= le sondage quadratique :l'intervalle entre les cases augmente linéairement (les indices des

cases augmentent donc quadratiquement), ce qui peut s'exprimer par la formule :
h(k) = k + i2
= le double hachage :1'adresse de la case est donnée par une deuxiéme fonction de hachage
ou hachage secondaire. @

FONCTIONNEMENT DES DICTIONNAIRES

Résolution par adressage ouvert

Valeurs (sondage)
hachées Table de
Cles (valeu]fs hachage
Fonction ente0et ° kv [
x] _ dehachage m-1
T h(kl) x| w1 - |
k2 . h(k2) | -
3 (%8 | []
. SRCACE
ks —

Sondage linéaire (intervalle de 2) ©

22

FONCTIONNEMENT DES DICTIONNAIRES

Table de hachage pour les dictionnaires
= Lorsque le nombre de clés augmente fortement,

la table est alors redimensionnée avec un nouveau choix de fonction de hachage et de m.

* La performance d’une table de hachage dépend de la fonction de hachage choisie.

En général, on cherche a limiter le nombre de collisions tout en optimisant le taux
d’occupation des alvéoles.

=> le taux ou le facteur de remplissage :
a=n/m
ou n est le nombre de clés (ou de couples clés-valeurs)
et m la longueur du tableau.

= En Python, les clés peuvent étre de type entier, flottant, chaines de caractéres (mais surtout
pas de types mutables tels que des listes)

Dans la pratique, les clés transmises sont transformées en entier si elles ne sont pas de type
entier puis la valeur de hachage est calculée sur cet entier (ce fonctionnement est également
appliqué pour la compression et le cryptage). On effectue donc un prétraitement pour
obtenir un entier.

FONCTIONNEMENT DES DICTIONNAIRES

Exemples classiques de fonctions de hachage :
* Division h (k) = k%m

La qualité du hachage dépend fortement de la valeur de m choisie si les clés ont une
répartition non aléatoire. En pratique, on choisit des nombres premiers loin de puissances
de 2.

= Multiplication h(k) = partieEntiere (m * frac(k * c))

Dans la méthode de multiplication, on multiplie la clé k par un nombre réel constant c
dans la plage 0 < c <1 et on extrait la partie fractionnaire de k * c¢ . Ensuite, on multiplie
cette valeur par la taille de la table m et prend la partie entiére.

Il faut cependant toujours choisir une constante, qui peut faire varier l'efficacité de la
compression. Knuth suggére que pour c =(V5-1)/2, la fonction marchera bien dans la
plupart des cas.

23

EXERCICES RPPLICATIFS

Exercice 6

= Dans cet exercice, les clés sont de type chalnes de caractéres. On cherche a transformer ces
clés en s’appuyant sur le codage ASCII de chaque caractére.
Pour obtenir le code ASCII associé a chaque caractére, Python propose la fonction ord.

ord(c): renvoie le nombre entier représentant le code Unicode du caractére passé en parameétre.
Exemples : ord('a") renvoie le nombre entier 97
ord('€'") (symbole euro) renvoie 8364.

1- Ecrire une fonction transforme_chaine_entier(chaine) qui prend en parameétre une chaine
de caracteres chaine et retourne la valelur :
P

Z ord(chainel[i]) * 256¢
i=0
Exemples d’exécution :
print ("test devient ", transforme_chaine_entier("test"))
affiche test devient 1953719668
print ("dico devient ", transforme_chaine_entier("dico"))
affiche dico devient 1868786020 @

EXERCICES RPPLICATIFS

= Les entiers obtenus sont donc de trés grande taille.
= Il va donc falloir les transformer pour les stocker dans la table de hachage.
2- Ecrire la fonction hachage(nb, m) telle que :
hachage :nb -> nb%m avec m qui correspond a la longueur de la clé de hachage.

= Appliquées aux 2 valeurs entieres précédentes, pour une clé de longueur 256, on
obtient respectivement: 116 et 100

3- Ecrire et tester hachage mult (nb, m) qui réalise cette fonction de hachage par
multiplication (cf planche 43):

Hachage mult : nb , k -> partieEntiere (m * frac(k * c))
Exemple d’exécution :
print ("test devient aprés hachage multiplication", hachage_mult(nbtestl, longueur_cle , c))
#test devient aprés hachage multiplication 80

dico devient aprés hachage multiplication 15 @

24

EXERCICE

import math
pre traitement
def transforme_chaine_entier(chaine) :
transforme_chaine_entier(chaine :str) -> int
retourne un entier resultat correspondant & la chaine de caractéres chaine
lgchaine = len(chaine)
resultat = @
for i in range(©,lgchaine):
nb = ord(chaine[i]) # nb prend la valeur ascii du ieme caractere de la chaine
resultat = nb*256*%*i + resultat
return resultat

o
def hachage(valeur_a_hacher , m):
hachage(valeur_a_hacher : int, m:int) -> int
retourne un entier correspondant a la valeur de hachage permettant d'obtenir

return valeur_a_hacher%m

fonction hachage multiplication
def hachage_mult(valeur_a_hacher , m, c):
hachage_mult(nb : int, m:int , ¢ :float) -> int
retourne un entier correspondant a la valeur de hachage
res = math.floor(m* ((valeur_a_hacher * ¢c)%1))
return res
ongueur_cle = 256
nbtestl = transforme_chaine_entier("test")
print ("test devient ", nbtestl)
print("test devient aprés hachage" ,hachage(nbtestl,longueur_cle))
¢ = (math.sqrt(5)-1)/2
print ("test devient aprés hachage multiplication"”, hachage_mult(nbtestl, longueur_cle , c)) #test devient
nbtest2 = transforme_chaine_entier("dico")
print ("==dictionnaire devient ", nbtest2)
print("==dictionnaire devient aprés hachage" ,hachage(nbtest2,longueur_cle))
print("dictionnaire devient aprés hachage multiplication™ , hachage mult(nbtest2,longueur cle , c))

25

EXERCICES RPPLICATIFS

Implémentation d’une table de hachage

On souhaite créer une table de hachage permettant de manipuler des données issues d’un
fichier qui recense les capitales des pays du monde entier. Cette table doit donc traiter des clefs
de type str (le nom du pays) et des valeurs de type str (le nom de la capitale).

B pays,capitale
Les données concernant les pays du monde Abkhazia, Sukhumi

et leur capitale se trouvent Afghanistan, Kabul

dans le fichier capitalesMonde.csv dont le format est le g 2¥r0t1rt and Dhekelia, Episkopi Cantonment
Albania,Tirana

Algeria,Algiers

BAmerican Samoa,Pago Pago
Andorra, Andorra la Vella
Angola, Luanda

Anguilla, The Valley

Antigua and Barbuda,St. John's
Argentina,Buenos Aires
Armenia, Yerevan
Aruba,Oranjestad

Ascension Island, Georgetown
Australia,Canberra
Austria,Vienna
RAzerbaijan,Baku

Bahamas, Nassau
Bahrain,Manama

EXERCICES RPPLICATIFS

Implémentation d’une table de hachage

Ecrire une fonction recup_Donneescsv(fichier, separateur) qui importe les données d’un
fichier dont le chemin est passé en parametre.Cette fonction renvoie une liste de

= En-téte de la fonction :

def recup_Donneescsv(fichier, separateur=","):

Anguilla, The Valley
Antigua and Barbuda,St. John's

nnn

recup_Donneescsv(fichier : str, separateur: str):Ist

d

entrees: fichier, chaine qui correspond au chemin du fichier a ouvrir Bortcia Vs

Azerbaijan, Baku
Bahamas, Nagsau

Ll

separateur, chaine qui indique le separateur de colonnes. Par detaut™,

sortie : liste de tuples contenues dans le fichier

A [('Abkhazia', 'Sukhumi'), ('Afghanistan', 'Kabul'), ('Akrotiri and Dhekelia', 'Episk

moa', 'Pago Pago'), ('Andorra', 'Andorra la Vella'), ('Angela', 'Luanda'), ('Anguill
s Aires'), ('Armenia', 'Yerevan'), ('Aruba', 'Oranjestad'), ('Ascension Island', 'Ge
Baku'), ('Bahamas', 'Nassau'), ('Bahrain', 'Manama'), ('Bangladesh', 'Dhaka'), ('Bar
', 'Belmopan'), ('Benin', 'Porto-Novo'), ('Bermuda', 'Hamilton'), ('Bhutan', 'Thimph
Sarajevo'), ('Botswana', 'Gaborone'), ('Brazil', 'Brasilia'), ('British Virgin Islan
'Burkina Faso', 'Ouagadougou'), ('Burundi’', 'Bujumbura'), ('Cambodia’, 'Phnom Penh')
yman Islands', 'George Town'), ('Central African Republic', 'Bangui'), ('Chad', "N'D
lying Fish Cove'), ('Cocos (Keeling) Islands', 'West Island'), ('Colombia', 'Bogota’

'), ('Croatia', 'Zagreb'), ('Cuba', 'Havana'), ('Curagao', 'Willemstad'), ('Cyprus', @

EXERCICES RPPLICATIFS

Implémentation d’une table de hachage : fonction recup_Donneescsv(fichier, separateur)

def recup_Donneescsv(fichier, separateur=","):

recup_Donneescsv(fichier : str, separateur: str):lst
entree : fichier, chaine qui correspond au chemin du fichier a ouvrir

separateur, chaine qui indique le separateur de colonnes. Par defaut ","
sortie : liste de tuples contenues dans le fichier

ouverture du fichier

with open(fichier, "r", encoding='utf-8') as fic:
listeTuples = list()
entete = fic.readline().split(separateur)

for ligne in fic:
donneesPays = ligne.split(separateur)

listeTuples.append((donneesPays[@].strip(), donneesPays[1].strip())) # (nomPays,nomCapitale)

return listeTuples

(=)

EXERCICES RPPLICATIFS

Implémentation d’une table de hachage

= Ecrire une fonction créer_TableHachage(liste, taille_table, fonction_hachage) qui
renvoie une table de hachage (liste contenant des listes) remplie a ’aide d’une liste de
tuples liste, passée en parameétre en utilisant la fonction de hachage dont le nom est passé
en parametre.

[
ragao', 'Willemstad')], [1, [1, [1, [1, [('Turkey', 'Ankara')],
'Austria’, 'Vienna')], [('Bahamas', 'Nassau')], [1, [1, [1, [1,
o e Bl [0 Ul B0 Al T35 0 1Ts Tk B15 W 105 Uk T 1l
(1, [1, [1, [('Slovenia’, *Ljubljana’)], (1, [1, (1, (I, [1, [1, [
n'), ('Wales', 'Cardiff')], [], [('Mozambique', 'Maputo')], []

]
[, 00, 00, 00, 00, 00, 00, 00, 00, 00, 10, 10, 00, 11, 1] [j
(1, [1, [1, [1, [1, [(‘Christmas Island', 'Flying Fish Cove')

LI L (L [
> 1 [, 11 [
L L (L L [

110, 0, 1,
[1, {1, [1, 1, [1, [1, [("French Polynesia’, ‘Papeete’)]
(L 0L 0L 0L 00, 01, 00, 01, 10, 00, 1 [0, 1, [0, 0
(L 1L (1 {1, (1 {1, {1, {1, {1, [(*Jamaica’, 'Kingsto

I, [
5,]
i, 1

27

EXERCICES RPPLICATIFS

Implémentation d’une table de hachage

def creer_TableHachage(liste, taille_table, fonction_hachage):
tableHachage = [[] for i in range(taille_table)]
for cle, val in liste:
cle_nb = transforme_chaine_entier(cle)
valeurHachage = fonction_hachage(cle_nb)
tableHachage[valeurHachage].append((cle, val))
return tableHachage

EXERCICES RPPLICATIFS

Implémentation d’une table de hachage

Ecrire une fonction obtenir_Valeur(cleCherchee, tableHachage) qui permet de récupérer la

valeur de la clé cle_Cherchee al’aide de la table de hachage tableHachage.

28

EXERCICES RPPLICATIFS

Implémentation d’une table de hachage

def obtenir_Valeur(cleCherchee, tableHachage):
' index = hachage_d(transforme_chaine_entier(cleCherchee))
element = tableHachage[index]
for cle, val in element:
if cle == cleCherchee:
return val
return None

EXERCICES RPPLICATIFS

Implémentation d’une table de hachage

= Créer I’ensemble de toutes les valeurs de hachage (indice des alvéoles) de la table pour
lesquelles il existe une valeur, puis parcourir la table a partir de cet ensemble.
Les capitales apparaissent-elles dans un ordre quelconque ?

= Déterminer le nombre d’alvéoles utilisées si on utilise hachage_d ?

= Faire apparaitre les sous-listes de la table s’il y en a (méme valeur de hachage obtenue).

29

EXERCICES RPPLICATIFS

test des fonctions sur le fichier capitales.csv
listeTuples = recup_Donneescsv('capitalesMonde.csv')
print(listeTuples)

t_hachage = creer_TableHachage(listeTuples, TAILLE_TABLE, hachage_d)
print(t_hachage)

nomPays = input("de quel pays voulez vous la capitale?")
print(nomPays , " a pour capitale : ", obtenir_Valeur(nomPays, t_hachage))

indicesAlvecles = []
for i, e in enumerate(t_hachage):
if len(e) > 1:
print("Pays stockés avec la meme valeur de hachage :
if &

, @) #guestion 8
indicesAlveoles.append(i)

print(indicesAlveoles, len(indicesAlveoles))

print("nombre de cles dans la table de hachage--> ", len(indicesAlveoles))

for k in indicesAlveoles:
print(k, t_hachage[k])

EXERCICES APPLICATIES

Exercice 7 : Algorithme de compression LZ78

= I’algorithme de compression Lempel-Ziv '8, est I'un des tout premiers algorithmes
de compression génériques.

= I1 a rapidement été adopté dans de nombreux logiciels commerciaux et libres.
= Il est par exemple a la base du format de compression zip.
= Il s’agit d’un algorithme basé sur un dictionnaire :

les suites de symboles dans la source sont encodées par un dictionnaire
dynamique, qui est rempli au fur et & mesure que I’on parcourt le texte.

30

EXERCICE

= Exercice : Algorithme de compression LZ18 - Principe de la compression
abracadabrarabarabaran

Entrée (Clé) Index (valeur) Chaine a ajouter
(1] 0 =

code :“

®

EXERCICE

= Exercice : Algorithme de compression LZ78 — Principe de la compression

a|bracadabrarabarabaran

Entrée (Clé) Index (valeur) Chaine a ajouter
(1] 0 =
a 1 0,a
code :‘0,a|’

®

31

EXERCICE

= Exercice : Algorithme de compression LZ18 - Principe de la compression

a|b|racadabrarabarabaran

Entrée (Clé) Index (valeur) Chaine a ajouter
(1) 0 -
a 1 0,a
b 2 0,b

code :‘0,a|0,b|’

®

EXERCICE

= Exercice : Algorithme de compression LZ78 — Principe de la compression

a|b|r|acadabrarabarabaran

Entrée (Clé) Index (valeur) Chaine a ajouter
(1] 0 -
a 1 0,a
b 2 0,b
3 o,r

Y

code :‘0,a|0,b|0,x|’

®

32

EXERCICE

= Exercice : Algorithme de compression LZ18 - Principe de la compression

a|b|r|ac|adabrarabarabaran
Chaine a ajouter

Entrée (Clé) Index (valeur)
(1] 0 -
a 1 0,a
b 2 0,b
r 3 0,r
ac 4 1,c (1 correspond a

I'index de a)

code :‘0,a|0,b|0,xr|1,c|’

®

EXERCICE

= Exercice : Algorithme de compression LZ78 — Principe de la compression

a|b|r|ac|ad|abrarabarabaran
Chaine a ajouter

Entrée (Clé) Index (valeur)
(1] O -
a 1 0,a
b 2 0,b
r 3 0,r
ac 4 l,c
ad 5 1d

code :‘0,a|0,b|0,x|1,c|’

®

33

EXERCICES APPLICATIFS

= Exercice : Algorithme de compression LZ18 - Principe de la compression

a|b|r|ac|ad|ab|ra|rab|ar|aba|ran|

Entrée (Clé) Index (valeur) Chaine a ajouter
(1) 0 -
a 1 0,a
b 2 0,b
Y 3 o,r
ac 4 l,c

ad 5 1,d
ab 6 1,.b
ra 7 3,a
rab 8 7,b
ar 9 1,r
aba 10 6,a
ran 11 7,n

code :0,a]0,b|0,r|1,c|1,d|1,b|3,a|7,b|1,r|6,a|T,n|’

®

EXERCICES APPLICATIFS

= Exerxcice : Algorithme de compression LZ78

1- Compression
Créer la fonction compressionLZ8(texte) qui effectue la compression du texte
passé en parameétre et retourne le code, ainsi que le dictionnaire.

2- Décompression

L'algorithme de décompression fonctionne en sens inverse.

A partir de la liste alternée, appelée code, il faut reconstruire le dictionnaire au fur et
a mesure.

Créer la fonction decompressionLZ78(code, dico) qui effectue la décompression.

Astuce : Pour faciliter la programmation, on peut inverser le dictionnaire utilisé pour
la compression : les valeurs deviennent clés et les clés deviennent valeurs.

34

EXERCICES APPLICATIFS

f compresserl(texte, code, indice,dico):
- indice<len(texte)

len(texte)
= indice<n and ch + texte[indice] dico:
ch += texte[indice]
indice +=n
f indice<n:
lg dico =len(dico)
car =texte[indice]
chaine_a_ajouter= ch + car
dico[chaine_a ajouter] = 1lg dico
code += (str(dico[ch]) +'*' + car + '|")

code, indice+l

f compressionlZ78(texte):

code, i = compresserl (texte,code,i,dico)
code, dico

t (compressionlLZ78(
(compressionlZ78(

EXERCICES APPLICATIFS

decompressionlZ78(code, dico):

dico_inverse = {v: k for k, v in dico.items{)}}
texte =
(code[-1] == "|"):
code = code[@:-1]
les codes = code.split("|")
elt in les_codes :
E = elt.split(',")
debut= dico_inverse[int(E[@].strip())]
texte += debut + E[1]
texte

compressionlLZ78

({
decompressionlZ78(res,dico)

(res)

35

