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Un algorithme de classification est un algorithme qui permet d’associer à chaque donnée 
une classe (une variété de fleur, un chiffre, ...)

2 types d’algorithmes de classification :

• Classification supervisée : on connaît les classes de certaines données (données 
d’entraînement) qui permettent de prédire la classe d’une nouvelle donnée.
Exemple : algorithme des k plus proches voisins (k-nn)

• Classification non supervisée : aucune classe n’est connue (pas de données 
d’entraînement).
Exemple : algorithme des k-moyennes (k-means)
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On ne dispose pas toujours d’un jeu de données étiquetées, c’est à dire des échantillons
dont on connaît la classe. 
 certaines algorithmes d’apprentissage automatique
développent une approche non supervisée. 

Principe : 
k-means est un algorithme non supervisé de classification (ou clustering). 
Il permet de regrouper en clusters distincts les observations du jeu de données (data set).
=> les données similaires se retrouveront dans un même cluster. 
Par ailleurs, une donnée du jeu de données ne peut se retrouver que dans un cluster à la fois 
(exclusivité d’appartenance). Une même observation, ne pourra donc, appartenir à 2 clusters 
différents.

Notion de similarité
Pour pouvoir regrouper un jeu de données en cluster distincts, l’algorithme K-Means a besoin d’un 
moyen de comparer le degré de similarité entre les différentes données. 
 2 données qui se ressemblent, auront une distance de dissimilarité réduite, 
alors que 2 objets différents auront une distance de séparation plus grande.
Pour déterminer ces distance, on utilise classiquement, et suivant les données à analyser, 
la distance euclidienne, de Manhattan, de Tchebychev, …
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Principe de l’algorithme

Etape 1 Etape 2 Etape 3
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Principe de l’algorithme –
Retour à l’étape 2 calculer_centres plus_proche
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Principe de l’algorithme
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Algorithme k-means
Entrées :

k : nombre de clusters à former
X : jeu de données (Data Set) 

DEBUT
Choisir aléatoirement k points. Ces points sont les centres des clusters initiaux (nommés 

centroïdes/isobarycentres).
REPETER

Affecter chaque point au groupe dont il est le plus proche du centre
Recalculer le centre de chaque cluster
Modifier le centroïde

JUSQU‘A CONVERGENCE

FIN ALGORITHME

“point”= point au sens “donnée/data” qui se trouve dans un espace vectoriel de dimension . 
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Avantages de l’algorithme :
• L’algorithme de k-means est très populaire car facile à comprendre et à mettre en œuvre
• Simple et rapide
• Applicable à des données de grandes tailles, et aussi à tout type de données (mêmes 

textuelles), en choisissant un calcul de distance adéquat.

Inconvénients de l’algorithme :
• Le nombre de classes (k) doit être fixé au départ,
Un mauvais choix de k peut conduire à des résultats peu 
pertinents.
• Le résultat dépend de la définition initiale des centres des classes,
• Les clusters sont construits par rapports à des objets inexistants (les milieux)

 L’initialisation de l’algorithme et le choix de la distance peuvent influer sur le résultat.
L’absence d’échantillons de vérification fait qu’il est parfois plus difficile d’évaluer la performance 
de ces algorithmes.
Mesure de la qualité des réponses : On peut utiliser une base de tests, pour laquelle la 
classification des éléments est déjà connue et comparer cette classification avec celle fournie
par l’algorithme.
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Principe de l’algorithme

Objectif : partitionner X en classes X1, ..., Xk .

1- Soient c1, ..., ck, vecteurs choisis aléatoirement qui représentent les centres initiaux.

2- Associer chaque donnée x à la classe ci telle que dist( x, ci ) soit minimale.

3- Recalculer les centres des classes ci = i .

4- Si les centres ont changé, revenir à l’étape 2.

Attention : 
Dans l’algorithme des k-moyennes, k est le nombre de classes,
alors que dans l’algorithme des plus proches voisins, k est le nombre de voisins.



11

Écrire une fonction dist(x, y) renvoyant la distance euclidienne de 2 vecteurs x, y passés en 
paramètres

def plus_proche( x , lesCentres ):

def dist( x, y ):

Écrire une fonction plus_proche(x, centres) renvoyant le numéro i (indice) de la classe la plus 
proche de x parmi centres, c’est-à-dire la classe telle que la distance de x à centres[i] soit 
minimale
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Écrire une fonction calculer_classes( X ,  centres , k ) renvoyant une liste de classes telle 
que classes[i] soit la liste des données de X dont le centre le plus proche est centres[i].

def calculer_classes( X, lesCentres, k ):
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Le centre (ou isobarycentre ou centroide ) d’un ensemble de vecteurs x1, . . . , xn est défini par 

le vecteur :    = 
ଵ

௡ 𝑖
௡
௜ୀଵ

Écrire une fonction centre(X) renvoyant le centre de la liste de vecteurs X.

def centre( X ):
# determination du barycentre d'un ensemble X de vecteurs
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Principe de l’algorithme

On utilise une liste classes de taille k telle que classes[i] soit la liste des données de X associées 
à la classe i.

Écrire une fonction calculer_centres( classes ) renvoyant la liste des centres de chaque classe.

def calculer_centres(classes, k):
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Écrire une fonction kmeans(X, k, centres) appliquant l’algorithme des k-moyennes à X en 
partant des centres et renvoyant la liste des classes obtenues.

def kmeans(X, k, centres):
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Choix des centres initiaux 

L’inertie du clustering obtenue à la fin de l’algorithme dépend des centres initiaux.

Il y a plusieurs manières pour les définir :
• Aléatoirement dans l’espace.
• Aléatoirement parmi les données.
• Lancer l’algorithme plusieurs fois avec des centres initiaux différents et conserver la 

meilleure solution (celle d’inertie minimale).
• Autres méthodes : k-means++...
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Soientt X un ensemble de données et un entier k.
Dist : une fonction de calcul de distance, par exemple la distance euclidienne.

Définitions :
La variance (ou moment d’inertie) V( X ) d’un ensemble de vecteur X est définie par : 

V ( X ) dist(x,  )2  
 

x X
La variance mesure la variation par rapport à la moyenne : 

Plus V( X ) est petit, plus les vecteurs de X sont proches du barycentre .

On cherche à déterminer un partitionnement (clustering) de X en k sous-ensembles 
X1, . . . , Xk (classes ou clusters) en minimisant l’inertie I :

I = 𝑖
௡
௜ୀଵ   

)
= On veut associer à chaque donnée x une classe k telle que l’inertie I soit minimale.

Plus l’inertie est petite, plus les données sont proches du centre de leur classe et plus le 
partitionnement est bon.
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Créer une fonction inertie( classes, centres, k ) qui calcule l’inertie 

def inertie( classes, centres, k ):
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Comment choisir le nombre k de classes ?

On peut calculer l’inertie obtenue pour différentes valeurs de k.
Cependant, plus k est grand, plus l’inertie diminue jusqu’à valoir 0 si k est égal au nombre de 
données (ce qui n’a aucun intérêt).
On choisit donc la plus grande valeur de k pour laquelle l’inertie diminue de façon significative.

• Méthode du coude (elbow method) : 
On choisit la plus grande valeur de k pour 
laquelle l’inertie diminue de façon 
significative.

• Dans l’exemple ci-contre, ci-dessous : 3 ou 4
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• Algorithme des k-moyennes : Non optimalité
L’algorithme des k-moyennes converge toujours, mais pas forcément vers un minimum 
global de l’inertie (seulement vers un minimum local).

• Algorithme des k-moyennes : Classification de nouvelles données
On peut utiliser l’algorithme des k-moyennes pour classifier une nouvelle donnée x : on 
associe x à la classe dont le centre est le plus proche de x.


