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CLASSIFICATIONS SUPERVISEE ET NON SUPERVISEE

Un algorithme de classification est un algorithme qui permet d’associer a chaque donnée
une classe (une variété de fleur, un chiffre, ...)

2 types d’algorithmes de classification :

* Classification supervisée : on connait les classes de certaines données (données
d’entrainement) qui permettent de prédire la classe d’'une nouvelle donnée.
Exemple : algorithme des k plus proches voisins (k-nn)

+ Classification non supervisée : aucune classe n’est connue (pas de données
d’entrainement).
Exemple : algorithme des k-moyennes (k-means)
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ALGORITHME DES K MOYENNES(K-MEANS

On ne dispose pas toujours d’un jeu de données etiquetées, c’est a
dont on connait la classe. Hvdaled.Da
— certaines algorithmes d’apprentissage automatique
développent une approche non supervisée. o o °

Principe :
k-means est un algorithme non supervisé de classification (ou clustering).
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Il permet de regrouper en clusters distincts les observations du jeu de données (data set).

=> les données similaires se retrouveront dans un méme cluster.

Par ailleurs, une donnée du jeu de données ne peut se retrouver que dans un cluster a la fois
(exclusivité d’appartenance). Une méme observation, ne pourra donc, appartenir a 2 clusters

différents.
Notion de similarité

Pour pouvoir regrouper un jeu de données en cluster distincts, I’algorithme K-Means a besoin d’un

moyen de comparer le degré de similarité entre les différentes données.

— 2 données qui se ressemblent, auront une distance de dissimilarité réduite,
alors que 2 objets différents auront une distance de séparation plus grande.
Pour déterminer ces distance, on utilise classiquement, et suivant les données a analyser,

la distance euclidienne, de Manhattan, de Tchebychev, ...
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ALGORITHME DES K MOYENNES(K-MEANS)
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ALGORITHME DES K MOYENNES( K-MEANS )

Principe de 1’algorithme

Etape 1

Choix initial des centres
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Données que I'on souhaite classifier
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Etape 2

Association de chaque donnée au centre le plus proche
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Etape 3

Mise a jour des centres




ALGORITHME DES K MOYENNES(K-MEANS)

Principe de l’algorithme -

Retour a 1’étave 2

Association de chaque donnée au centre le plus proche
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calculer centres

Mise a jour des centres
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Association de chaque donnée au centre le plus proche
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Association de chaque donnée au centre le plus proche
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ALGORITHME DES K MOYENNES(K-MEANS)

Principe de 1’algorithme

Frontiere de décision

r
® . /
4 ® !
.IF -
)
1)
]
@ ]
°
2 ® / ® X @
L 3 L :'
.r"'L"
J . ®
0 4 - ~
. “-
® 2
9 . X o
2 o &
=)
—d] °
-4 -3 -2 -1 0 1 2




ALGORITHME DES K MOYENNES(K-MEANS)

Algorithme k-means
Entrées:
k :nombre de clusters a former
X :jeu de données (Data Set)
DEBUT
Choisir aléatoirement k points. Ces points sont les centres des clusters initiaux (nommés
centroides/isobarycentres).
REPETER
Affecter chaque point au groupe dont il est le plus proche du centre
Recalculer le centre de chaque cluster
Modifier le centroide
JUSQU‘A CONVERGENCE

FIN ALGORITHME

“point”’ = point au sens “donnée/data’ qui se trouve dans un espace vectoriel de dimension .
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RLGORITHME DES K MOYENNES(K-MEANS)

Avantages de 1’algorithme :

« L’algorithme de k-means est trés populaire car facile a comprendre et a mettre en ceuvre

* Simple et rapide

* Applicable a des données de grandes tailles, et aussi a tout type de données (memes
textuelles), en choisissant un calcul de distance adéquat.
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Inconvénients de 1’algorithme :

* Le nombre de classes (k) doit étre fixé au départ, _ Yol b g
Un mauvais choix de k peut conduire a des résultats peu . f_ R
pertinents. b

* Le résultat dépend de la définition initiale des centres des classes,
* Les clusters sont construits par rapports a des objets inexistants (les milieux)

— L’initialisation de ’algorithme et le choix de la distance peuvent influer sur le résultat.
L’absence d’échantillons de vérification fait qu’il est parfois plus difficile d’évaluer la performance
de ces algorithmes.

Mesure de la qualité des réponses : On peut utiliser une base de tests, pour laquelle la
classification des éléments est déja connue et comparer cette classification avec celle fournie @
par l'algorithme.



ALGORITHME DES K MOYENNES(K-MEANS)

Principe de l’algorithme kmeans(X, k, centres)
Objectif : partitionner X en classes X, ..., X, .
1- Soient c, ..., ¢, vecteurs choisis aléatoirement qui représentent les centres initiaux.

2- Associer chaque donnée x a la classe c; telle que dist( x, ¢; ) soit minimale. dist(x, y)

plus _proche(x, lesCentres) calculer _classes( X, centres, k)
3- Recalculer les centres des classes ¢, = x; .

centre(X)

calculer _centres( classes )

4- Si les centres ont changé, revenir a I’étape 2.
Attention :

Dans l’algorithme des k-moyennes, k correspond le nombre de classes,
alors que dans ’algorithme des plus proches voisins, k est le nombre de voisins.
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ALGORITHME DES K MOYENNES(K-MEANS)

Ecrire une fonction dist(x, y) renvoyant la distance euclidienne de 2 vecteurs x, y passés en

ot
PATammeties def dist( x, y ):
S = 0.
for i in range( len(x) ):

s+= (x[i] - y[i])**2
return s**.5

Ecrire une fonction plus_proche(x, lesCentres) renvoyant le numéro i (indice) de la classe la

plus proche de x parmi centres, c’est-a-dire la classe telle que la distance de x a centres[i] soit
minimale

def plus proche( x , lesCentres ):
imin = ©
for i in range(len(lesCentres)):

if dist( x, lesCentres[i] ) < dist( x, lesCentres[imin] ):
imin = 1

return imin @



ALGORITHME DES K MOYENNES(K-MEANS)

Ecrire une fonction calculer classes(X, centres , k) renvoyant une liste de classes telle
que classes[i] soit la liste des données de X dont le centre le plus proche est centres[i].

def calculer classes( X, lesCentres, k ):
classes = [ [] for 1 in range(k) ]
for x in X:
indPlusProche = plus proche(x, lesCentres)
# indice du centre le plus proche
classes[ indPlusProche ].append(x)
# ajout de x a la classe possedant cet indice
return classes
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ALGORITHME DES K MOYENNES(K-MEANS)

Le centre (ou isobarycentre ou centroide ) d’un ensemble de vecteurs x,, ..., xn est défini par
__ 1
le vecteur : X=— ?21 X;

n
Ecrire une fonction centre(X) renvoyant le centre de la liste de vecteurs X.

def centre( X ):
# determination du barycentre d'un ensemble X de vecteurs
dim=0
if len(X) != o:
dim = len(X[@])
c = [0.]*dim
for x in X:
for i in range(len(x)): # pour chaque caracteristique
c[i] = c[i] + x[1i]
if len(X) == 0 :
return c
for i in range(len(c)):
c[i] = c[i] /len(X)
return c
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ALGORITHME DES K MOYENNES(K-MEANS)

Principe de ’algorithme

On utilise une liste classes de taille k telle que classes/[i] soit la liste des données de X associées
a la classe i.

Ecrire une fonction calculer centres( classes ) renvoyant la liste des centres de chaque classe.

def calculer_centres(classes, k):
centres = []
for i in range(k):
centres.append(centre(classes[i]))
return centres

(=)



ALGORITHME DES K MOYENNES(K-MEANS)

Ecrire une fonction kmeans(X, k, centres) appliquant ’algorithme des k-moyennes a X en
partant des centres et renvoyant la liste des classes obtenues.

def kmeans(X, k, centres):

centres2 = []
while ( (sorted(lesCentres)) != (sorted(centres2)) ) :
#tri sur les listes pour pouvoir utiliser ==

# while not ( np.array( sorted(lesCentres)==sorted(centres2) ).all() ):
centres2 = lesCentres
classes = calculer _classes( X, centres2, k )
lesCentres = calculer_centres( classes, k)

return classes
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ALGORITHME DES K MOYENNES(K-MEANS)

Choix des centres initiaux
L'inertie du clustering obtenue a la fin de ’algorithme dépend des centres initiaux.

I1 y a plusieurs manieres pour les définir :

« Aléatoirement dans 1’espace.

» Aléatoirement parmi les données.

» Lancer l’algorithme plusieurs fois avec des centres initiaux différents et conserver la
meilleure solution (celle d’inertie minimale).

e Autres méthodes : k-means++...
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ALGORITHME DES K MOYENNES(K-MEANS)

Soientt X un ensemble de données et un entier k.
Dist : une fonction de calcul de distance, par exemple la distance euclidienne.

Définitions :
La variance (ou moment d’inertie) V( X ) d’un ensemble de vecteur X est définie par :
V (X) = Ydist( x, x )2
xeX

La variance mesure la variation par rapport a l1a moyenne :
Plus V( X)) est petit, plus les vecteurs de X sont proches du barycentre x .

On cherche a déterminer un partitionnement (clustering) de X en k sous-ensembles
X1,...,Xk (classes ou clusters) en minimisant l’inertie I :

I=2i=, V(Xi)

= On veut associer a chaque donnée x une classe k telle que l'inertie I soit minimale.

Plus 'inertie est petite, plus les données sont proches du centre de leur classe et plus le
partitionnement est bon.
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ALGORITHME DES K MOYENNES(K-MEANS)

Créer une fonction inertie( classes, centres, k ) qui calcule l'inertie

def inertie( classes, centres, k ):
s = 0.
for i in range(k):
for x in classes[i]:
s += dist(x, centres[i])**2
return s



ALGORITHME DES K MOYENNES(K-MEANS)

Comment choisir le nombre k de classes ?

On peut calculer I'inertie obtenue pour différentes valeurs de k.

Cependant, plus k est grand, plus I’'inertie diminue jusqu’a valoir O si k est égal au nombre de
données (ce qui n’a aucun intérét).

On choisit donc la plus grande valeur de k pour laquelle I'inertie diminue de fagon significative.

e Méthode du coude (elbow method) : 1407
On choisit la plus grande valeur de k pour
laquelle I'inertie diminue de facon
significative.

120 A

100 -

inertie

. . 80
 Dansl’exemple ci-contre, ci-dessous : 3 ou 4
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ALGORITHME DES K MOYENNES(K-MEANS)

e Algorithme des k-moyennes : Non optimalité
L’'algorithme des k-moyennes converge toujours, mais pas forcément vers un minimum
global de l'inertie (seulement vers un minimum local).

» Algorithme des k-moyennes : Classification de nouvelles données
On peut utiliser 1’algorithme des k-moyennes pour classifier une nouvelle donnée x : on
associe x a la classe dont le centre est le plus proche de x.
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