Q1-Etat de la liste x dans les 2 situations

Situation 1

Sitution 2

= Nombre de tablettes /couleur : N=2

= Couleurs:

= Situation 1:

= Situation 2:

ci=0 pour le rouge, ci=1 pour le noir

x=[[01],[0,1],[L,1],[1,1]]
x=[[0,2],[1,1],[1,1]]

Q2-Fonction empile(x, i, j) prenant en parametres la liste de situations x et les indices i,j de 2
piles pi et pj tels que i#j.

La fonction retourne la liste de listes LXij des situations atteignables par empilement.

def empile(x,i,j):
""" empile (x : list, i : int, j : int)-> list
entrees : x, liste de listes(ci,hi), represente la situation initiale.
: 1, j, entiers, indices des piles que 1l'on veut empiler
sortie; LXij , liste de situations possibles apres empilement n
LXij = []
ci, hi = x[1i]
cj , hj = x[7]
if ci==cj or hi==hj : #empilement possible
reste = x[:i]+x[i+1:j]+x[j+1:]
pij = [ci,hi+hj] # pile ci sur cj (arbitrairement)
X = reste + [pij]
X.sort()
LXij.append(X)
if cil=cj: # si couleur différente => ajouter la situation avec c¢j au dessus
pji = [cj,hi+h]j] # pile cj sur ci
X = reste + [pji]
X.sort()
LXij.append(X)
return LXij

= O3 Fonction coups(x) qgui prend en parameétre une situation x (liste) et retourne une liste
def coups(x):
""" coups(x : list) -> list
entree: x, liste de liste(ci,hi), situation initiale
sortie: ensemble des situations possibles avec ttes les combinaisons d'empilement possibles

LX =[]
for i in range(len(x)):
for j in range(i+l , len(x)):
LXij = empile(x,1i,j)
for X in LXij:
if X not in LX: # On n'ajoute la situation que si elle n'a pas deja été stockée
LX.append(X)
return LX
x=1[[e,2],[0,3],[1,1],[1,2]]
lesCoupsl = coups(x)
print(lesCoupsl)
affiche [[[6, 5], [1, 1], [1, 2]], [[e, 3], [e, 4], [1, 1]], [[e, 3], [1, 1], [1, 4]],
[[e, 2], [e, 3], [1, 3]]]
x = [[e,1],[0,1],[1,1],[1,1]]
lesCoups2 = coups(x)
print(lesCoups2)
affiche [[[0, 2], [1, 1], [1, 1]], [[e, 1], [e, 2], [1, 1]], [[e, 1], [1, 1], [1, 2]],
[[e, 1], [e, 1], [1, 2]]]

= Partie 2 : Création du graphe du jeu

= Q4-Fonction init(C, N) prenant en parameétres C le nombre de couleurs et N le nombre de tablettes
par couleur et renvoyant la liste x0 situation initiale du jeu triée

def init(C,N):
""" init(C : int, N: int) -> list
entrees : C, entier positif, nombre de couleurs differentes
: N, entier positif, nombre de tablettes par couleur
sortie : x@, liste de listes (ci,hi) correspondant a la situation initiale

x0 = []
for ¢ in range(C):
for _ in range(N):
x0.append([c,1])
x0.sort() # Inutile compte tenu de la programmation avec c croissant

return x0
test = init(3, 4)

print(test)
affiche [[o0, 1], [e, 1], [e, 1], [e, 1], [1, 1], [1, 1], [1, 1], [1, 1], [2, 1], [2, 1]

» [2, 1], [2, 1]]
©

= Q5-Fonction récursive Tuple(L) réalisant cette transformation de liste en Tuple.

def Tuple(L):

if L==[]:
return ()

elif type(L[©])!=1list:
return tuple(L)

else:
Res = []
for 1 in L:

Res.append(Tuple(l))

return tuple(Res)

= Q6- Fonction graphe(C , N) réalisant le parcours en largeur des possibilités.

from collections import deque
def graphe(C,N):
""" graphe(C : int ,N:int)-> dict
entrees : C, entier positif, nombre de couleurs differentes
: N, entier positif, nombre de tablettes par couleur
sortie : G, dictionnaire, representant le graphe :clé : tuple de la situation,
valeur :liste de liste de situation atteignables
constitution de la situation initiale
x0 = init(C,N)
G = {} # initialisation du dictionnaire G qui représente le graphe
file = deque()
file.append(x0) # initialisation de la file avec la situation initiale x©
while len(file) != 0:
x = file.popleft() # recuperation du ler element de la file
Cle = Tuple(x) # génération de la cle sous forme de tuple
Lc = coups(x) # recuperation de la liste des situations atteignables depuis x
Valeur = Lc
G[Cle] = Valeur # ajout dans le graphe du couple clé, valeur
#ajout ds la file des differentes situations(si pas deja été stockées)pr traitt ultérieur
for ¢ in Lc:
if Tuple(c) not in G:
file.append(c)

return G

Q1T-
N1
N2

len(Graphe)

Que représentent N1 et N2 ?

sum([len(Graphe[x]) for x in Graphe])

N1 :nombre de sommets (12 sur ’exemple)

N2 : nombre d’arétes

Q8- Remplissage tableau :

(16 sur I’exemple)

Arétes

Temps (s)

Sommets

Arétes

Temps (s)

Sommets

Arétes

Temps (s)

Sommets

Arétes

Temps (s)

2,1.10°5

1,1.10°°

2,6.10°5
23
48

9,1.10

8,0.10°
12
16
8,8.10°
92
234
3,9.103
128
3040
1,6

1,6.10-5
43
90
1,0.103
696
2832
1,2

Sommets

2,9.10°5
133
386

2,8.102
4220

23 481
6560

= Partie 2 : Graphe biparti

Q9- Fonction sommets_12(G,C,N) prenant en argument le graphe G, N et C, et retournant les 2
Tuples des sommets S1 et S2 des joueurs J1 et J2

Question 9 - sommets 12
def sommets 12(G, C, N):

S1 =[]
S2 = []
n = N*C

for e in G:
if len(e)%2 == n%2:
S1.append(e)
else:
S2.append(e)
return tuple(S1),tuple(S2) # S1 et S2 déja Tuples, donc Tuples inutile

Q1l0- Créer les Tuples Sl et S2 dans le cas C=N=2.

Question 10 - Création des sommets S1 et S2
C,N = 2,2

Graphe = graphe(C , N)

S1,S2 = sommets_12(Graphe , C , N)

Q11- Pour C=N=2, et en prenant a chaque fois le premier successeur identifié dans le graphe,
afficher une partie et préciser le joueur gagnant

C,N = 2,2
Graphe = graphe(C,N)
x0 = init(C,N)
Depart = x0
succ = x0
Joueur =1
print("Joueur:",Joueur)
print("Jeu:",succ)
L _succ = Graphe[Tuple(succ)]
while len(L_succ)>0:
if len(L_succ) > 0:
succ = L_succ[0]
Joueur = 3 - Joueur
print("Joueur:",Joueur)
print("Jeu:",succ)
L _succ = Graphe[Tuple(succ)]

Détermination des positions gagnantes

Positions

2b 2e 3a 3b pas gagnantes car pas de successeurs

2a 2c 2d gagnantes car au moins un successeur n'est pas gagnant
la et 1d pas gagnants car tous les successeurs sont gagnants (2a)
l1b gagnant car au moins un successeur pas gagnant (2b)

lc gagnant car au moins un successeur pas gagnant (2e)

0 gagnant car au moins un successeur pas gagnant (la et 1d)

Finalement, les positions gagnantes sont: 0 1b 1lc 2a 2c¢c 2d!!

Q13-Fonction est_gagnante(G,x) prenant en argument le graphe du jeu et la position x (liste ou
Tuple) et renvoyant le booléen True si la position est gagnante pour le joueur qui y joue, et False
sinon

Version 1: On vérifie que tous les successeurs sont gagnants
Pour gagner du temps, on s'arrét dés qu'un successeur pas gaghant a été trouvé

def est gagnante(G,x): # x liste ou Tuple
L succ = G[Tuple(x)]
if len(L_succ) ==
return False # Non gagnant
else: # Tous les successeurs sont gagnants
Tous_Gagnants = True
for succ in L_succ: # succ est une liste
Tous_Gagnants = Tous_Gagnants and est gagnante(G,succ)
if Tous_Gaghants == False: # gagne du temps
break # Position gagnante
return not(Tous_Gagnants) # Position pas gagnante

Q13-Fonction est_gagnante(G,x) prenant en argument le graphe du jeu et la position x (liste ou

Tuple) et renvoyant le booléen True si la position est gagnante pour le joueur qui y joue, et False
sinon

Version 2: On cherche un successeur pas gagnant
Cela revient au méme, mais c'est rédigé un peu autrement

def est gagnante(G,x): # x liste ou Tuple
L succ = G[Tuple(x)]
if len(L_succ) ==
return False # Pas gagnant
else: # Aucun successeur pas gagnhant
Res = False
for succ in L_succ: # succ est une liste
if not est gagnante(G,succ): # Un pas gagnant trouvé
Res = True # Position gagnante
break # Gagnhe du temps
return Res

» Ql14- Mettre en place une fonction dico_gagnant(G) dont les clés sont les positions du graphe
et les valeurs, le booléen True ou False indiquant si la position est gagnante ou non.

def dico _gagnant(G):
dico = {}
for x in G:
dico[x] = est gagnante(G,x)
return dico

C,N = 2,2

Graphe = graphe(C,N)

x0 = init(C,N)

dico g = dico_gagnant(Graphe)

Statut _x0 = dico g[Tuple(x9)]

print("Le joueur 1 dispose d'une position gagnante ?",Statut x@0)

"'' Résultat
Le joueur 1 dispose d'une position gagnante ? True

= Q15- Fonction dico_gagnant_opt(G) renvoyant le dictionnaire des états gagnants des
positions du graphe avec mémoisation
def dico _gagnant opt(G):
def rec(G,x): # Programmé pour que x soit un Tuple (*)
if x in dico: # Nouveau
return dico[x] # Nouveau
else: # Nouveau
if len(x) == 0:
dico[x] = False # Nouveau
return False
else:
L succ = G[x]
Res = False
for succ in L_succ:
if not rec(G,Tuple(succ)): # (*) x est un Tuple
Res = True
break
dico[x] = Res # Nouveau
return Res
dico = {}
for x in G:
dico[x] = rec(G,x) # x est un Tuple
return dico

» Q17- Mettre en place le code nécessaire et remplir le tableau proposé

print("Joueur disposant d'une position gagnante au départ: ")

Cmax = 3 ''' Résultats
Nmax = 3 N=1 2 3 4
C=z1 2121
Titre = " N=" C=21122
for N in range(1,Nmax+1): C=31211
Titre += str(N) + " "
print(Titre) N=1 2
C=121
for C in range(1l,Cmax+1): C=2 11
Ligne = 'C=" + str(C) + " " C=3 1 2
for N in range(1,Nmax+1): C=4 1 1
G = graphe(C,N)
x@ = init(C,N) Soit par reconstruction
dico_g = dico gagnant(G) N=1 2 3 4
Statut _x0@ = dico _g[Tuple(x0)] C=1 2121
if Statut xe: C=2 1122
Ligne += "1 ° C=31211
else: C=4 1 1

Lighe += '2 '
print(Ligne)

