
 Nombre de tablettes /couleur : N=2

 Couleurs : ci=0 pour le rouge, ci=1 pour le noir

 Situation 1: x = [[0,1] , [0,1] , [1,1] , [1,1]]

 Situation 2: x = [[0,2],[1,1],[1,1]]

2

Situation 1 Sitution 2

Q1-Etat de la liste x dans les 2 situations

Q2-Fonction empile(x, i, j) prenant en paramètres la liste de situations x et les indices i,j de 2
piles pi et pj tels que i≠j.

La fonction retourne la liste de listes LXij des situations atteignables par empilement.

3

def empile(x,i,j):
""" empile (x : list, i : int, j : int)-> list

entrees : x, liste de listes(ci,hi), represente la situation initiale.
: i, j, entiers, indices des piles que l'on veut empiler

sortie; LXij , liste de situations possibles après empilement """
LXij = []
ci , hi = x[i]
cj , hj = x[j]
if ci==cj or hi==hj : #empilement possible

reste = x[:i]+x[i+1:j]+x[j+1:]
pij = [ci,hi+hj] # pile ci sur cj (arbitrairement)
X = reste + [pij]
X.sort()
LXij.append(X)
if ci!=cj: # si couleur différente => ajouter la situation avec cj au dessus

pji = [cj,hi+hj] # pile cj sur ci
X = reste + [pji]
X.sort()
LXij.append(X)

return LXij

 Q3 Fonction coups(x) qui prend en paramètre une situation x (liste) et retourne une liste
de listes LX de toutes les situations différentes atteignables depuis x.

4

def coups(x):
""" coups(x : list) -> list
entree: x, liste de liste(ci,hi), situation initiale
sortie: ensemble des situations possibles avec ttes les combinaisons d'empilement possibles

"""
LX = []
for i in range(len(x)):

for j in range(i+1 , len(x)):
LXij = empile(x,i,j)
for X in LXij:

if X not in LX: # On n'ajoute la situation que si elle n'a pas dejà été stockée
LX.append(X)

return LX
x = [[0,2],[0,3],[1,1],[1,2]]
lesCoups1 = coups(x)
print(lesCoups1)
affiche [[[0, 5], [1, 1], [1, 2]], [[0, 3], [0, 4], [1, 1]], [[0, 3], [1, 1], [1, 4]],
[[0, 2], [0, 3], [1, 3]]]
x = [[0,1],[0,1],[1,1],[1,1]]
lesCoups2 = coups(x)
print(lesCoups2)
affiche [[[0, 2], [1, 1], [1, 1]], [[0, 1], [0, 2], [1, 1]], [[0, 1], [1, 1], [1, 2]],
[[0, 1], [0, 1], [1, 2]]]

 Partie 2 : Création du graphe du jeu

 Q4-Fonction init(C, N) prenant en paramètres C le nombre de couleurs et N le nombre de tablettes
par couleur et renvoyant la liste x0 situation initiale du jeu triée

5

def init(C,N):
""" init(C : int, N: int) -> list

entrees : C, entier positif, nombre de couleurs differentes
: N , entier positif, nombre de tablettes par couleur

sortie : x0, liste de listes (ci,hi) correspondant à la situation initiale
"""
x0 = []
for c in range(C):

for _ in range(N):
x0.append([c,1])

x0.sort() # Inutile compte tenu de la programmation avec c croissant
return x0

test = init(3, 4)
print(test)
affiche [[0, 1], [0, 1], [0, 1], [0, 1], [1, 1], [1, 1], [1, 1], [1, 1], [2, 1], [2, 1]
, [2, 1], [2, 1]]

 Q5-Fonction récursive Tuple(L) réalisant cette transformation de liste en Tuple.

6

def Tuple(L):
if L==[]:

return ()
elif type(L[0])!=list:

return tuple(L)
else:

Res = []
for l in L:

Res.append(Tuple(l))
return tuple(Res)

 Q6- Fonction graphe(C , N) réalisant le parcours en largeur des possibilités.

7

from collections import deque
def graphe(C,N):

""" graphe(C : int ,N:int)-> dict
entrees : C, entier positif, nombre de couleurs differentes

: N , entier positif, nombre de tablettes par couleur
sortie : G, dictionnaire, representant le graphe :clé : tuple de la situation,

valeur :liste de liste de situation atteignables """
constitution de la situation initiale
x0 = init(C,N)
G = {} # initialisation du dictionnaire G qui représente le graphe
file = deque()
file.append(x0) # initialisation de la file avec la situation initiale x0
while len(file) != 0:

x = file.popleft() # recuperation du 1er element de la file
Cle = Tuple(x) # génération de la cle sous forme de tuple
Lc = coups(x) # recuperation de la liste des situations atteignables depuis x
Valeur = Lc
G[Cle] = Valeur # ajout dans le graphe du couple clé, valeur
#ajout ds la file des differentes situations(si pas dejà été stockées)pr traitt ultérieur
for c in Lc:

if Tuple(c) not in G:
file.append(c)

return G

Q7- Que représentent N1 et N2 ?

8

N1 = len(Graphe)
N2 = sum([len(Graphe[x]) for x in Graphe])

N1 : nombre de sommets (12 sur l’exemple)
N2 : nombre d’arêtes (16 sur l’exemple)

N = 1 2 3 4

C = 1

Sommets 1 2 3 5

Arêtes 0 1 2 5

Temps (s) 2,1.10-5 8,0.10-6 1,6.10-5 2,9.10-5

C = 2

Sommets 3 12 43 133

Arêtes 2 16 90 386

Temps (s) 1,1.10-5 8,8.10-5 1,0.10-3 2,8.10-2

C = 3

Sommets 7 92 696 4220

Arêtes 6 234 2832 23 487

Temps (s) 2,6.10-5 3,9.10-3 1,2 6560

C = 4

Sommets 23 728

Arêtes 48 3040

Temps (s) 9,1.10-4 1,6

Q8- Remplissage tableau :

 Partie 2 : Graphe biparti

Q9- Fonction sommets_12(G,C,N) prenant en argument le graphe G, N et C, et retournant les 2
Tuples des sommets S1 et S2 des joueurs J1 et J2

9

Question 9 - sommets_12
def sommets_12(G, C, N):

S1 = []
S2 = []
n = N*C
for e in G:

if len(e)%2 == n%2:
S1.append(e)

else:
S2.append(e)

return tuple(S1),tuple(S2) # S1 et S2 déjà Tuples, donc Tuples inutile

Question 10 - Création des sommets S1 et S2
C,N = 2,2
Graphe = graphe(C , N)
S1,S2 = sommets_12(Graphe , C , N)

Q10- Créer les Tuples S1 et S2 dans le cas C=N=2.

Q11- Pour C=N=2, et en prenant à chaque fois le premier successeur identifié dans le graphe,
afficher une partie et préciser le joueur gagnant

10

C,N = 2,2
Graphe = graphe(C,N)
x0 = init(C,N)
Depart = x0
succ = x0
Joueur = 1
print("Joueur:",Joueur)
print("Jeu:",succ)
L_succ = Graphe[Tuple(succ)]
while len(L_succ)>0:

if len(L_succ) > 0:
succ = L_succ[0]
Joueur = 3 - Joueur
print("Joueur:",Joueur)
print("Jeu:",succ)
L_succ = Graphe[Tuple(succ)]

Détermination des positions gagnantes

 positions gagnantes

11

Positions
2b 2e 3a 3b pas gagnantes car pas de successeurs
2a 2c 2d gagnantes car au moins un successeur n'est pas gagnant
1a et 1d pas gagnants car tous les successeurs sont gagnants (2a)
1b gagnant car au moins un successeur pas gagnant (2b)
1c gagnant car au moins un successeur pas gagnant (2e)
0 gagnant car au moins un successeur pas gagnant (1a et 1d)

Finalement, les positions gagnantes sont: 0 1b 1c 2a 2c 2d!!

Q13-Fonction est_gagnante(G,x) prenant en argument le graphe du jeu et la position x (liste ou
Tuple) et renvoyant le booléen True si la position est gagnante pour le joueur qui y joue, et False
sinon

12

'''
Version 1: On vérifie que tous les successeurs sont gagnants
Pour gagner du temps, on s'arrêt dès qu'un successeur pas gagnant a été trouvé
'''

def est_gagnante(G,x): # x liste ou Tuple
L_succ = G[Tuple(x)]
if len(L_succ) == 0:

return False # Non gagnant
else: # Tous les successeurs sont gagnants

Tous_Gagnants = True
for succ in L_succ: # succ est une liste

Tous_Gagnants = Tous_Gagnants and est_gagnante(G,succ)
if Tous_Gagnants == False: # gagne du temps

break # Position gagnante
return not(Tous_Gagnants) # Position pas gagnante

Q13-Fonction est_gagnante(G,x) prenant en argument le graphe du jeu et la position x (liste ou
Tuple) et renvoyant le booléen True si la position est gagnante pour le joueur qui y joue, et False
sinon

13

'''
Version 2: On cherche un successeur pas gagnant
Cela revient au même, mais c'est rédigé un peu autrement
'''

def est_gagnante(G,x): # x liste ou Tuple
L_succ = G[Tuple(x)]
if len(L_succ) == 0:

return False # Pas gagnant
else: # Aucun successeur pas gagnant

Res = False
for succ in L_succ: # succ est une liste

if not est_gagnante(G,succ): # Un pas gagnant trouvé
Res = True # Position gagnante
break # Gagne du temps

return Res

 Q14- Mettre en place une fonction dico_gagnant(G) dont les clés sont les positions du graphe
et les valeurs, le booléen True ou False indiquant si la position est gagnante ou non.

14

def dico_gagnant(G):
dico = {}
for x in G:

dico[x] = est_gagnante(G,x)
return dico

C,N = 2,2
Graphe = graphe(C,N)
x0 = init(C,N)
dico_g = dico_gagnant(Graphe)
Statut_x0 = dico_g[Tuple(x0)]
print("Le joueur 1 dispose d'une position gagnante ?",Statut_x0)

''' Résultat
Le joueur 1 dispose d'une position gagnante ? True
'''

 Q15- Fonction dico_gagnant_opt(G) renvoyant le dictionnaire des états gagnants des
positions du graphe avec mémoïsation

15

def dico_gagnant_opt(G):
def rec(G,x): # Programmé pour que x soit un Tuple (*)

if x in dico: # Nouveau
return dico[x] # Nouveau

else: # Nouveau
if len(x) == 0:

dico[x] = False # Nouveau
return False

else:
L_succ = G[x]
Res = False
for succ in L_succ:

if not rec(G,Tuple(succ)): # (*) x est un Tuple
Res = True
break

dico[x] = Res # Nouveau
return Res

dico = {}
for x in G:

dico[x] = rec(G,x) # x est un Tuple
return dico

 Q17- Mettre en place le code nécessaire et remplir le tableau proposé

16

print("Joueur disposant d'une position gagnante au départ: ")

Cmax = 3
Nmax = 3

Titre = " N="
for N in range(1,Nmax+1):

Titre += str(N) + " "
print(Titre)

for C in range(1,Cmax+1):
Ligne = 'C=' + str(C) + " "
for N in range(1,Nmax+1):

G = graphe(C,N)
x0 = init(C,N)
dico_g = dico_gagnant(G)
Statut_x0 = dico_g[Tuple(x0)]
if Statut_x0:

Ligne += '1 '
else:

Ligne += '2 '
print(Ligne)

''' Résultats
N=1 2 3 4

C=1 2 1 2 1
C=2 1 1 2 2
C=3 1 2 1 1

N=1 2
C=1 2 1
C=2 1 1
C=3 1 2
C=4 1 1

Soit par reconstruction
N=1 2 3 4

C=1 2 1 2 1
C=2 1 1 2 2
C=3 1 2 1 1
C=4 1 1
'''

