Intelligence artificielle

.. ; Jeu des tablett
Théorie des jeux eu aes tablettes

Jeu des tablettes

Le jeu de tablettes est un jeu a 2 joueurs jouant chacun a tour de réle inspiré du Babylone. Il est
constitué de tablettes de couleurs a empiler selon des régles simples jusqu’a ce qu’il ne soit plus
possible d’agir, le joueur ne pouvant plus rien faire ayant perdu.

3X 3X_

Dans le jeu classique, il y a C=4 couleurs et N=3 tablettes par couleur.
Au départ, chaque tablette est posée seule sur la table. Il est possible d’empiler deux piles si au
moins l'une des 2 conditions suivantes est respectée :

e Elles ont la méme taille

e La tablette supérieure est de la méme couleur

Un peu de vocabulaire lié a la théorie des jeux :

A chaque étape du jeu, les joueurs jouant a tour de rdle, le nombre de piles diminue de 1 et conduit
donc a une nouvelle situation. Ce jeu ne présente donc pas de cycle (acyclique) et toute partie est
finie par la présence de positions sans successeurs formant un sous ensemble a atteindre pour
chaque joueur, on parle de jeu d’accessibilité. Parmiles 3 types d’états finaux (J1 gagne, J2 gagne,
match nul), on remarque que le match nul n’existe pas dans le jeu des tablettes.

Par ailleurs, ce jeu est dit a information totale : a tout instant, chacun des joueurs a une information
compléte de I'état du jeu (rien n’est caché).

Les décisions de jeu sont prises en fonction de la situation présente sans tenir compte des situations
passées de la partie ou des parties précédentes : jeu sans mémoire.

Dans une situation, une décision améne toujours a la méme situation (jeu sans hasard ou
déterministe), et ne dépend que de la situation et non du joueur (jeu impartial).

On dit que c’est un jeu @ somme nulle, c’est-a-dire que la somme des gains et des pertes est égale
a 0. Le gain de I'un constitue obligatoirement une perte pour I'autre. Dans le cas de ce jeu, cela veut
dire que si 'un gagne, l'autre perd.

Partie 1 - Lister les coups possibles

On représente une situation de jeu par une liste x de listes a deux entiers [ci,hi] correspondant a
chaque pile pi=x[i] avec :
e cila couleur (que I'on définira par entier positif)
e hila hauteur de la pile (nombre de tablettes d’'une pile)
Soient les 2 situations de jeu suivantes
Nombre de tablettes /couleur : N=2 Couleurs : ci=0 pour le rouge, ci=1 pour le noir

Situation 1 Situation 2

Q1- Donner I’état de la liste x dans les 2 situations de jeu proposées ci-dessus.
Q2- Onsouhaite déterminer 'ensemble des situations de jeu possibles X stockées dans une liste
LX a partir d’'une situation initiale x en empilant deux piles pi et pj (pour tous les i et j nécessaires)
lorsque c’est possible :

Intelligence artificielle

Théorie des jeux Jeu des tablettes

¢ Empilement de pi sur pj

o Sile résultat est différent du premier empilement, empilement de pj sur pi
Rappel : la méthode sort des listes L.sort() permet de trier L de maniére lexicographique, soit si L
contient des listes, selon la premiére composante, puis pour la méme premiére composante, selon
la seconde etc.
Pour rendre facile la détection de situations semblables dans la suite (ex: [[1,2],[0,1],[0,1]]=
[[0,11,[0,11,[1,2]]), on triera les listes X avant de les insérer dans les listes résultats.

Créer la fonction empile(x, i, j) prenant en paramétres la situation x et les indices i]
de 2 piles pi et pj tels que i#j. La fonction retourne la liste de listes LXij des situations
atteignables par empilement lorsque les régles sont respectées de pi sur pj et de pj sur
pi si différent.

Exemples d’exécution :

tests de la fonction empile

x=1[[0,1] , [0,1] , [1,1] , [1,1]] # situation 1
resl = empile(x, 0, 1)

print(resl) # affiche [[[0, 2], [1, 1], [1, 1]]]

X = [[@)1])[@)1])[1)1])[1)1]] # situation 1
res2 = empile(x,90,3)
print(res2) # affiche [[[o, 1], [e, 2], [1, 1]], [[e, 1], [1, 1], [1, 2]]]

X = [[@)2])[1)1])[1)1]]
res3 = empile(x,0,1)
print(res3) # affiche []

Q3- Créer la fonction coups(x) qui prend en paramétre une situation x (liste) et
retourne une liste de listes LX de toutes les situations différentes atteignables depuis
X.

Vous utiliserez la fonction empile de la Q2 pour mettre en place cette fonction.

Il faudra veiller a ne pas avoir de doublons dans LX : il ne peut pas y avoir 2 fois la méme situation
finale.

Exemples d’exécution :

x = [[0,2],[0,3],[1,1],[1,2]]

lesCoupsl = coups(x)

print(lesCoupsl)

affiche [[[0, 5], [1, 1], [1, 2]], [[e, 3], [e, 4], [1, 111, [[e, 3], [1, 1],
[1, 411, [[e, 2], [e, 3], [1, 3]]]

x = [[0,1],[0,1],[1,1],[1,1]]

lesCoups2 = coups(x)

print(lesCoups2)

affiche [[[0, 2], [1, 1], [1, 11], [[e, 1], [e, 2], [1, 111, [[e, 1], [1, 1],
[1, 2]], [[e, 1], [e, 1], [1, 2]]]

Intelligence artificielle

Théorie des jeux Jeu des tablettes

Partie 2 : Création du graphe du jeu

Q4- Créer une fonction init(C, N) prenant en paramétre le nombre de couleurs C
et le nombre de tablettes par couleur N et renvoyant la liste x0 situation initiale du jeu
triée, par ordre lexicographique.

Exemple d’exécution :

test = init(3,4)

print(test)

affiche [[o0, 1], [eo, 1], [eo, 1], [e, 1], [1, 1], [1, 1], [1, 1], [2, 1], [2, 1],
[2, 1], [2, 1], [2, 1]]

Q5- On souhaite mettre en place un dictionnaire pour représenter 'ensemble des situations de
jeu possibles a partir d’'une situation initiale x0.

Mais les dictionnaires ne peuvent pas avoir pour clé des listes (car mutables) mais peuvent avoir
pour clé des tuples. Mais, ces tuples ne peuvent eux-mémes pas contenir de listes.

Jusqu’a présent nous avons travaillé avec des listes de listes.

Nous allons donc créer une fonction permettant de transformer ces listes de listes de listes ...en
tuples de tuples de tuples ...que nous désignerons comme Tuple avec une majuscule. Nous allons
donc créer une fonction Tuple transformant une liste de listes de listes etc. en tuples de tuples de
tuples etc.

La fonction tuple(...) définie en Python permet de transformer une liste simple en tuple.

Cf https://waytolearnx.com/2019/04/convertir-une-liste-en-tuple-python.html pour un exemple
d'utilisation. Attention a ne pas remplacer cette fonction tuple de python (sans majuscule), qui sera
utile ici.

Créer une fonction récursive Tuple(L) réalisant cette transformation de liste en Tuple.
Exemple d’exécution

L= [[[1)2])[3)4)5] > [[6]]]]

lesTuples = Tuple(L)

print(lesTuples) # affiche (((1, 2), (3, 4, 5), ((6,),)),)

Remarque : Il est normal que la transformation d’une liste de listes en tuples fasse apparaitre une
virgule.

L1 =1[1[1]1]

lesTuples2 = Tuple(L1)

print(lesTuples2) # affiche ((1,),)

Q6- Pour constituer le dictionnaire représentant le graphe du jeu, on réalise un parcours en
largeur. Pour cela, on utilisera une collection deque afin d’améliorer la complexité en temps de ce
parcours.
Le dictionnaire comportera :

- Pour clés : Une situation du jeu x transformée en Tuple

- Pour valeurs : Une liste de listes LX de toutes les situations atteignables X a partir de x

Créer la fonction graphe(C , N) réalisant le parcours en largeur des possibilités.

Pour rappel sur le parcours en largeur :
https://fr.wikipedia.org/wiki/Algorithme de parcours en largeur

Intelligence artificielle

Théorie des jeux Jeu des tablettes

Exemple d’exécution :

C,N = 2,2

Graphe = graphe(C,N)
print(Graphe)

affiche (avec mise en forme)

{((e, 1), (o, 1), (1, 1), (1, 1)): [[[e, 2], [1, 1], [1, 1]],
[le, 11, [e, 21, [1, 1],
[le, 11, [1, 11, [1, 2],
[le, 11, [e, 11, [1, 2111,
((e, 2), (1, 1), (1, 1)) ¢ [[le, 21, [1, 2]11,
((e, 1), (0, 2), (1, 1)) : [[le, 31, [1, 1],
[le, 21, [e, 211,
[le, 21, [1, 2111,

((e, 1), (1, 1), (1, 2)) ¢ [[le, 21, [1, 211,
(1, 21, [1, 211,
[[e, 11, [1, 3111,

((e, 1), (e, 1), (1, 2)) : [[le, 21,
(1, 2111,

((e, 2), (1, 2)) ¢ [[le, 411,
[[1, 4111,

((e, 3), (1, 1)) [

((e, 2), (0, 2)) ¢ [[[e, 4111,

((1, 2), (1, 2)) ¢ [[01, 4111,

((e, 1), (1, 3)) P

(€@, 4),): [1,
((1, 4),): []

Le dictionnaire obtenu représente le graphe orienté fini G=(S,A) dans lequel certains sommets (clés)
sont contrdlés par le joueur J1 (S1) et d’autres par le joueur J2 (S2). L’ensemble (G, S1, S2) est
appelé aréne.

Chaque sommet représente une configuration/situation/position du jeu.

On appelle arc/aréte a=(si,sj) € A la possibilité pour un joueur Ji de passer du sommet si € Si au
sommet sj € Sj en un coup, c’est une décision. Les arcs relient uniquement des sommets entre S1
et S2.

On définit les ensembles F1 et F2 avec F1INF2=0, les objectifs des deux joueurs (sommets
gagnants/états finaux/terminaux pour J1 et J2).

On appelle alors jeu d’accessibilité 'ensemble de I'aréne et de F1 et F2 ((G, S1, S2), F1,F2).

Intelligence artificielle

Théorie des jeux

Jeu des tablettes

On peut représenter le graphe pour C=2 et N=2, en ne tenant pas compte des couleurs autres que

celles des sommets :

- N -

0

_— Z

~

la 1b

I I

1c

|
S W 7

1d

|
NN NN 72

\ L

N

N .

2a —’

2c 2d

I I . I .

2e,

]
V7
W

———

I]
W V77
V] Y
b bz
3a 3b

On obtient donc le graphe orienté fini suivant dans lequel les positions cibles des joueurs J1 et J2
(positions sans successeurs) sont représentées en foncé :

Pour la suite, on définit :

Pos_0 =[[0,1],[0,11,[1,11,[1,11]
Pos_1a=1[0,2],[1,1],[1,1]]
Pos_1b =[[0,1],[0,21,[1,11]
Pos_1c =[[0,11,[1,11,[1,2]]
Pos_1d =[[0,1],[0,1],[1,2]]
Pos_2a =[[0,2],[1,2]]

Pos_2b =[[0,3],[1,1]]
Pos_2c =[[0,2],[0,2]]
Pos_2d =[[1,2],[1,2]]
Pos_2e =[[0,1],[1,3]]
Pos_3a =[[0,4]]
Pos_3b =[[1,41]

Intelligence artificielle
Théorie des jeux

Soient les instructions suivantes :
N1
N2

len(Graphe)
sum([len(Graphe[x]) for x in Graphe])

Q7- Que représentent N1 et N2 ?
Vérifier les prédictions sur le graphe généré précédemment.

On propose le tableau suivant :

Jeu des tablettes

N= 1 2 3

Sommets

c=1 Arétes

Temps (s)

Sommets

c=2 Arétes

Temps (s)

Sommets

4220

c=3 Arétes

23 487

Temps (s)

6560

Sommets

c=4 Arétes

Temps (s)

Q8- Utiliser le programme mis en place afin de compléter les cases non grisées

Remarques :

e Le temps indiqué est relatif a I'exécution sur I'ordinateur
probablement pas la méme valeur.

de test. Vous n’obtiendrez

e Le calcul pour C=3 et N=4 peut ne pas passer suivant le processeur
e Les cases grisées sont des cases pour lesquels I'ordinateur sur lequel le programme a été
testé n’a pas été capable de trouver le graphe par manque de mémoire RAM (et aprés une

longue attente)

