
 Nombre de tablettes /couleur : N=2

 Couleurs : ci=0 pour le rouge, ci=1 pour le noir

 Situation 1: x = [[0,1] , [0,1] , [1,1] , [1,1]]

 Situation 2: x = [[0,2],[1,1],[1,1]]

2

Situation 1 Sitution 2

Q1-Etat de la liste x dans les 2 situations

Q2-Fonction empile(x, i, j) prenant en paramètres la liste de situations x et les indices i,j de 2
piles pi et pj tels que i≠j.

La fonction retourne la liste de listes LXij des situations atteignables par empilement.

3

def empile(x,i,j):
""" empile (x : list, i : int, j : int)-> list

entrees : x, liste de listes(ci,hi), represente la situation initiale.
: i, j, entiers, indices des piles que l'on veut empiler

sortie; LXij , liste de situations possibles après empilement """
LXij = []
ci , hi = x[i]
cj , hj = x[j]
if ci==cj or hi==hj : #empilement possible

reste = x[:i]+x[i+1:j]+x[j+1:]
pij = [ci,hi+hj] # pile ci sur cj (arbitrairement)
X = reste + [pij]
X.sort()
LXij.append(X)
if ci!=cj: # si couleur différente => ajouter la situation avec cj au dessus

pji = [cj,hi+hj] # pile cj sur ci
X = reste + [pji]
X.sort()
LXij.append(X)

return LXij

 Q3 Fonction coups(x) qui prend en paramètre une situation x (liste) et retourne une liste
de listes LX de toutes les situations différentes atteignables depuis x.

4

def coups(x):
""" coups(x : list) -> list
entree: x, liste de liste(ci,hi), situation initiale
sortie: ensemble des situations possibles avec ttes les combinaisons d'empilement possibles

"""
LX = []
for i in range(len(x)):

for j in range(i+1 , len(x)):
LXij = empile(x,i,j)
for X in LXij:

if X not in LX: # On n'ajoute la situation que si elle n'a pas dejà été stockée
LX.append(X)

return LX
x = [[0,2],[0,3],[1,1],[1,2]]
lesCoups1 = coups(x)
print(lesCoups1)
affiche [[[0, 5], [1, 1], [1, 2]], [[0, 3], [0, 4], [1, 1]], [[0, 3], [1, 1], [1, 4]],
[[0, 2], [0, 3], [1, 3]]]
x = [[0,1],[0,1],[1,1],[1,1]]
lesCoups2 = coups(x)
print(lesCoups2)
affiche [[[0, 2], [1, 1], [1, 1]], [[0, 1], [0, 2], [1, 1]], [[0, 1], [1, 1], [1, 2]],
[[0, 1], [0, 1], [1, 2]]]

 Partie 2 : Création du graphe du jeu

 Q4-Fonction init(C, N) prenant en argument le nombre de couleurs C et le nombre de tablettes par
couleur N et renvoyant la liste x0 situation initiale du jeu triée

5

def init(C,N):
""" init(C : int, N: int) -> list

entrees : C, entier positif, nombre de couleurs differentes
: N , entier positif, nombre de tablettes par couleur

sortie : x0, liste de listes (ci,hi) correspondant à la situation initiale
"""
x0 = []
for c in range(C):

for _ in range(N):
x0.append([c,1])

x0.sort() # Inutile compte tenu de ma programmation avec c croissant
return x0

test = init(3, 4)
print(test)
affiche [[0, 1], [0, 1], [0, 1], [0, 1], [1, 1], [1, 1], [1, 1], [1, 1], [2, 1], [2, 1]
, [2, 1], [2, 1]]

 Q5-Fonction récursive Tuple(L) réalisant cette transformation de liste en Tuple.

6

def Tuple(L):
if L==[]:

return ()
elif type(L[0])!=list:

return tuple(L)
else:

Res = []
for l in L:

Res.append(Tuple(l))
return tuple(Res)

 Q6- Fonction graphe(C , N) réalisant le parcours en largeur des possibilités.

7

from collections import deque
def graphe(C,N):

""" graphe(C : int ,N:int)-> dict
entrees : C, entier positif, nombre de couleurs differentes

: N , entier positif, nombre de tablettes par couleur
sortie : G, dictionnaire, representant le graphe :clé : tuple de la situation, valeur :

liste de listes de situations atteignables """
constitution de la situation initiale
x0 = init(C,N)
G = {} # initialisation du dictionnaire G qui représente le graphe
file = deque()
file.append(x0) # initialisation de la file avec la situation initiale x0
while len(file) != 0:

x = file.popleft() # recuperation du 1er element de la file
Cle = Tuple(x) # génération de la cle sous forme de tuple
Lc = coups(x) # recuperation de la liste des situations atteignables depuis x
Valeur = Lc
G[Cle] = Valeur # ajout dans le graphe du couple clé, valeur
#ajout ds la file des differentes situations(si pas dejà été stockées)pr traitt ultérieur
for c in Lc:

if Tuple(c) not in G:
file.append(c)

return G

Q7- Que représentent N1 et N2 ?

8

N1 = len(Graphe)
N2 = sum([len(Graphe[x]) for x in Graphe])

N1 : nombre de sommets (12 sur l’exemple)
N2 : nombre d’arêtes (16 sur l’exemple)

N = 1 2 3 4

C = 1

Sommets 1 2 3 5

Arêtes 0 1 2 5

Temps (s) 2,1.10-5 8,0.10-6 1,6.10-5 2,9.10-5

C = 2

Sommets 3 12 43 133

Arêtes 2 16 90 386

Temps (s) 1,1.10-5 8,8.10-5 1,0.10-3 2,8.10-2

C = 3

Sommets 7 92 696 4220

Arêtes 6 234 2832 23 487

Temps (s) 2,6.10-5 3,9.10-3 1,2 6560

C = 4

Sommets 23 728

Arêtes 48 3040

Temps (s) 9,1.10-4 1,6

Q8- Remplissage tableau :

