Q1-Etat de la liste x dans les 2 situations

Situation 1

Sitution 2

= Nombre de tablettes /couleur : N=2

= Couleurs:

= Situation 1:

= Situation 2:

ci=0 pour le rouge, ci=1 pour le noir

x=[[01],[0,1],[L,1],[1,1]]
x=[[0,2],[1,1],[1,1] ]



Q2-Fonction empile( x, i, j ) prenant en parametres la liste de situations x et les indices i,j de 2
piles pi et pj tels que i#j.

La fonction retourne la liste de listes LXij des situations atteignables par empilement.

def empile( x,i,j ):
""" empile ( x : list, i : int, j : int )-> list
entrees : x, liste de listes(ci,hi), represente la situation initiale.
: 1, j, entiers, indices des piles que 1l'on veut empiler
sortie; LXij , liste de situations possibles apres empilement n
LXij = []
ci, hi = x[1i]
cj , hj = x[7]
if ci==cj or hi==hj : #empilement possible
reste = x[:i]+x[i+1:j]+x[j+1:]
pij = [ci,hi+hj] # pile ci sur cj (arbitrairement)
X = reste + [pij]
X.sort()
LXij.append(X)
if cil=cj: # si couleur différente => ajouter la situation avec c¢j au dessus
pji = [cj,hi+h]j] # pile cj sur ci
X = reste + [pji]
X.sort()
LXij.append(X)
return LXij



= O3 Fonction coups(x) qgui prend en parameétre une situation x (liste) et retourne une liste
def coups(x):
""" coups(x : list) -> list
entree: x, liste de liste(ci,hi), situation initiale
sortie: ensemble des situations possibles avec ttes les combinaisons d'empilement possibles

LX =[]
for i in range( len(x) ):
for j in range( i+l , len(x) ):
LXij = empile( x,1i,j )
for X in LXij:
if X not in LX: # On n'ajoute la situation que si elle n'a pas deja été stockée
LX.append(X)
return LX
x=1[ [e,2],[0,3],[1,1],[1,2] ]
lesCoupsl = coups(x)
print( lesCoupsl )
# affiche [[[6, 5], [1, 1], [1, 2]], [[e, 3], [e, 4], [1, 1]], [[e, 3], [1, 1], [1, 4]],
[[e, 2], [e, 3], [1, 3]]]
x = [[e,1],[0,1],[1,1],[1,1]]
lesCoups2 = coups(x)
print( lesCoups2 )
# affiche [[[0, 2], [1, 1], [1, 1]], [[e, 1], [e, 2], [1, 1]], [[e, 1], [1, 1], [1, 2]],
[[e, 1], [e, 1], [1, 2]]]



= Partie 2 : Création du graphe du jeu

= Q4-Fonction init( C, N ) prenant en argument le nombre de couleurs C et le nombre de tablettes par
couleur N et renvoyant la liste x0 situation initiale du jeu triée

def init(C,N):
""" init( C : int, N: int ) -> list
entrees : C, entier positif, nombre de couleurs differentes
: N, entier positif, nombre de tablettes par couleur
sortie : x@, liste de listes (ci,hi) correspondant a la situation initiale

x0 = []
for ¢ in range(C):
for _ in range(N):
x0.append([c,1])
x0.sort() # Inutile compte tenu de ma programmation avec c croissant

return x0
test = init( 3, 4 )

print(test)
# affiche [[o0, 1], [e, 1], [e, 1], [e, 1], [1, 1], [1, 1], [1, 1], [1, 1], [2, 1], [2, 1]

» [2, 1], [2, 1]]
©



= Q5-Fonction récursive Tuple(L) réalisant cette transformation de liste en Tuple.

def Tuple(L):

if L==[]:
return ()

elif type(L[©])!=1list:
return tuple(L)

else:
Res = []
for 1 in L:

Res.append(Tuple(l))

return tuple(Res)



= Q6- Fonction graphe( C , N ) réalisant le parcours en largeur des possibilités.

from collections import deque
def graphe(C,N):
""" graphe(C : int ,N:int )-> dict
entrees : C, entier positif, nombre de couleurs differentes
: N, entier positif, nombre de tablettes par couleur
sortie : G, dictionnaire, representant le graphe :clé : tuple de la situation, valeur :
liste de listes de situations atteignables e
# constitution de la situation initiale
x0 = init(C,N)
G = {} # initialisation du dictionnaire G qui représente le graphe
file = deque()
file.append(x0) # initialisation de la file avec la situation initiale x©
while len(file) != 0:
x = file.popleft() # recuperation du ler element de la file
Cle = Tuple(x) # génération de la cle sous forme de tuple
Lc = coups(x) # recuperation de la liste des situations atteignables depuis x
Valeur = Lc
G[Cle] = Valeur # ajout dans le graphe du couple clé, valeur
#ajout ds la file des differentes situations(si pas deja été stockées)pr traitt ultérieur
for ¢ in Lc:
if Tuple(c) not in G:
file.append(c)
return G



Q1-

N1
N2

len(Graphe)

Que représentent N1 et N2 ?

sum([len(Graphe[x]) for x in Graphe])

N1 :nombre de sommets (12 sur ’exemple)

N2 : nombre d’arétes

Q8- Remplissage tableau :

(16 sur I’exemple)

Sommets

Arétes

Temps (s)

Sommets

Arétes

Temps (s)

Sommets

Arétes

Temps (s)

Sommets

Arétes

Temps (s)

2,1.10°5

1,1.10°°

2,6.10°5
23
48

9,1.10

8,0.10°
12
16
8,8.10°
92
234
3,9.103
128
3040
1,6

1,6.10-5
43
90
1,0.103
696
2832
1,2

2,9.10°5
133
386

2,8.102
4220

23 481
6560



