Q1-Etat de la liste x dans les 2 situations

Situation 1

Sitution 2

= Nombre de tablettes /couleur : N=2

= Couleurs:

= Situation 1:

= Situation 2:

ci=0 pour le rouge, ci=1 pour le noir

x=[[01],[0,1],[L,1],[1,1]]
x=[[0,2],[1,1],[1,1]]

Q2-Fonction empile(x, i, j) prenant en parametres la liste de situations x et les indices i,j de 2
piles pi et pj tels que i#j.

La fonction retourne la liste de listes LXij des situations atteignables par empilement.

def empile(x,i,j):
""" empile (x : list, i : int, j : int)-> list
entrees : x, liste de listes(ci,hi), represente la situation initiale.
: 1, j, entiers, indices des piles que 1l'on veut empiler
sortie; LXij , liste de situations possibles apres empilement n
LXij = []
ci, hi = x[1i]
cj , hj = x[7]
if ci==cj or hi==hj : #empilement possible
reste = x[:i]+x[i+1:j]+x[j+1:]
pij = [ci,hi+hj] # pile ci sur cj (arbitrairement)
X = reste + [pij]
X.sort()
LXij.append(X)
if cil=cj: # si couleur différente => ajouter la situation avec c¢j au dessus
pji = [cj,hi+h]j] # pile cj sur ci
X = reste + [pji]
X.sort()
LXij.append(X)
return LXij

= O3 Fonction coups(x) qgui prend en parameétre une situation x (liste) et retourne une liste
def coups(x):
""" coups(x : list) -> list
entree: x, liste de liste(ci,hi), situation initiale
sortie: ensemble des situations possibles avec ttes les combinaisons d'empilement possibles

LX =[]
for i in range(len(x)):
for j in range(i+l , len(x)):
LXij = empile(x,1i,j)
for X in LXij:
if X not in LX: # On n'ajoute la situation que si elle n'a pas deja été stockée
LX.append(X)
return LX
x=1[[e,2],[0,3],[1,1],[1,2]]
lesCoupsl = coups(x)
print(lesCoupsl)
affiche [[[6, 5], [1, 1], [1, 2]], [[e, 3], [e, 4], [1, 1]], [[e, 3], [1, 1], [1, 4]],
[[e, 2], [e, 3], [1, 3]]]
x = [[e,1],[0,1],[1,1],[1,1]]
lesCoups2 = coups(x)
print(lesCoups2)
affiche [[[0, 2], [1, 1], [1, 1]], [[e, 1], [e, 2], [1, 1]], [[e, 1], [1, 1], [1, 2]],
[[e, 1], [e, 1], [1, 2]]]

= Partie 2 : Création du graphe du jeu

= Q4-Fonction init(C, N) prenant en argument le nombre de couleurs C et le nombre de tablettes par
couleur N et renvoyant la liste x0 situation initiale du jeu triée

def init(C,N):
""" init(C : int, N: int) -> list
entrees : C, entier positif, nombre de couleurs differentes
: N, entier positif, nombre de tablettes par couleur
sortie : x@, liste de listes (ci,hi) correspondant a la situation initiale

x0 = []
for ¢ in range(C):
for _ in range(N):
x0.append([c,1])
x0.sort() # Inutile compte tenu de ma programmation avec c croissant

return x0
test = init(3, 4)

print(test)
affiche [[o0, 1], [e, 1], [e, 1], [e, 1], [1, 1], [1, 1], [1, 1], [1, 1], [2, 1], [2, 1]

» [2, 1], [2, 1]]
©

= Q5-Fonction récursive Tuple(L) réalisant cette transformation de liste en Tuple.

def Tuple(L):

if L==[]:
return ()

elif type(L[©])!=1list:
return tuple(L)

else:
Res = []
for 1 in L:

Res.append(Tuple(l))

return tuple(Res)

= Q6- Fonction graphe(C , N) réalisant le parcours en largeur des possibilités.

from collections import deque
def graphe(C,N):
" graphe(C : int ,N:int)-> dict
entrees:C, entier positif, nombre de couleurs differentes
:N , entier positif, nombre de tablettes par couleur
sortie:G, dictionnaire,le:tuple de la situation,valeur:liste de liste de situation atteignables
constitution de la situation initiale
x0 = init(C,N)
G = {} # initialisation du dictionnaire G qui représente le graphe
file = deque()
file.append(x0) # initialisation de la file avec la situation initiale x©
while len(file) != 0:
x = file.popleft() # recuperation du ler element de la file
Cle = Tuple(x) # génération de la cle sous forme de Tuple
LCoupsSuivants = coups(x) #Recuperation de la liste des situations atteignables depuis x
G[Cle] = LCoupsSuivants # ajout dans le graphe du couple clé, valeur
ajout dans la file des differentes situations (si elles n'ont pas deja été stockées) p
our traitement ultérieur
for ¢ in LCoupsSuivants:
if Tuple(c) not in G:
file.append(c)

return G

Q7- Que représentent N1 et N2 ?

N1
N2

len(Graphe)
sum([len(Graphe[x]) for x in Graphe])

N1 :nombre de sommets (12 sur’exemple)
N2 :nombre d’arétes (16 sur 'exemple)

{((e, 1), (o, 1),

(e, 2), (1, 2))

v v v v v W
NA S

ARRLNNW

R
“w v v W
NN

LYo v “

—u_ 5 5 3 3
et % Lo v L

. r—Tr—r—r

RRRPRRORROROR
v v v v v v WY e

WNNNNRERENRP RN

COROOOOOOOO®

v v v v v v v e v

N

Lo “ W W b v bW VW LW W W

3 J L—u
i » v .

-

o

N
PR N ONRNNNNWNRRERN

T |} | BN B BN B B BN BN B B Eaa

“ o

. O S

Q7- Que représentent N1 et N2 ?
N1 = len(Graphe)
N2 = sum([len(Graphe[x]) for x in Graphe])

N1 :nombre de sommets (12 sur ’exemple)
N2 : nombre d’arétes (16 sur I’exemple)

Q8- Remplissage tableau :

from time import perf_ counter

C,N = 2,2 # A modifier pour chaque cas
tic = perf_counter()

Graphe = graphe(C,N)

toc = perf_counter()

T = toc - tic

print("Pour C = "+str(C)+" et N =
Nb_Sommets = len(Graphe) # N1
print("Sommets:",Nb_Sommets)

#N2

"+str(N))

Nb Aretes =sum([len(Graphe[x])for x in Graphe])

print("Arétes:",Nb_Aretes)
print("Temps (s):",T)

Sommets
Arétes
Temps (s)
Sommets
Arétes
Temps (s)
Sommets
Arétes
Temps (s)
Sommets
Arétes

Temps (s)

2,1.10°8

1,1.10-5

2,6.10°5
23
48

9,1.10*

8,0.10°
12
16
8,8.10°
92
234
3,9.103
128
3040
1,6

1,6.10-5
43
90
1,0.108
696
2832
1,2

2,9.10°5
133
386

2,8.102
4220

23 481
6560

0

‘ . - "h-._‘

g ~

1a 1b 1c id

Graphe orienté fini

] =i] [
4 — 2 —

723 _2b 2c 2d 2&_
I b s epe—— | I e

———

Il |
war |00 | e
g |00 | weez
waE |00 | e

3a 3b

= Partie 2 : Graphe biparti

Q9- Fonction sommets_12(G,C,N) prenant en argument le graphe G, N et C, et retournant les 2
Tuples des sommets S1 et S2 des joueurs J1 et J2

def sommets 12(G, C, N):
""" sommets 12(G, C, N)
entrees : G, dictionnaire, represente le graphe
: C, N, entiers representant le nombre de couleurs et le nombre de tablettes
sorties: 2 tuples pour les sommets de J1 et de J2
S1 =[]
S2 = []
n = N*C # nombre total de tablettes = nb de piles initial
for e in G:
if len(e)%2 == n%2:
S1.append(e)
else:
S2.append(e)
return tuple(S1),tuple(S2) # S1 et S2 déja Tuples, donc Tuples inutile

Q1l0- Créer les Tuples Sl et S2 dans le cas C=N=2.
C,N = 2,2

Graphe = graphe(C , N)
S1,S2 = sommets 12(Graphe , C , N) @

Q11- Pour C=N=2, et en prenant a chaque fois le 1°* successeur identifié dans le graphe, afficher
une partie et préciser le joueur gagnant

C,N = 2,2

Graphe = graphe(C,N) #generation du graphe du jeu

X0 = init(C,N) #situation initiale

Joueur =1

print("Joueur:" , Joueur)

print("Jeu:", x0)

lesSuccesseurs = Graphe[Tuple(x@)] #successeurs de la situation initiale

while len(lesSuccesseurs)>0:
succ = lesSuccesseurs[0] #ler successeur
Joueur = 3 - Joueur
print("Joueur:", Joueur)
print("Jeu:",succ)
lesSuccesseurs = Graphe[Tuple(succ)] #successeurs du ler successeur

Détermination des positions gagnantes

(K

Positions Une position :
2b 2e 3a 3b pas gagnantes car pas de successeurs * estgagnante s'il existe au moins un
2a 2c 2d gagnantes car au moins un successeur n'est pas gagnant successeur qui n'est pas gagnant
* N’est pas gagnante si:
la et 1d pas gagnants car tous les successeurs sont gagnants (2a) : '
. - Elle n’a pas de successeurs
l1b gagnant car au moins un successeur pas gagnant (2b)

: - Aucun de ses successeurs n’est pas
lc gagnant car au moins un successeur pas gagnant (2e) gagnant = Tous ses successeurs sont

0 gagnant car au moins un successeur pas gagnant (la et 1d) gagnants
Finalement, les positions gagnantes sont: 0 1b 1c 2a 2¢ 2d ~

