
 Nombre de tablettes /couleur : N=2

 Couleurs : ci=0 pour le rouge, ci=1 pour le noir

 Situation 1: x = [[0,1] , [0,1] , [1,1] , [1,1]]

 Situation 2: x = [[0,2],[1,1],[1,1]]

2

Situation 1 Sitution 2

Q1-Etat de la liste x dans les 2 situations

Q2-Fonction empile(x, i, j) prenant en paramètres la liste de situations x et les indices i,j de 2
piles pi et pj tels que i≠j.

La fonction retourne la liste de listes LXij des situations atteignables par empilement.

3

def empile(x,i,j):
""" empile (x : list, i : int, j : int)-> list

entrees : x, liste de listes(ci,hi), represente la situation initiale.
: i, j, entiers, indices des piles que l'on veut empiler

sortie; LXij , liste de situations possibles après empilement """
LXij = []
ci , hi = x[i]
cj , hj = x[j]
if ci==cj or hi==hj : #empilement possible

reste = x[:i]+x[i+1:j]+x[j+1:]
pij = [ci,hi+hj] # pile ci sur cj (arbitrairement)
X = reste + [pij]
X.sort()
LXij.append(X)
if ci!=cj: # si couleur différente => ajouter la situation avec cj au dessus

pji = [cj,hi+hj] # pile cj sur ci
X = reste + [pji]
X.sort()
LXij.append(X)

return LXij

 Q3 Fonction coups(x) qui prend en paramètre une situation x (liste) et retourne une liste
de listes LX de toutes les situations différentes atteignables depuis x.

4

def coups(x):
""" coups(x : list) -> list
entree: x, liste de liste(ci,hi), situation initiale
sortie: ensemble des situations possibles avec ttes les combinaisons d'empilement possibles

"""
LX = []
for i in range(len(x)):

for j in range(i+1 , len(x)):
LXij = empile(x,i,j)
for X in LXij:

if X not in LX: # On n'ajoute la situation que si elle n'a pas dejà été stockée
LX.append(X)

return LX
x = [[0,2],[0,3],[1,1],[1,2]]
lesCoups1 = coups(x)
print(lesCoups1)
affiche [[[0, 5], [1, 1], [1, 2]], [[0, 3], [0, 4], [1, 1]], [[0, 3], [1, 1], [1, 4]],
[[0, 2], [0, 3], [1, 3]]]
x = [[0,1],[0,1],[1,1],[1,1]]
lesCoups2 = coups(x)
print(lesCoups2)
affiche [[[0, 2], [1, 1], [1, 1]], [[0, 1], [0, 2], [1, 1]], [[0, 1], [1, 1], [1, 2]],
[[0, 1], [0, 1], [1, 2]]]

 Partie 2 : Création du graphe du jeu

 Q4-Fonction init(C, N) prenant en argument le nombre de couleurs C et le nombre de tablettes par
couleur N et renvoyant la liste x0 situation initiale du jeu triée

5

def init(C,N):
""" init(C : int, N: int) -> list

entrees : C, entier positif, nombre de couleurs differentes
: N , entier positif, nombre de tablettes par couleur

sortie : x0, liste de listes (ci,hi) correspondant à la situation initiale
"""
x0 = []
for c in range(C):

for _ in range(N):
x0.append([c,1])

x0.sort() # Inutile compte tenu de ma programmation avec c croissant
return x0

test = init(3, 4)
print(test)
affiche [[0, 1], [0, 1], [0, 1], [0, 1], [1, 1], [1, 1], [1, 1], [1, 1], [2, 1], [2, 1]
, [2, 1], [2, 1]]

 Q5-Fonction récursive Tuple(L) réalisant cette transformation de liste en Tuple.

6

def Tuple(L):
if L==[]:

return ()
elif type(L[0])!=list:

return tuple(L)
else:

Res = []
for l in L:

Res.append(Tuple(l))
return tuple(Res)

 Q6- Fonction graphe(C , N) réalisant le parcours en largeur des possibilités.

7

from collections import deque
def graphe(C,N):

""" graphe(C : int ,N:int)-> dict
entrees:C, entier positif, nombre de couleurs differentes

:N , entier positif, nombre de tablettes par couleur
sortie:G, dictionnaire,le:tuple de la situation,valeur:liste de liste de situation atteignables """

constitution de la situation initiale
x0 = init(C,N)
G = {} # initialisation du dictionnaire G qui représente le graphe
file = deque()
file.append(x0) # initialisation de la file avec la situation initiale x0
while len(file) != 0:

x = file.popleft() # recuperation du 1er element de la file
Cle = Tuple(x) # génération de la cle sous forme de Tuple
LCoupsSuivants = coups(x) #Recuperation de la liste des situations atteignables depuis x
G[Cle] = LCoupsSuivants # ajout dans le graphe du couple clé, valeur
ajout dans la file des differentes situations (si elles n'ont pas dejà été stockées) p

our traitement ultérieur
for c in LCoupsSuivants:

if Tuple(c) not in G:
file.append(c)

return G

Q7- Que représentent N1 et N2 ?

8

N1 = len(Graphe)
N2 = sum([len(Graphe[x]) for x in Graphe])

N1 : nombre de sommets (12 sur l’exemple)
N2 : nombre d’arêtes (16 sur l’exemple)

{((0, 1), (0, 1), (1, 1), (1, 1)): [[[0, 2], [1, 1], [1, 1]],
[[0, 1], [0, 2], [1, 1]],
[[0, 1], [1, 1], [1, 2]],
[[0, 1], [0, 1], [1, 2]]],

((0, 2), (1, 1), (1, 1)) : [[[0, 2], [1, 2]]],
((0, 1), (0, 2), (1, 1)) : [[[0, 3], [1, 1]],

[[0, 2], [0, 2]],
[[0, 2], [1, 2]]],

((0, 1), (1, 1), (1, 2)) : [[[0, 2], [1, 2]],
[[1, 2], [1, 2]],
[[0, 1], [1, 3]]],

((0, 1), (0, 1), (1, 2)) : [[[0, 2],
[1, 2]]],

((0, 2), (1, 2)) : [[[0, 4]],
[[1, 4]]],

((0, 3), (1, 1)) : [],
((0, 2), (0, 2)) : [[[0, 4]]],
((1, 2), (1, 2)) : [[[1, 4]]],
((0, 1), (1, 3)) : [],
((0, 4),): [],
((1, 4),): []
}

Q7- Que représentent N1 et N2 ?

9

N1 = len(Graphe)
N2 = sum([len(Graphe[x]) for x in Graphe])

N1 : nombre de sommets (12 sur l’exemple)
N2 : nombre d’arêtes (16 sur l’exemple)

Q8- Remplissage tableau :

from time import perf_counter
C,N = 2,2 # A modifier pour chaque cas
tic = perf_counter()
Graphe = graphe(C,N)
toc = perf_counter()
T = toc - tic

print("Pour C = "+str(C)+" et N = "+str(N))
Nb_Sommets = len(Graphe) # N1
print("Sommets:",Nb_Sommets)
#N2
Nb_Aretes =sum([len(Graphe[x])for x in Graphe])
print("Arêtes:",Nb_Aretes)
print("Temps (s):",T)

N = 1 2 3 4

C = 1

Sommets 1 2 3 5

Arêtes 0 1 2 5

Temps (s) 2,1.10-5 8,0.10-6 1,6.10-5 2,9.10-5

C = 2

Sommets 3 12 43 133

Arêtes 2 16 90 386

Temps (s) 1,1.10-5 8,8.10-5 1,0.10-3 2,8.10-2

C = 3

Sommets 7 92 696 4220

Arêtes 6 234 2832 23 487

Temps (s) 2,6.10-5 3,9.10-3 1,2 6560

C = 4

Sommets 23 728

Arêtes 48 3040

Temps (s) 9,1.10-4 1,6

1a

0

1b

1c

2a

1d

2b

2c

2e

2d

3a

3b

1a101 1b1 1c1 2a11d1 2b1 2c1 2e12d1 3a1 3b1

1a202 1b2 1c2 2a21d2 2b2 2c2 2e22d2 3a2 3b2

Graphe biparti

Graphe orienté fini

 Partie 2 : Graphe biparti

Q9- Fonction sommets_12(G,C,N) prenant en argument le graphe G, N et C, et retournant les 2
Tuples des sommets S1 et S2 des joueurs J1 et J2

11

def sommets_12(G, C, N):
""" sommets_12(G, C, N)

entrees : G, dictionnaire, represente le graphe
: C, N, entiers representant le nombre de couleurs et le nombre de tablettes

sorties: 2 tuples pour les sommets de J1 et de J2
"""
S1 = []
S2 = []
n = N*C # nombre total de tablettes = nb de piles initial
for e in G:

if len(e)%2 == n%2:
S1.append(e)

else:
S2.append(e)

return tuple(S1),tuple(S2) # S1 et S2 déjà Tuples, donc Tuples inutile

C,N = 2,2
Graphe = graphe(C , N)
S1,S2 = sommets_12(Graphe , C , N)

Q10- Créer les Tuples S1 et S2 dans le cas C=N=2.

Q11- Pour C=N=2, et en prenant à chaque fois le 1er successeur identifié dans le graphe, afficher
une partie et préciser le joueur gagnant

12

C,N = 2,2
Graphe = graphe(C,N) #generation du graphe du jeu
x0 = init(C,N) #situation initiale
Joueur = 1
print("Joueur:" , Joueur)
print("Jeu:", x0)
lesSuccesseurs = Graphe[Tuple(x0)] #successeurs de la situation initiale

while len(lesSuccesseurs)>0:
succ = lesSuccesseurs[0] #1er successeur
Joueur = 3 - Joueur
print("Joueur:", Joueur)
print("Jeu:",succ)
lesSuccesseurs = Graphe[Tuple(succ)] #successeurs du 1er successeur

Détermination des positions gagnantes

 positions gagnantes

13

Positions
2b 2e 3a 3b pas gagnantes car pas de successeurs
2a 2c 2d gagnantes car au moins un successeur n'est pas gagnant
1a et 1d pas gagnants car tous les successeurs sont gagnants (2a)
1b gagnant car au moins un successeur pas gagnant (2b)
1c gagnant car au moins un successeur pas gagnant (2e)
0 gagnant car au moins un successeur pas gagnant (1a et 1d)

Finalement, les positions gagnantes sont: 0 1b 1c 2a 2c 2d

Une position :
• est gagnante s’il existe au moins un

successeur qui n’est pas gagnant
• N’est pas gagnante si :
- Elle n’a pas de successeurs
- Aucun de ses successeurs n’est pas

gagnant = Tous ses successeurs sont
gagnants

G GGG

G G
NG NG

NGNG

NG NG

