THEORIE DES JEUX
JEUX A DEUX JOUEURS
ATTRACTEUR & STRATEGIE

Informatique Tronc Commun

E. CLERMONT

Q1l-Etat de la liste x dans les 2 situations

Situation 1 Sitution 2

= Nombre de tablettes /couleur : N=2

= Couleurs : ci=0 pour le rouge, ci=1 pour le noir

- Situation 1: x=[[0,1],[0,1],[1,11,[1,1]]
- Situation 2: x = [[0,2],[1,11,[1,1]]

Q2-Fonction empile(x, i, j) prenant en parameétres la liste de situations x et les indices i,j de 2
piles pi et pj tels que i#j.

La fonction retourne la liste de listes LXij des situations atteignables par empilement.

def empile(x,i,j):
""" oempile (x : list, i : int, j : int)-> list
entrees : x, liste de listes(ci,hi), represente la situation initiale.
: i, j, entiers, indices des piles que l'on veut empiler
sortie; LXij , liste de situations possibles aprés empilement
LXij = []
ci, hi = x[i]
cj , hj = x[]j]
if ci==cj or hi==hj : #empilement possible
reste = x[:i]+x[i+1:j]+x[j+1:]
pij = [ci,hi+hj] # pile ci sur cj (arbitrairement)
X = reste + [pij]
X.sort()
LXij.append(X)
if cil=cj: # si couleur différente => ajouter la situation avec cj au dessus
pji = [cj,hi+hj] # pile cj sur ci
X = reste + [pji]
X.sort()
LXij.append(X)
return LXij

* O3 Fonction coups(x) qui prend en parameétre une situation x (liste) et retourne une liste
def coups(x):

""" coups(x : list) -> list

entree: x, liste de liste(ci,hi), situation initiale
sortie: ensemble des situations possibles avec ttes les combinaisons d'empilement possible
LX = []
for i in range(len(x)):
for j in range(i+l , len(x)):
LXij = empile(x,i,j)
for X in LXij:
if X not in LX: # On n'ajoute la situation que si elle n'a pas deja été stockée
LX.append(X)

return LX
x = [[0,2],[0,3],[1,1],[1,2]]
lesCoupsl = coups(x)
print(lesCoupsl)
affiche [[[0, 5], [1, 1], [1, 2]], [[e, 3], [e, 4], [1, 1]], [[e, 3], [1, 1], [1, 4]],
[[e, 2], [e, 3], [1, 3]]]
x = [[e,1],[0,1],[1,1],([1,1]]
lesCoups2 = coups(x)
print(lesCoups2)
affiche [[[e0, 2], [1, 1], [1, 1]], [[e, 1], [e, 2], [1, 1]], [[e, 1], [1, 1], [1, 2]],
[[e, 1], [0, 1], [1, 2]]]

» Partie 2 : Création du graphe du jeu

* Q4-Fonction init(C, N) prenant en argument le nombre de couleurs C et le nombre de tablettes par
couleur N et renvoyant la liste x0 situation initiale du jeu triée

def init(C,N):

"""oinit(C : int, N: int) -> list

entrees : C, entier positif, nombre de couleurs differentes

: N, entier positif, nombre de tablettes par couleur

sortie : x@, liste de listes (ci,hi) correspondant a la situation initiale
xe = []
for ¢ in range(C):

for _ in range(N):

x0.append([c,1])

x0.sort() # Inutile compte tenu de ma programmation avec c croissant
return xo0

test = init(3, 4)

print(test)
affiche [[0, 1], [e, 1], [e, 1], [e, 1], [1, 1], [1, 1], [1, 1], [1, 1], [2, 1], [2, 1]

» [2, 1], [2, 1]]

= Q5-Fonction récursive Tuple(L) réalisant cette transformation de liste en Tuple.

def Tuple(L):

if L==[]:
return ()

elif type(L[0@])!=1list:
return tuple(L)

else:
Res = []
for 1 in L:

Res.append(Tuple(l))

return tuple(Res)

= Q6- Fonction graphe(C , N) réalisant le parcours en largeur des possibilités.

from collections import deque

def

our

graphe(C,N):
""" graphe(C : int ,N:int)-> dict

entrees:C, entier positif, nombre de couleurs differentes

:N , entier positif, nombre de tablettes par couleur

sortie:G, dictionnaire,le:tuple de la situation,valeur:liste de liste de situation atteignables
constitution de la situation initiale
x0 = init(C,N)
G = {} # initialisation du dictionnaire G qui représente le graphe
file = deque()
file.append(x@) # initialisation de la file avec la situation initiale x®
while len(file) != 0:

x = file.popleft() # recuperation du ler element de la file

Cle = Tuple(x) # génération de la cle sous forme de Tuple

LCoupsSuivants = coups(x) #Recuperation de la liste des situations atteignables depuis x

G[Cle] = LCoupsSuivants # ajout dans le graphe du couple clé, valeur

ajout dans la file des differentes situations (si elles n'ont pas deja été stockées) p
traitement ultérieur

for c¢ in LCoupsSuivants:

if Tuple(c) not in G:
file.append(c)

return G

QT- Que représentent N1 et N2 ?
N1 = len(Graphe)
N2 = sum([len(Graphe[x]) for x in Graphe])

N1 :nombre de sommets (12 sur l’exemple)
N2 :nombre d’arétes (16 sur I’exemple)

{((e, 1), (0, 1), (1, 1), (1, 1)): [[

NN

((e, 1), (1, 1), (1, 2)) L

((e, 1), (o, 1), (1, 2)) SO
> 2))

OO OOOOOOOO®

LLLLLLLLL LW

RRRRORROROR
MR e Ve

WNNNNRENR RN

(o
-
~ N
AR N OINERENNNNWNRRERN

— L

—r
—_—rTr% T T T T T T T T T T

- RPO® -

T T T VS P I I S
[R S R VR VY
- .

- .

L L LL.

ARRLNNW

Q7- Que représentent N1 et N2 ?

N1
N2

len(Graphe)
sum([len(Graphe[x]) for x in Graphe])

N1 :nombre de sommets (12 sur I’exemple)
N2 :nombre d’arétes (16 sur I’exemple)

Q8- Remplissage tableau :

from time import perf_counter

C,N = 2,2 # A modifier pour chaque cas
tic = perf_counter()

Graphe = graphe(C,N)

toc = perf_counter()

T = toc - tic

print("Pour C = "+str(C)+" et N = "+str(N))
Nb_Sommets = len(Graphe) # N1
print("Sommets:",Nb_Sommets)

#N2

Nb_Aretes =sum([len(Graphe[x])for x in Graphe])

print("Arétes:",Nb_Aretes)
print("Temps (s):",T)

Sommets
Arétes
Temps (s)
Sommets
Arétes
Temps (s)

Sommets
Arétes
Temps (s)
= Sommets

Arétes
Temps (s)

1
0
2,1.10%

1,1.10°8

2,6.10°
23
48

9,1.10*

2 3| 4
2 3 5

8,0.10°
12
16
8,8.10°
92
234
3,9.10°
728
3040
1,6

1,6.10%
43
90

1,0.10°8

696
2832
1,2

2,9.10°8
133
386

2,8.102
4220

23 481
6560

e N

1a 1b 1c 1d

] =]]

2b 2 2d 2e

—

I b2z I . I Vi

s | -
w0 | e
g | | e
wz | | wa

3a 3b

@

Graphe orienté fini

= Partie 2 : Graphe biparti

QO9- Fonction sommets_12(G,C,N) prenant en argument le graphe G, N et C, et retournant les 2
Tuples des sommets S1 et S2 des joueurs J1 et J2
def sommets_12(G, C, N):
""" sommets_12(G, C, N)
entrees : G, dictionnaire, represente le graphe
: C, N, entiers representant le nombre de couleurs et le nombre de tablettes
sorties: 2 tuples pour les sommets de J1 et de J2
s1 =[]
S2 =[]
n = N*C # nombre total de tablettes = nb de piles initial
for e in G:
if len(e)%2 == n%2:
S1.append(e)
else:
S2.append(e)
return tuple(S1),tuple(S2) # S1 et S2 déja Tuples, donc Tuples inutile

Q10- Créer les Tuples S1 et S2 dans le cas C=N=2.
C,N = 2,2
Graphe = graphe(C , N)

S1,S2 = sommets_12(Graphe , C , N)

Q11- Pour C=N=2, et en prenant a chaque fois le 1°* successeur identifié dans le graphe, afficher
une partie et préciser le joueur gagnant

C,N = 2,2

Graphe = graphe(C,N) #generation du graphe du jeu

x0 = init(C,N) #situation initiale

Joueur = 1

print("Joueur:" , Joueur)

print("Jeu:", x0)

lesSuccesseurs = Graphe[Tuple(x@)] #successeurs de la situation initiale

while len(lesSuccesseurs)>0:
succ = lesSuccesseurs[@] #ler successeur
Joueur = 3 - Joueur
print("Joueur:", Joueur)
print("Jeu:",succ)
lesSuccesseurs = Graphe[Tuple(succ)] #successeurs du ler successeur

Détermination des positions qagnantes

Positions Une position :

2b 2e 3a 3b pas gagnantes car pas de successeurs * est gagnante s’il existe au moins un
.] ’

2a 2c 2d gagnantes car au moins un successeur n'est pas gagnant Sl b ol i ol G

N’est pas gagnante si :

la et 1d pas gagnants car tous les successeurs sont gagnants (2a) T) S e

1b gagnant car au moins un successeur pas gagnant (2b) . Alictin de ses siccessets nestipas
lc gagnant car au moins un successeur pas gagnant (2e) gagnant = Tous ses successeurs sont
0 gagnant car au moins un successeur pas gagnant (la et 1d) gagnants

Finalement, les positions gagnantes sont: 0 1b 1c 2a 2c 2d ~

Q13-Fonction est_gagnante(G,x) prenant en argument le graphe du jeu et la position x (liste ou
Tuple) et renvoyant le booléen True si la position est gagnante pour le joueur qui y joue, et False
sinon

Version 1: On vérifie que tous les successeurs sont gagnants
Pour gagner du temps, on s'arréte dés qu'un successeur pas gagnant a été trouvé

def est_gagnante(G,x): # x liste ou Tuple
lesSuccesseurs = G[Tuple(x)]

if len(lesSuccesseurs) == 0:
return False # Non gagnant
else: # Tous les successeurs sont gagnants
Tous_Gagnants = True
for succ in lesSuccesseurs: # succ est une liste
Tous_Gagnants = Tous_Gagnants and est_gagnante(G,succ)
if Tous_Gagnants == False: # gagne du temps
break # Position gagnante
return not(Tous_Gagnants) # Position pas gagnante

Q13-Fonction est_gagnante(G,x) prenant en argument le graphe du jeu et la position x (liste ou
Tuple) et renvoyant le booléen True si la position est gagnante pour le joueur qui y joue, et False
sinon

def est_gagnante(G,x): # x liste ou Tuple

Détermination des successeurs de x
lesSuccesseurs = G[Tuple(x)]

Aucun successeur => Pas gagnant
if len(lesSuccesseurs) ==
return False # Aucun successeur => Pas gagnant

else: # Aucun successeur pas gagnant?
Res = False
for succ in lesSuccesseurs: # succ est une liste
if not est_gagnante(G,succ): # Un pas gagnant trouvé
Res = True # Position gagnante
break # Gagne du temps
return Res

* Ql4- Mettre en place une fonction dico_gagnant(G) dont les clés sont les positions du graphe
et les valeurs, le booléen True ou False indiquant si la position est gagnante ou non.

def dico_gagnant(G):
dico = {}
for x in G:
dico[x] = est_gagnante(G,x)
return dico

C,N = 2,2

Graphe = graphe(C,N)

x0 = init(C,N)

dico_g = dico_gagnant(Graphe)

Statut_x0 = dico_g[Tuple(x®)]

print("Le joueur 1 dispose d'une position gagnante ?",Statut_xo)

""" Résultat
Le joueur 1 dispose d'une position gagnante ? True

= Q15- Fonction dico_gagnant_opt(G) renvoyant le dictionnaire des états gagnants des positions du
graphe avec mémoisation
def est_Gagnante_rec(G,x, dico): # Programmé pour que x soit un Tuple (*)
if x in dico: # Nouveau
return dico[x] # Nouveau
else: # Nouveau
if len(x) == @:
dico[x] = False # Nouveau
return False
else:
lesSuccesseurs = G[x]
Res = False
for succ in lesSuccesseurs:
if not est_Gagnante_rec(G,Tuple(succ), dico): # (*) x est un Tuple
Res = True
break
dico[x] = Res # Nouveau
return Res
def dico_gagnant_opt(G):
dico = {}
for x in G:
dico[x] = est_Gagnante_rec(G,x,dico) # x est un Tuple
return dico

= Q18- Fonction init_attracteurs(G,S1) prenant en parameétre le graphe G du jeu et le Tuple S1
des sommets du joueur J1 et renvoyant les deux dictionnaires attendus

def init_attracteurs(G,S1):
""" ipit_attracteurs(G : dict, S1 list)
entrees : G : dictionnaire representant le graphe
: S1, liste des sommets gagnants du joueurl
sortie : d1, d2, dictionnaires - cle : sommet (tuple),
valeur : booleen inidiquant si le sommet est dans les sommets gagnants du joueur j1 """
#initialisation des dict d1 et D2 - cle:sommet du graphe(tuple)- valeur:False par defaut
dl = {cle:False for cle in G}
d2 = {cle:False for cle in G}

for x in G: # x Tuple
L_succ = G[Tuple(x)]
if len(L_succ) == @: # sans successeurs
if x in S1: # de S1 contenant des Tuples
d2[x] = True

else: CGN = 2,2
di[x] = True Graphe = graphe(C,N)
return di,d2 S1,S2 = sommets_12(Graphe,C,N)

dA1,dA2 = init_attracteurs(Graphe,S1)

print("dAl=",dAl)

print("dA2=",dA2) @

* Q19- Fonction cond_1(G,di,x) prenant en parameétre le graphe du jeu G, le dictionnaire di des
attracteurs du joueur Ji et un sommet x du jeu (liste), et renvoyant le booléen True si le sommet

respecte la condition (1), False sinon

Q19 - cond_1
def cond_1(G,di,x):
''"' cond_1(G : dict ,di : dict ,x : list)
entrees : G, dictionnaire, qui représente le graphe
: di, dictionnaires des attracteurs
: X, liste représentant le sommet
sortie : booléen, a True si au moins un successeur de x est a True dans di
L_succ = G[Tuple(x)]
for succ in L_succ:
if di[Tuple(succ)] == True:
return True
return False

* Q20- Fonction cond_2(G,di,x) prenant en parameétre le graphe du jeu G, le dictionnaire di des
attracteurs du joueur Ji et un sommet x du jeu (liste), et renvoyant le booléen True si le sommet
posséde des successeurs et respecte la condition (2), False sinon

def cond_2(G,di,x):
"'' cond_2(G : dict ,di : dict ,x : list)
entrees : G, dictionnaire, qui représente le graphe
: di, dictionnaires des attracteurs
: X, liste représentant le sommet
sortie : booléen, a True si tous les successeurs de x sont True dans di
L_succ = G[Tuple(x)]
if len(L_succ) ==
return False
else:
Res = True
for succ in L_succ:
Res = Res and di[Tuple(succ)]
return Res

10

* Q21- Fonction attracteurs_it(G,di,Si) prenant en parameétre le graphe G, le dictionnaire di
des attracteurs de Ji, et le Tuple Si des positions du joueur Ji, réalisant une itération de la
procédure de détermination des attracteurs du joueur Ji en changeant les valeurs dans di (en
place), et renvoyant True si au moins un changement (False vers True) a eu lieu, False sinon.

def attracteurs_it(G,di,Si):
Changement = False
for x in G:
if di[x] == False:
if x in Si:
Cond = cond_1(G,di,x)
else:
Cond = cond_2(G,di,x)
di[x] = Cond
Changement = Changement or Cond
return Changement

= Q22- Créer la fonction attracteurs_Ji(G,di,Si) avec les mémes parameétres que attracteurs_it
réalisant la procédure compléte de création des attracteurs du joueur Ji en complétant di.

def attracteurs_Ji(G,di,Si):
Changement = True
while Changement:
Changement = attracteurs_it(G,di,Si)

= Q23- Créer enfin la fonction attracteurs(G,C,N) créant et renvoyant les dictionnaires dA1 et
dA2 des attracteurs des joueurs J1 et J2

def attracteurs(G,C,N):
S1,S2 = sommets_12(G,C,N)
dA1,dA2 = init_attracteurs(G,S1)
attracteurs_Ji(G,dA1,S1)
attracteurs_Ji(G,dA2,S2)
return dA1,dA2

C,N = 2,2
Graphe = graphe(C,N)
dA1,dA2 = attracteurs(Graphe,C,N)

11

* Q24- Créer la fonction dico_gagnant_att(G,C,N) prenant en parameétres le graphe G, C et N,
et renvoyant le dictionnaire des positions gagnantes

def dico_gagnant_att(G,C,N):
S1,S2 = sommets_12(G,C,N)
dl,d2 = init_attracteurs(G,S1)
attracteurs(G,C,N)
dico = {}
for x in G:
if x in S1 and di[x]:
dico[x] = True
elif x in S2 and d2[x]:
dico[x] = True
else:
dico[x] = False
return dico

C,N = 2,2
Graphe = graphe(C,N)

dico_g att = dico_gagnant_att(Graphe,C,N)
dico_g = dico_gagnant(Graphe)

test = dico_g==dico_g_att

» Q25- Créer la fonction strategie_opt(G,dg,x) prenant en parametre le graphe G, le dictionnaire

gagnant dg et une position x (liste), et renvoyant un choix de successeur respectant le choix du
meilleur coup.

from random import randint as rd

def strategie_opt(G, dg, x):
L_succ = G[Tuple(x)]
if len(L_succ) == 0:
Choix=[]
else:
L_Choix = []
for succ in L_succ:
if not dg[Tuple(succ)]:
L_Choix.append(succ)
if len(L_Choix) == 0:
L_Choix = L_succ
ind = rd(0,len(L_Choix)-1)
Choix = L_Choix[ind]
return Choix

12

» Q26- Créer la fonction strategies_opt(G,dg) prenant en parametre le graphe G et le

dictionnaire gagnant dg, et renvoyant un dictionnaire dico_s dont chaque clé est une position x du
jeu (Tuple), et chaque valeur la solution issue du meilleur coup a jouer depuis x pour le joueur qui

y est.

def strategies_opt(G,dg):
dico_s = {}
for x in G: # x Tuple
dico_s[x] = strategie opt(G,dg,x)
return dico_s

C=N=2

G = graphe(C,N)

dico_g = dico_gagnant(G)

st_opt = strategies_opt(G,dico_g)

n QZZ_ Créer la foncfinn 1ol NN\ At afficha 1a iAanany AienAacant AYiina ctratAaria Ararmanta an
déparnlesétapescidEF jeu(C,N): # Q27 - Simulation d'un jeu
G = graphe(C,N)
= Q28- Utiliser la fon x0 = init(C,N)

dico_g = dico_gagnant(G) # pour afficher le joueur qui gagne en théorie

Statut_x0 = dico_g[Tuple(x0)]
if Statut_xe:

print("Le joueur 1 dispose d'une position gagnante")
else:

print("Le joueur 2 dispose d'une position gagnante")
st_opt = strategies_opt(G,dico_g)

j=1
print('Départ:"',x0)
X = X0

while len(x) > @:
x = st_opt[Tuple(x)]
J = (3-3)%2
print('Joueur:',j+1)
print(x)
print('a perdu')
A exécuter plusieurs fois # Q28 - Utilisation du jeu
jeu(3,3) # Joueur 1 gagne
jeu(2,3) # Joueur 2 gagne
jeu(3,2) # Joueur 2 gagne

position gagnante au départ gagne le jeu

Dans tous les cas, le joueur disposant d'une

13

= Minimax et heuristique

= Q29- Mettre en place la fonction h(x,bool) prenant en parameétre une position x du jeu (liste)
et le booléen bool valant True si le joueur joue, False si c’est son adversaire, et renvoyant le
résultat de I’heuristique proposée.

def h(x,bool): # bool = True si le joueur joue, False si adversaire
""" h(x : list,bool: bool) -> int
entrees : x, list, correspond a la configuration/position
: bool, vaut True si le joueur joue, False sinon
sortie : retourne un entier qui vaut 0,1, ou -1
Lc = coups(x) # determination de la liste des positions accessibles
#cas ou X ne possede pas de successeur
if len(Lc) == 0:
if bool: # Le joueur a perdu
return -1
else: # L'adversaire a perdu, donc le joueur a gagné
return 1
else:
return 9
test = h(Pos_0,True)
print(test)
test = h(Pos_1la,False)
print(test)
test = h(Pos 2b . True)

» Q30- Créer la fonction min_max(x,p,bool) prenant en parameétre une position x (liste), une
profondeur p (entier) et le booléen représentant si c’est le coup du joueur (True) ou de
I’adversaire (False) et renvoyant la valeur min-max attendue.

def min_max(x,p,bool):
""" min_max(x: list, p: int , bool: bool) -> int
entrees : x, list, correspond a la configuration/position
p, int, profondeur
bool, vaut True si le joueur joue, False sinon
sortie : entier qui correspond a la valeur min-max attendue
Lc = coups(x)
if len(Lc)==0 or p==0:
return h(x,bool)
else:
Lh = []
if bool: # Coup du joueur : on cherche le maximum
for c in Lc:
valMinMax = min_max(c,p-1,False)
Lh.append(valMinMax)
return max(Lh)
else: # Coup de 1l'adversaire : on cherche le minimum
for c in Lc:
valMinMax = min_max(c,p-1,True)
Lh.append(valMinMax)
return min(Lh)

14

= Q32- Sivous avez du temps, proposer une
fonction min_max_opt(x,p,bool)
réalisant le méme travail que min_max
avec mémoisation, observer le gain de
temps pour C=N=3 et remplir le tableau
des positions gagnantes au départ pour
Cmax=4 et Nmax=4.

def min_max_opt(x,p,bool):
def rec(x,p,bool): # x liste ou tuple
if Tuple(x) in dico:
return dico[Tuple(x)]
else:
Lc = coups(x)
if len(Lc)==0 or p==0:
res = h(x,bool)
dico[Tuple(x)] = res
return res
else:
Lh = []
if bool: # Coup du joueur
for ¢ in Lc:
Min_max = rec(c,p-1,False)
Lh.append(Min_max)
res = max(Lh)
dico[Tuple(x)] = res
return res
else: # Coup de 1'adversaire
for ¢ in Lc:
Min_max = rec(c,p-1,True)
Lh.append(Min_max)
res = min(Lh)
dico[Tuple(x)] = res
return res
dico = {}
return rec(x,p,bool)

= Q33- Créer la fonction choix_ind_max(L) prenant en parameétre une liste L et renvoyant
aléatoirement I'un des indices python des maximums de L

def choix_ind_max(L):
entree :
sortie :

L, liste de valeurs,

choix_ind_max(L: 1list) -> int

Ind, entier qui correspond a 1l'indice d'une des valeurs maximales

(s'il y en a plusieurs, 1l'indice sera choisi aleatoirement)

maxi = max(L) #determination de la valeur maximale

L_ind = []
for i in range(len(L)):
if L[i] == maxi:

L_ind.append(i)
i = rd(9,len(L_ind)-1)
Ind = L_ind[i]
return Ind

#L_ind, liste qui sert a stocker les indices des valeurs maximales

15

* Q34- Créer la fonction strategie_h(x,p) renvoyant le meilleur choix de coup depuis x avec
une étude a la profondeur p.

def strategie_h(x,p):
""" strategie_h(x,p) -> int
entrees : x,liste position/configuration
: p, int, profondeur
sortie : Choix, liste qui correspond a la position suivante
Lc = coups(x)
if len(Lc) == 0:
Choix=[]
else:
if p==0: # Choix aléatoire
ind = rd(0,len(Lc)-1)
else:
Lm = []
for c in Lc:
valMinMax = min_max(c,p-1,False) # Penser a mettre False
Lm.append(valMinMax)
ind = choix_ind_max(Lm)
Choix = Lc[ind]
return Choix

= Q35- Créer la fonction jeu_h(C,N,p) simulant un jeu pour les valeurs de C et N avec une étude
a chaque coup a la profondeur p.

def jeu_h(C,N,p):
""" jeu_h(C:int, N:int , p:int)
entrees : C,N, entiers, nombre de couleurs et nombre de jetons
: p,, entier, profondeur

x0 = init(C,N)

j=1
print('Départ:"',x0)
X = X0

while len(x) > @:
x = strategie_h(x,p)
j = (3-3)%2
print('Joueur:',j+1)
print(x)

print('a perdu')

» Q36- Utiliser la fonction jeu_h pour différentes situations et observer les résultats.
Q36 - Utilisation du jeu

jeu_h(2,2,2) # joueur 1 gagnant

16

