
1

Informatique Tronc Commun

E. CLERMONT

 Nombre de tablettes /couleur : N=2

 Couleurs : ci=0 pour le rouge, ci=1 pour le noir

 Situation 1: x = [[0,1] , [0,1] , [1,1] , [1,1]]

 Situation 2: x = [[0,2],[1,1],[1,1]]

2

Situation 1 Sitution 2

Q1-Etat de la liste x dans les 2 situations

2

Q2-Fonction empile(x, i, j) prenant en paramètres la liste de situations x et les indices i,j de 2
piles pi et pj tels que i≠j.

La fonction retourne la liste de listes LXij des situations atteignables par empilement.

3

def empile(x,i,j):
""" empile (x : list, i : int, j : int)-> list

entrees : x, liste de listes(ci,hi), represente la situation initiale.
: i, j, entiers, indices des piles que l'on veut empiler

sortie; LXij , liste de situations possibles après empilement """
LXij = []
ci , hi = x[i]
cj , hj = x[j]
if ci==cj or hi==hj : #empilement possible

reste = x[:i]+x[i+1:j]+x[j+1:]
pij = [ci,hi+hj] # pile ci sur cj (arbitrairement)
X = reste + [pij]
X.sort()
LXij.append(X)
if ci!=cj: # si couleur différente => ajouter la situation avec cj au dessus

pji = [cj,hi+hj] # pile cj sur ci
X = reste + [pji]
X.sort()
LXij.append(X)

return LXij

 Q3 Fonction coups(x) qui prend en paramètre une situation x (liste) et retourne une liste
de listes LX de toutes les situations différentes atteignables depuis x.

4

def coups(x):
""" coups(x : list) -> list
entree: x, liste de liste(ci,hi), situation initiale
sortie: ensemble des situations possibles avec ttes les combinaisons d'empilement possibles

"""
LX = []
for i in range(len(x)):

for j in range(i+1 , len(x)):
LXij = empile(x,i,j)
for X in LXij:

if X not in LX: # On n'ajoute la situation que si elle n'a pas dejà été stockée
LX.append(X)

return LX
x = [[0,2],[0,3],[1,1],[1,2]]
lesCoups1 = coups(x)
print(lesCoups1)
affiche [[[0, 5], [1, 1], [1, 2]], [[0, 3], [0, 4], [1, 1]], [[0, 3], [1, 1], [1, 4]],
[[0, 2], [0, 3], [1, 3]]]
x = [[0,1],[0,1],[1,1],[1,1]]
lesCoups2 = coups(x)
print(lesCoups2)
affiche [[[0, 2], [1, 1], [1, 1]], [[0, 1], [0, 2], [1, 1]], [[0, 1], [1, 1], [1, 2]],
[[0, 1], [0, 1], [1, 2]]]

3

 Partie 2 : Création du graphe du jeu

 Q4-Fonction init(C, N) prenant en argument le nombre de couleurs C et le nombre de tablettes par
couleur N et renvoyant la liste x0 situation initiale du jeu triée

5

def init(C,N):
""" init(C : int, N: int) -> list

entrees : C, entier positif, nombre de couleurs differentes
: N , entier positif, nombre de tablettes par couleur

sortie : x0, liste de listes (ci,hi) correspondant à la situation initiale
"""
x0 = []
for c in range(C):

for _ in range(N):
x0.append([c,1])

x0.sort() # Inutile compte tenu de ma programmation avec c croissant
return x0

test = init(3, 4)
print(test)
affiche [[0, 1], [0, 1], [0, 1], [0, 1], [1, 1], [1, 1], [1, 1], [1, 1], [2, 1], [2, 1]
, [2, 1], [2, 1]]

 Q5-Fonction récursive Tuple(L) réalisant cette transformation de liste en Tuple.

6

def Tuple(L):
if L==[]:

return ()
elif type(L[0])!=list:

return tuple(L)
else:

Res = []
for l in L:

Res.append(Tuple(l))
return tuple(Res)

4

 Q6- Fonction graphe(C , N) réalisant le parcours en largeur des possibilités.

7

from collections import deque
def graphe(C,N):

""" graphe(C : int ,N:int)-> dict
entrees:C, entier positif, nombre de couleurs differentes

:N , entier positif, nombre de tablettes par couleur
sortie:G, dictionnaire,le:tuple de la situation,valeur:liste de liste de situation atteignables """

constitution de la situation initiale
x0 = init(C,N)
G = {} # initialisation du dictionnaire G qui représente le graphe
file = deque()
file.append(x0) # initialisation de la file avec la situation initiale x0
while len(file) != 0:

x = file.popleft() # recuperation du 1er element de la file
Cle = Tuple(x) # génération de la cle sous forme de Tuple
LCoupsSuivants = coups(x) #Recuperation de la liste des situations atteignables depuis x
G[Cle] = LCoupsSuivants # ajout dans le graphe du couple clé, valeur
ajout dans la file des differentes situations (si elles n'ont pas dejà été stockées) p

our traitement ultérieur
for c in LCoupsSuivants:

if Tuple(c) not in G:
file.append(c)

return G

Q7- Que représentent N1 et N2 ?

8

N1 = len(Graphe)
N2 = sum([len(Graphe[x]) for x in Graphe])

N1 : nombre de sommets (12 sur l’exemple)
N2 : nombre d’arêtes (16 sur l’exemple)

{((0, 1), (0, 1), (1, 1), (1, 1)): [[[0, 2], [1, 1], [1, 1]],
[[0, 1], [0, 2], [1, 1]],
[[0, 1], [1, 1], [1, 2]],
[[0, 1], [0, 1], [1, 2]]],

((0, 2), (1, 1), (1, 1)) : [[[0, 2], [1, 2]]],
((0, 1), (0, 2), (1, 1)) : [[[0, 3], [1, 1]],

[[0, 2], [0, 2]],
[[0, 2], [1, 2]]],

((0, 1), (1, 1), (1, 2)) : [[[0, 2], [1, 2]],
[[1, 2], [1, 2]],
[[0, 1], [1, 3]]],

((0, 1), (0, 1), (1, 2)) : [[[0, 2],
[1, 2]]],

((0, 2), (1, 2)) : [[[0, 4]],
[[1, 4]]],

((0, 3), (1, 1)) : [],
((0, 2), (0, 2)) : [[[0, 4]]],
((1, 2), (1, 2)) : [[[1, 4]]],
((0, 1), (1, 3)) : [],
((0, 4),): [],
((1, 4),): []
}

5

Q7- Que représentent N1 et N2 ?

9

N1 = len(Graphe)
N2 = sum([len(Graphe[x]) for x in Graphe])

N1 : nombre de sommets (12 sur l’exemple)
N2 : nombre d’arêtes (16 sur l’exemple)

Q8- Remplissage tableau :

from time import perf_counter
C,N = 2,2 # A modifier pour chaque cas
tic = perf_counter()
Graphe = graphe(C,N)
toc = perf_counter()
T = toc - tic

print("Pour C = "+str(C)+" et N = "+str(N))
Nb_Sommets = len(Graphe) # N1
print("Sommets:",Nb_Sommets)
#N2
Nb_Aretes =sum([len(Graphe[x])for x in Graphe])
print("Arêtes:",Nb_Aretes)
print("Temps (s):",T)

N = 1 2 3 4

C = 1

Sommets 1 2 3 5

Arêtes 0 1 2 5

Temps (s) 2,1.10-5 8,0.10-6 1,6.10-5 2,9.10-5

C = 2

Sommets 3 12 43 133

Arêtes 2 16 90 386

Temps (s) 1,1.10-5 8,8.10-5 1,0.10-3 2,8.10-2

C = 3

Sommets 7 92 696 4220

Arêtes 6 234 2832 23 487

Temps (s) 2,6.10-5 3,9.10-3 1,2 6560

C = 4

Sommets 23 728

Arêtes 48 3040

Temps (s) 9,1.10-4 1,6

1a

0

1b

1c

2a

1d

2b

2c

2e

2d

3a

3b

1a101 1b1 1c1 2a11d1 2b1 2c1 2e12d1 3a1 3b1

1a202 1b2 1c2 2a21d2 2b2 2c2 2e22d2 3a2 3b2

Graphe biparti

Graphe orienté fini

6

 Partie 2 : Graphe biparti

Q9- Fonction sommets_12(G,C,N) prenant en argument le graphe G, N et C, et retournant les 2
Tuples des sommets S1 et S2 des joueurs J1 et J2

11

def sommets_12(G, C, N):
""" sommets_12(G, C, N)

entrees : G, dictionnaire, represente le graphe
: C, N, entiers representant le nombre de couleurs et le nombre de tablettes

sorties: 2 tuples pour les sommets de J1 et de J2
"""
S1 = []
S2 = []
n = N*C # nombre total de tablettes = nb de piles initial
for e in G:

if len(e)%2 == n%2:
S1.append(e)

else:
S2.append(e)

return tuple(S1),tuple(S2) # S1 et S2 déjà Tuples, donc Tuples inutile

C,N = 2,2
Graphe = graphe(C , N)
S1,S2 = sommets_12(Graphe , C , N)

Q10- Créer les Tuples S1 et S2 dans le cas C=N=2.

Q11- Pour C=N=2, et en prenant à chaque fois le 1er successeur identifié dans le graphe, afficher
une partie et préciser le joueur gagnant

12

C,N = 2,2
Graphe = graphe(C,N) #generation du graphe du jeu
x0 = init(C,N) #situation initiale
Joueur = 1
print("Joueur:" , Joueur)
print("Jeu:", x0)
lesSuccesseurs = Graphe[Tuple(x0)] #successeurs de la situation initiale

while len(lesSuccesseurs)>0:
succ = lesSuccesseurs[0] #1er successeur
Joueur = 3 - Joueur
print("Joueur:", Joueur)
print("Jeu:",succ)
lesSuccesseurs = Graphe[Tuple(succ)] #successeurs du 1er successeur

7

Détermination des positions gagnantes

 positions gagnantes

13

Positions
2b 2e 3a 3b pas gagnantes car pas de successeurs
2a 2c 2d gagnantes car au moins un successeur n'est pas gagnant
1a et 1d pas gagnants car tous les successeurs sont gagnants (2a)
1b gagnant car au moins un successeur pas gagnant (2b)
1c gagnant car au moins un successeur pas gagnant (2e)
0 gagnant car au moins un successeur pas gagnant (1a et 1d)

Finalement, les positions gagnantes sont: 0 1b 1c 2a 2c 2d

Une position :
• est gagnante s’il existe au moins un

successeur qui n’est pas gagnant
• N’est pas gagnante si :
- Elle n’a pas de successeurs
- Aucun de ses successeurs n’est pas

gagnant = Tous ses successeurs sont
gagnants

G GGG

G G
NG NG

NGNG

NG NG

Q13-Fonction est_gagnante(G,x) prenant en argument le graphe du jeu et la position x (liste ou
Tuple) et renvoyant le booléen True si la position est gagnante pour le joueur qui y joue, et False
sinon

14

'''
Version 1: On vérifie que tous les successeurs sont gagnants
Pour gagner du temps, on s'arrête dès qu'un successeur pas gagnant a été trouvé
'''
def est_gagnante(G,x): # x liste ou Tuple

lesSuccesseurs = G[Tuple(x)]

if len(lesSuccesseurs) == 0:
return False # Non gagnant

else: # Tous les successeurs sont gagnants
Tous_Gagnants = True
for succ in lesSuccesseurs: # succ est une liste

Tous_Gagnants = Tous_Gagnants and est_gagnante(G,succ)
if Tous_Gagnants == False: # gagne du temps

break # Position gagnante
return not(Tous_Gagnants) # Position pas gagnante

8

Q13-Fonction est_gagnante(G,x) prenant en argument le graphe du jeu et la position x (liste ou
Tuple) et renvoyant le booléen True si la position est gagnante pour le joueur qui y joue, et False
sinon

15

def est_gagnante(G,x): # x liste ou Tuple

Détermination des successeurs de x

Aucun successeur => Pas gagnant
if :

return False

else: # Aucun successeur pas gagnant?

for : # Parcours des successeurs

if # Si un sommet pas gagnant trouvé

return

def est_gagnante(G,x): # x liste ou Tuple

Détermination des successeurs de x
lesSuccesseurs = G[Tuple(x)]

Aucun successeur => Pas gagnant
if len(lesSuccesseurs) == 0:

return False # Aucun successeur => Pas gagnant

else: # Aucun successeur pas gagnant?
Res = False
for succ in lesSuccesseurs: # succ est une liste

if not est_gagnante(G,succ): # Un pas gagnant trouvé
Res = True # Position gagnante
break # Gagne du temps

return Res

 Q14- Mettre en place une fonction dico_gagnant(G) dont les clés sont les positions du graphe
et les valeurs, le booléen True ou False indiquant si la position est gagnante ou non.

16

def dico_gagnant(G):
dico = {}
for x in G:

dico[x] = est_gagnante(G,x)
return dico

C,N = 2,2
Graphe = graphe(C,N)
x0 = init(C,N)
dico_g = dico_gagnant(Graphe)
Statut_x0 = dico_g[Tuple(x0)]
print("Le joueur 1 dispose d'une position gagnante ?",Statut_x0)

''' Résultat
Le joueur 1 dispose d'une position gagnante ? True
'''

9

 Q15- Fonction dico_gagnant_opt(G) renvoyant le dictionnaire des états gagnants des positions du
graphe avec mémoïsation

17

def est_Gagnante_rec(G,x, dico): # Programmé pour que x soit un Tuple (*)
if x in dico: # Nouveau

return dico[x] # Nouveau
else: # Nouveau

if len(x) == 0:
dico[x] = False # Nouveau
return False

else:
lesSuccesseurs = G[x]
Res = False
for succ in lesSuccesseurs:

if not est_Gagnante_rec(G,Tuple(succ), dico): # (*) x est un Tuple
Res = True
break

dico[x] = Res # Nouveau
return Res

def dico_gagnant_opt(G):
dico = {}
for x in G:

dico[x] = est_Gagnante_rec(G,x,dico) # x est un Tuple
return dico

 Q18- Fonction init_attracteurs(G,S1) prenant en paramètre le graphe G du jeu et le Tuple S1
des sommets du joueur J1 et renvoyant les deux dictionnaires attendus

18

def init_attracteurs(G,S1):
""" init_attracteurs(G : dict, S1 list)

entrees : G : dictionnaire representant le graphe
: S1, liste des sommets gagnants du joueur1

sortie : d1, d2, dictionnaires - cle : sommet (tuple),
valeur : booleen inidiquant si le sommet est dans les sommets gagnants du joueur j1 """

#initialisation des dict d1 et D2 - cle:sommet du graphe(tuple)- valeur:False par defaut
d1 = {cle:False for cle in G}
d2 = {cle:False for cle in G}

for x in G: # x Tuple
L_succ = G[Tuple(x)]
if len(L_succ) == 0: # sans successeurs

if x in S1: # de S1 contenant des Tuples
d2[x] = True

else:
d1[x] = True

return d1,d2

C,N = 2,2
Graphe = graphe(C,N)
S1,S2 = sommets_12(Graphe,C,N)
dA1,dA2 = init_attracteurs(Graphe,S1)

print("dA1=",dA1)
print("dA2=",dA2)

10

 Q19- Fonction cond_1(G,di,x) prenant en paramètre le graphe du jeu G, le dictionnaire di des
attracteurs du joueur Ji et un sommet x du jeu (liste), et renvoyant le booléen True si le sommet
respecte la condition (1), False sinon

19

Q19 - cond_1
def cond_1(G,di,x):

''' cond_1(G : dict ,di : dict ,x : list)
entrees : G, dictionnaire, qui représente le graphe

: di, dictionnaires des attracteurs
: x, liste représentant le sommet

sortie : booléen, à True si au moins un successeur de x est à True dans di'''
L_succ = G[Tuple(x)]
for succ in L_succ:

if di[Tuple(succ)] == True:
return True

return False

 Q20- Fonction cond_2(G,di,x) prenant en paramètre le graphe du jeu G, le dictionnaire di des
attracteurs du joueur Ji et un sommet x du jeu (liste), et renvoyant le booléen True si le sommet
possède des successeurs et respecte la condition (2), False sinon

20

def cond_2(G,di,x):
''' cond_2(G : dict ,di : dict ,x : list)

entrees : G, dictionnaire, qui représente le graphe
: di, dictionnaires des attracteurs
: x, liste représentant le sommet

sortie : booléen, à True si tous les successeurs de x sont True dans di'''
L_succ = G[Tuple(x)]
if len(L_succ) == 0:

return False
else:

Res = True
for succ in L_succ:

Res = Res and di[Tuple(succ)]
return Res

11

 Q21- Fonction attracteurs_it(G,di,Si) prenant en paramètre le graphe G, le dictionnaire di
des attracteurs de Ji, et le Tuple Si des positions du joueur Ji, réalisant une itération de la
procédure de détermination des attracteurs du joueur Ji en changeant les valeurs dans di (en
place), et renvoyant True si au moins un changement (False vers True) a eu lieu, False sinon.

21

def attracteurs_it(G,di,Si):
Changement = False
for x in G:

if di[x] == False:
if x in Si:

Cond = cond_1(G,di,x)
else:

Cond = cond_2(G,di,x)
di[x] = Cond
Changement = Changement or Cond

return Changement

 Q22- Créer la fonction attracteurs_Ji(G,di,Si) avec les mêmes paramètres que attracteurs_it
réalisant la procédure complète de création des attracteurs du joueur Ji en complétant di.

22

def attracteurs_Ji(G,di,Si):
Changement = True
while Changement:

Changement = attracteurs_it(G,di,Si)

def attracteurs(G,C,N):
S1,S2 = sommets_12(G,C,N)
dA1,dA2 = init_attracteurs(G,S1)
attracteurs_Ji(G,dA1,S1)
attracteurs_Ji(G,dA2,S2)
return dA1,dA2

C,N = 2,2
Graphe = graphe(C,N)
dA1,dA2 = attracteurs(Graphe,C,N)

 Q23- Créer enfin la fonction attracteurs(G,C,N) créant et renvoyant les dictionnaires dA1 et
dA2 des attracteurs des joueurs J1 et J2

12

 Q24- Créer la fonction dico_gagnant_att(G,C,N) prenant en paramètres le graphe G, C et N,
et renvoyant le dictionnaire des positions gagnantes

23

def dico_gagnant_att(G,C,N):
S1,S2 = sommets_12(G,C,N)
d1,d2 = init_attracteurs(G,S1)
attracteurs(G,C,N)
dico = {}
for x in G:

if x in S1 and d1[x]:
dico[x] = True

elif x in S2 and d2[x]:
dico[x] = True

else:
dico[x] = False

return dico

C,N = 2,2
Graphe = graphe(C,N)
dico_g_att = dico_gagnant_att(Graphe,C,N)
dico_g = dico_gagnant(Graphe)
test = dico_g==dico_g_att

 Q25- Créer la fonction strategie_opt(G,dg,x) prenant en paramètre le graphe G, le dictionnaire
gagnant dg et une position x (liste), et renvoyant un choix de successeur respectant le choix du
meilleur coup.

24

from random import randint as rd

def strategie_opt(G, dg, x):
L_succ = G[Tuple(x)]
if len(L_succ) == 0:

Choix=[]
else:

L_Choix = []
for succ in L_succ:

if not dg[Tuple(succ)]:
L_Choix.append(succ)

if len(L_Choix) == 0:
L_Choix = L_succ

ind = rd(0,len(L_Choix)-1)
Choix = L_Choix[ind]

return Choix

13

 Q26- Créer la fonction strategies_opt(G,dg) prenant en paramètre le graphe G et le
dictionnaire gagnant dg, et renvoyant un dictionnaire dico_s dont chaque clé est une position x du
jeu (Tuple), et chaque valeur la solution issue du meilleur coup à jouer depuis x pour le joueur qui
y est.

25

def strategies_opt(G,dg):
dico_s = {}
for x in G: # x Tuple

dico_s[x] = strategie_opt(G,dg,x)
return dico_s

C=N=2
G = graphe(C,N)
dico_g = dico_gagnant(G)
st_opt = strategies_opt(G,dico_g)

 Q27- Créer la fonction jeu(C,N) qui affiche le joueur disposant d’une stratégie gagnante au
départ, les étapes du jeu en précisant quel joueur joue, et quel joueur gagne

 Q28- Utiliser la fonction jeu pour différentes situations et conclure.

26

def jeu(C,N): # Q27 - Simulation d'un jeu
G = graphe(C,N)
x0 = init(C,N)
dico_g = dico_gagnant(G) # pour afficher le joueur qui gagne en théorie
Statut_x0 = dico_g[Tuple(x0)]
if Statut_x0:

print("Le joueur 1 dispose d'une position gagnante")
else:

print("Le joueur 2 dispose d'une position gagnante")
st_opt = strategies_opt(G,dico_g)
j = 1
print('Départ:',x0)
x = x0
while len(x) > 0:

x = st_opt[Tuple(x)]
j = (3-j)%2
print('Joueur:',j+1)
print(x)

print('a perdu')
''' A exécuter plusieurs fois # Q28 - Utilisation du jeu
jeu(3,3) # Joueur 1 gagne
jeu(2,3) # Joueur 2 gagne
jeu(3,2) # Joueur 2 gagne
'''

Dans tous les cas, le joueur disposant d'une
position gagnante au départ gagne le jeu

14

 Minimax et heuristique

 Q29- Mettre en place la fonction h(x,bool) prenant en paramètre une position x du jeu (liste)
et le booléen bool valant True si le joueur joue, False si c’est son adversaire, et renvoyant le
résultat de l’heuristique proposée.

27

def h(x,bool): # bool = True si le joueur joue, False si adversaire
""" h(x : list,bool: bool) -> int

entrees : x, list, correspond à la configuration/position
: bool, vaut True si le joueur joue, False sinon

sortie : retourne un entier qui vaut 0,1, ou -1
"""
determination de la liste des positions accessibles

#cas ou x ne possede pas de successeur
if

if : # Le joueur a perdu
return

else:
return

else:
return

test = h(Pos_0,True)
print(test)

def h(x,bool): # bool = True si le joueur joue, False si adversaire
""" h(x : list,bool: bool) -> int

entrees : x, list, correspond à la configuration/position
: bool, vaut True si le joueur joue, False sinon

sortie : retourne un entier qui vaut 0,1, ou -1
"""
Lc = coups(x) # determination de la liste des positions accessibles
#cas ou x ne possede pas de successeur
if len(Lc) == 0:

if bool: # Le joueur a perdu
return -1

else: # L'adversaire a perdu, donc le joueur a gagné
return 1

else:
return 0

test = h(Pos_0,True)
print(test)
test = h(Pos_1a,False)
print(test)
test = h(Pos_2b,True)

def min_max(x,p,bool):
""" min_max(x: list, p: int , bool: bool) -> int

entrees : x, list, correspond à la configuration/position
: p, int, profondeur
: bool, vaut True si le joueur joue, False sinon

sortie : entier qui correspond à la valeur min-max attendue """
determination liste des positions accessibles

if # cas ou pas de successeur ou profondeur nulle
return # on renvoie l heuristique

else:
Lh = []
if : # Coup du joueur : on cherche le maximum

return
else: # Coup de l'adversaire : on cherche le minimum

return

 Q30- Créer la fonction min_max(x,p,bool) prenant en paramètre une position x (liste), une
profondeur p (entier) et le booléen représentant si c’est le coup du joueur (True) ou de
l’adversaire (False) et renvoyant la valeur min-max attendue.

28

def min_max(x,p,bool):
""" min_max(x: list, p: int , bool: bool) -> int

entrees : x, list, correspond à la configuration/position
: p, int, profondeur
: bool, vaut True si le joueur joue, False sinon

sortie : entier qui correspond à la valeur min-max attendue """
Lc = coups(x)
if len(Lc)==0 or p==0:

return h(x,bool)
else:

Lh = []
if bool: # Coup du joueur : on cherche le maximum

for c in Lc:
valMinMax = min_max(c,p-1,False)
Lh.append(valMinMax)

return max(Lh)
else: # Coup de l'adversaire : on cherche le minimum

for c in Lc:
valMinMax = min_max(c,p-1,True)
Lh.append(valMinMax)

return min(Lh)

15

 Q32- Si vous avez du temps, proposer une
fonction min_max_opt(x,p,bool)
réalisant le même travail que min_max
avec mémoïsation, observer le gain de
temps pour C=N=3 et remplir le tableau
des positions gagnantes au départ pour
Cmax=4 et Nmax=4.

29

def min_max_opt(x,p,bool):
def rec(x,p,bool): # x liste ou tuple

if Tuple(x) in dico:
return dico[Tuple(x)]

else:
Lc = coups(x)
if len(Lc)==0 or p==0:

res = h(x,bool)
dico[Tuple(x)] = res
return res

else:
Lh = []
if bool: # Coup du joueur

for c in Lc:
Min_max = rec(c,p-1,False)
Lh.append(Min_max)

res = max(Lh)
dico[Tuple(x)] = res
return res

else: # Coup de l'adversaire
for c in Lc:

Min_max = rec(c,p-1,True)
Lh.append(Min_max)

res = min(Lh)
dico[Tuple(x)] = res
return res

dico = {}
return rec(x,p,bool)

 Q33- Créer la fonction choix_ind_max(L) prenant en paramètre une liste L et renvoyant
aléatoirement l’un des indices python des maximums de L

30

def choix_ind_max(L):
""" choix_ind_max(L: list) -> int

entree : L, liste de valeurs,
sortie : Ind, entier qui correspond à l'indice d'une des valeurs maximales

(s'il y en a plusieurs, l'indice sera choisi aleatoirement)
"""
maxi = max(L) #determination de la valeur maximale
L_ind = [] #L_ind, liste qui sert a stocker les indices des valeurs maximales
for i in range(len(L)):

if L[i] == maxi:
L_ind.append(i)

i = rd(0,len(L_ind)-1)
Ind = L_ind[i]
return Ind

16

 Q34- Créer la fonction strategie_h(x,p) renvoyant le meilleur choix de coup depuis x avec
une étude à la profondeur p.

31

def strategie_h(x,p):
""" strategie_h(x,p) -> int

entrees : x,liste position/configuration
: p, int, profondeur

sortie : Choix, liste qui correspond à la position suivante
"""
Lc = coups(x)
if len(Lc) == 0:

Choix=[]
else:

if p==0: # Choix aléatoire
ind = rd(0,len(Lc)-1)

else:
Lm = []
for c in Lc:

valMinMax = min_max(c,p-1,False) # Penser à mettre False
Lm.append(valMinMax)

ind = choix_ind_max(Lm)
Choix = Lc[ind]

return Choix

 Q35- Créer la fonction jeu_h(C,N,p) simulant un jeu pour les valeurs de C et N avec une étude
à chaque coup à la profondeur p.

32

def jeu_h(C,N,p):
""" jeu_h(C:int, N:int , p:int)

entrees : C,N, entiers, nombre de couleurs et nombre de jetons
: p,, entier, profondeur

"""
x0 = init(C,N)
j = 1
print('Départ:',x0)
x = x0
while len(x) > 0:

x = strategie_h(x,p)
j = (3-j)%2
print('Joueur:',j+1)
print(x)

print('a perdu')

Q36 - Utilisation du jeu

jeu_h(2,2,2) # joueur 1 gagnant

 Q36- Utiliser la fonction jeu_h pour différentes situations et observer les résultats.

