Entrée[4]:

Entrée[5]:

Informatique Tronc Commun - Révisions - Série 1 -
Recursivite

Code de partage : e17b-1788964

A faire pour lundi 18 septembre 2023 19h maximum

Exercice 1 : Fonction d’Ackermann

Définir une fonction ackermann qui implémente la fonction d’Ackermann définie par :

A(m, n) = n+1 sim=0
A(m, n) = Am-1,1) sim>0etn=0

Am,n)= Am-1,A(m,n-1)) sim>0etn>0

M def ackermann(m : int, n: int)-> int :

Entrées : m, n deux entiers positifs
Sortie : A(m,n)

A compléter

tests

print (ackermann(2,3)) # affiche 9
print (ackermann(@,3)) # affiche 4
print (ackermann(3,0)) # affiche 5

Exercice 2: Exponentiation rapide

Définir une fonction puissance en utilisant le principe de l'algorithme d’exponentiation
rapide.

M def puissance(x : float , p :int) -> int :
""" Entrées : x, flottant
: p, entier
Sortie : réel qui correspond a la puissance de x par p en utilisan

A compléter

Tests

print (puissance (2.5, 1)) # affiche 2.5
print (puissance (2.5, 3)) # affiche 15.625
print (puissance (2.5 , 2)) # affiche 6.25

Exercice 3 : Palindrome

Un mot est un palindrome si on peut le lire dans les deux sens de gauche a droite et de
droite a gauche. KAYAK est par exemple un palindrome.
Ecrire une fonction estPalindromeRec récursive permettant de vérifier si un mot est

Entrée[6]:

Entrée[7]:

palindrome.
Ecrire une fonction estPalindromelter itérative permettant de vérifier si un mot est
palindrome.

M def estPalindromeRec(ch):

estPalindromeRec(ch: str)-> bool (approche recursive)
Entree : ch, chaine dont on veut savoir si c'est un palindrome
Sortie : booléen a True si ch est un palindrome, a False sinon

A compléter

def estPalindromelIter(ch):

estPalindromeRec(ch: str)-> bool (approche itérative)
Entree : ch, chaine dont on veut savoir si c'est un palindrome
Sortie : booléen a True si ch est un palindrome, a False sinon

A compléter

Tests

ch = "KAYAK"

print(estPalindromeRec(ch)) # affiche True
print(estPalindromeIter(ch)) # affiche True
ch = "KAYOAK"

print(estPalindromeRec(ch)) # affiche False
print(estPalindromeIter(ch)) # affiche False

Exercice 4 : Conversion binaire

Définir une fonction récursive convertirBinaire qui prend en parameétres un entier
relatif et le nombre de bits sur lequel sont codés les nombres en binaire et le convertit en
binaire (complément a deux) sous la forme d’'une chaine de caracteres représentant
I'écriture binaire du nombre.

M def convertirBinaire(n, nbBits) :

Entrées : n entier relatif, nombre que 1l'on veut tranformer en bin
: nbBits, entier, nombre de bits de 1'écriture
Sortie : chaine de caracteres correspondant a 1'écriture binaire d

A compléter

Tests

print(convertirBinaire(2, 8)) # affiche 00000010

print(convertirBinaire(-2, 8)) # affiche 11111110

print(convertirBinaire(2, 16)) # affiche 0000000000000010

Exercice 5 : Calcul approché de 2

Définir les deux fonctions u et v, mutuellement récursives, qui calculent les nieme
termes des suites récurrentes croisées suivantes

uo=1

v0 =2

un+1 =2.un.vn/ (un+vn)

P I Iy S N\ N A]

Entrée[]: M def u(n) :
A compléter

def v(n) :
A compléter

print(u(2)) # affiche 1.411764705882353
print(v(2)) # affiche 1.4166666666666665

Exercice 6 : Tours de Hanoi appliquées a un
entrepot

Un entrepot se fait livrer des cartons chaque jour dans la zone de dépdt zoneDepot. Les
cartons sont empilés du plus lourd, en dessous, au plus léger, au dessus. La pile doit étre
déplacée par un robot dans la zone de traitement zoneArrivee .

Le robot dispose d’'une zone de transit Transit pour effectuer le déplacement. Le robot
peut prendre uniquement le carton au sommet de la pile et ne doit jamais empiler un
carton sur un carton plus léger que lui.

Définir une fonction deplacementsHanoi qui affiche la séquence d'instructions sous
forme de chaine de caractéres a envoyer au robot pour réaliser le déplacement de la pile
en fonction du nombre de cartons livrés.

Le robot comprend des instructions de la forme Z1 -> Z2 ou Z1 est la zone de départ du
déplacement et Z2 la zone d'arrivée.

Tours de Hanoi Wikipedia (https://fr.wikipedia.org/wiki/Tours_de_Hano%C3%AF)

Entrée[]: M def deplacementsHanoi(n, zoneDepot, Transit, ZoneArrivee) :
Entrées : n, entier, nombre de cartons arrivés en ZoneDepart
Sortie : chaine de caractéres correspondant a la séquence d'instru
les cartons de zoneDepot vers ZoneArrivee en passant par Transit

A compléter

print("test 1\n", instructions(1,"zoneDepot","Transit","ZoneArrivee"))

pr‘int(ll___ll)
print("test 2\n",instructions(3,"zoneDepot","Transit","ZoneArrivee"))
print("---")

print("test 3\n", instructions(7,"zoneDepot","Transit","ZoneArrivee"))

Affichages attendus
test 1
zoneDepot -> ZoneArrivee

test 2

zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee

test 3

zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot

Transit -> zoneDepot
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
ZoneArrivee -> Transit
ZoneArrivee -> zoneDepot
Transit -> zoneDepot

Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee
zoneDepot -> Transit
ZoneArrivee -> Transit
zoneDepot -> ZoneArrivee
Transit -> zoneDepot
Transit -> ZoneArrivee
zoneDepot -> ZoneArrivee

