
1

Informatique Tronc Commun
Bases de données
E. CLERMONT

1

 Le langage SQL (Structured Query Language) est le langage
normalisé de gestion de tout type de bases de données
relationnelles, contrairement aux assistants fournis par certains
logiciels (par exemple Access).

En fait, lorsqu’on réalise une requête en mode graphique (assistant
graphique), le SGBD génère le code SQL associé.

 Le langage SQL comporte une subdivision regroupant les éléments
nécessaires à la réalisation de requêtes d’interrogation des
données :

le Langage d’Interrogation des Données.

 Une requête d’interrogation est une extraction de données issues
d’une combinaison de sélections et/ou opérations portant sur une
ou plusieurs tables d’une base de données.

 Le résultat de la requête est lui-même une table dont l’existence est
cependant éphémère (le temps de la requête).

2

2

 Pour illustrer les notions abordées, nous nous plaçons dans la
société LOC VACANCES qui est une agence immobilière
spécialisée dans la location d’appartements meublés.

 Pour la gestion de son parc locatif, elle a fait le choix de mettre
en place une base de données évolutive sur laquelle
s’appuieront progressivement tous les traitements que
nécessitent une gestion immobilière de ce type (planning des
locations, réservations d’appartements, publipostages des
confirmations, gestion des acomptes, facturation, etc. ..).

3

Représentation graphique du schéma relationnel associé

4

Légende :
- Chaque attribut composant la clé primaire est précédé d'une clé
-Chaque clé étrangère est representée par un lien entre table
-DistMer : distance de l’appartement jusqu’à la mer

SAISON (CodeSaison, LibSaison)
PROPRIETAIRE(NumProp,NomProp,RueProp,CPostProp,VilleProp)
IMMEUBLE(NumImm, NomImm, AdrImm, DistMer)
APPARTEMENT(NumAppart,
IdentAppart,MonteeAppart,EtageAppart,TypaAppart,ExpoAppart,T
errassa(o/n),NumImm#, NumProp#)
TARIFICATION(NumAppart#, CodeSaison#, Prix/Semaine)

3

1-Interrogation portant sur une seule table

1.1- Projection

1.2- Restriction

1.3- Tri

1.4-Alias du Select

1.5- Limit et Offset

1.5- Calculs

2-Fonctions agrégats

3-Interrogation simple portant sur plusieurs tables

4-Regroupement

5-Les conditions sur regroupement
5

 Syntaxe générale d’une requête d’interrogation simple
sur une table :

SELECT [DISTINCT] champ1 [, champ2 …]
FROM table
[WHERE condition1 [OR/AND condition2…]]
[ORDER BY champ1 [[ASC]/DESC] [, champ2 [[ASC]/DESC]…]] ;

Remarques :
Les instructions notées entre [] sont facultatives.
Dans la clause ORDER BY, le classement par défaut est ascendant (ASC).
Les points de suspension indique une répétition possible n fois.

6

4

1.1- La projection

La projection est une opération relationnelle qui consiste, au travers d’une
requête, à ne retenir que certains champs (colonnes) dans la table
résultat(s).

L’ordre d’affichage dépend de l’ordre d’énumération dans la clause SELECT.

Exemple1 : Requête R1.1_1 « Liste des appartements (toutes les
informations)»

REQUETE SQL EXPLICATIONS

SELECT *
FROM APPARTEMENT

SELECT : opérateur de projection
Le caractère * permet d’afficher TOUS les
champs de la table précisée dans la clause
FROM.
La clause FROM est suivie du nom des
tables utiles à la réalisation de la requête.

Ch1 Ch2 Ch3 Ch4

7

Exemple2 : Requête R1.1_2 «Liste des appartements (Type d’appartement
et numéro d’appartement)».

REQUETE SQL EXPLICATIONS

SELECT TypeAppart,
IdentAppart
FROM APPARTEMENT

SELECT : opérateur de projection
Il est suivi de la liste des attributs à
projeter séparés par une virgule

REQUETE SQL EXPLICATIONS

SELECT DISTINCT
TypeAppart
FROM APPARTEMENT

SELECT : opérateur de projection
Il est suivi de la clause DISTINCT qui
permet d’afficher uniquement les lignes
de résultat ayant des valeurs distinctes.
Si plusieurs appartements de type T2
sont à la location, le type T2 ne sera
affiché qu’une seule fois dans le résultat
si DISTINCT est présent.

8

Exemple3 : Requête R1.1_3 «Liste des différents types d’appartements en
location chez LOC_VACANCES».

5

1.2- La restriction

La restriction est une opération relationnelle qui vise, au travers d’une
requête, à ne retenir que les tuples (lignes) de la table satisfaisant le(s)
critère(s) de restriction.

Les restrictions portant sur des champs de type texte devront être
mentionnées entre guillemets.

Exemple1 : Requête R1.2_1 « Appartements situés au rez-de-chaussée ».

Requête R1.2_1b « Appartements orientés au Nord ».
SELECT *
FROM APPARTEMENT
WHERE ExpoAppart = 'N'

REQUETE SQL EXPLICATIONS

SELECT *
FROM APPARTEMENT
WHERE EtageAppart = 0

•WHERE est suivi de l’ensemble des
restrictions (conditions) de la requête.

9

Ch1 Ch2 Ch3 Ch4

Les conditions peuvent être construites à partir :

 d’expressions constituées de noms de champs ou de valeurs et
éventuellement d’opérateurs arithmétiques (+, -, /, *) et fonctions
prédéfinies (somme, moyenne, …)

 d’opérateurs de comparaison : >, <, >=, <=, <> (différent)

 d’opérateurs logiques : AND, OR, NOT

 d’opérateurs SQL : BETWEEN… AND, IN, LIKE

Il est également possible de tester si un champ n’est pas renseigné
(valeur indéfinie) grâce à la valeur NULL.

Pour exprimer ce type de condition l’opérateur = n’est pas accepté on
devra écrire :

WHERE NomChamp IS NULL

Attention :

Lorsque un champ contient la valeur zéro ou un espace (qui
correspond à une chaîne vide : " "), la valeur est définie.

10 10

6

Exemple2 : Requête R1.2_2 «Liste des appartements situés au 1er étage

et exposés au Sud (codé ‘S’)».
REQUETE SQL

SELECT *
FROM APPARTEMENT
WHERE EtageAppart = 1
AND ExpoAppart = 'S'

REQUETE SQL version 1 REQUETE SQL version 2

SELECT *
FROM APPARTEMENT
WHERE NOT ExpoAppart = 'N'
Ou
WHERE ExpoAppart <> 'N'

SELECT *
FROM APPARTEMENT
WHERE ExpoAppart IN ('S', 'E', 'O')

11

Exemple3 : Requête R1.2_3 «Liste des appartements non exposés
au nord (codé "N")».

Exemple4 : Requête R1.2_4 «Liste des noms de propriétaires habitant

dans le département 64».
Code postal est de type
alphanumérique (texte)

Code postal est de type alphanumérique

SELECT NomProp
FROM PROPRIETAIRE
WHERE CpostProp LIKE ‘64%’

SELECT NomProp
FROM PROPRIETAIRE
WHERE CpostProp>=64000 AND CpostProp <
65000
ou
SELECT NomProp
FROM PROPRIETAIRE
WHERE CpostProp BETWEEN 64000 AND 64999

12

Le "joker" % remplace de 0 à n caractères quelconques.
Exemple : Si l'on écrit après la commande WHERE attribut LIKE “F%”, la condition
portera sur toutes les valeurs de l’attribut dont la première lettre commence par F.

Le "joker" _ remplace un caractère quelconque et un seul.
Exemple : Si l'on écrit après la commande WHERE attribut LIKE “F__”, la condition
portera sur toutes les valeurs de l’attribut dont la première lettre commence par F et
ayant ensuite seulement 2 autres caractères.

7

1.3- Le tri : clause ORDER BY

Dans la clause ORDER BY, le sens de classement peut prendre 2
valeurs :

- ASC (ascendant ou croissant)

- ou DESC (descendant ou décroissant).

Le sens par défaut est le sens ascendant.

Exemple1 : Requête R1.3_1 «Liste des numéros (IdentAppart) de tous
les appartements par exposition».

SELECT ExpoAppart, IdentAppart

FROM APPARTEMENT

ORDER BY ExpoAppart

Exemple2 : Requête R1.3_2 «Liste des appartements triés par
exposition (décroissant) puis par niveau (du plus élevé au moins
élevé)».

SELECT *

FROM APPARTEMENT

ORDER BY ExpoAppart DESC, EtageAppart DESC
13

SELECT ExpoAppart, IdentAppart

FROM APPARTEMENT

ORDER BY 1

1.4- LIMIT et OFFSET

La commande LIMIT permet de spécifier le nombre maximum de
résultats que l’on souhaite obtenir,

Exemple : « Afficher les 10 premiers appartements »
SELECT *
FROM APPARTEMENT
LIMIT 10

Exemple : « Afficher les numéros des 3 appartements les plus chers
en haute-saison »
SELECT NumAppart, `Prix/Semaine`
FROM tarification
WHERE CodeSaison ='H'
ORDER BY `Prix/Semaine` DESC
LIMIT 3

14

8

1.4- LIMIT et OFFSET

La commande Offset s’utilise en complément de la commande LIMIT
Elle permet d'effectuer un décalage sur l'ensemble des résultats
obtenus avec la commande LIMIT en décalant le nombre de résultats.

Exemple : « Afficher l0 appartements à partir du 4ème»

SELECT *
FROM APPARTEMENT
LIMIT 10
OFFSET 3

15

1.5- Les alias du SELECT (pour l’affichage)

Il est possible de renommer, temporairement pour une requête, l’en-
tête d’une colonne (une expression ou un champ d’une table)
dans la table résultat grâce à la clause AS.

Si le nom spécifié est composé de plusieurs mots, il faudra l’encadrer
par des crochets sous Access (mais cela peut être différent avec
d’autres SGBD).

L’alias défini dans le SELECT ne peut pas être utilisé dans les autres
clauses de la requête (impossible d’y faire référence, il faudra
réécrire l’expression ou le champ associé (cf. 1.5)).

Exemple : Requête R1.4 «Prix de chaque appartement en haute
saison».

REQUETE SQL RESULTAT

SELECT NumAppart, `Prix/Semaine` AS 'Prix haute
saison'
FROM TARIFICATION
WHERE CodeSaison= ‘H’

16

9

1.5- Les alias du SELECT (pour les calculs)

Des expressions arithmétiques ou logiques (booléennes) peuvent être
présentes dans le SELECT.

Elles sont traitées de la même manière que les champs issus de tables.

L’en-tête de colonne des champs « calculés » n’ayant pas de nom affiche le
calcul effectué.

Ces calculs sont appelés « calculs en ligne » car ils sont répétés de
manière indépendante sur chaque enregistrement.

Exemple1 : Requête R1.5_1 «Prix de deux semaines de location pour
chaque appartement».

REQUETE SQL RESULTAT

SELECT NumAppart,CodeSaison,
`Prix/Semaine`*2 AS Total
FROM TARIFICATION

17 17

Exemple2 : Requête R1.5_2 «Appartements dont le prix de location
pour deux semaines en haute saison est inférieur à 950 €».

REQUETE SQL RESULTAT

SELECT NumAppart, `Prix/Semaine`*2
AS `(Px hte *2)<950€`
FROM TARIFICATION
WHERE CodeSaison= 'H'

AND (`Prix/Semaine`*2) <950

18

Ici, un alias a été utilisé afin de donner un nom explicite à la colonne résultat.
Cependant, cet alias ne peut pas être utilisé dans le critère de restriction. Il n’est
valable que dans la clause SELECT.

18

10

19

Des fonctions prédéfinies peuvent également être utilisées :
YEAR(champ)

Renvoie l’année d’une valeur stockée dans un champ de type date

ROUND(champ, nombre décimales)
Renvoie la valeur arrondie d’une valeur stockée dans un champ

numérique en conservant un nombre spécifié de décimales. Si le second
paramètre n’est pas mentionné, la valeur par défaut est 0. Ceci signifie que la
fonction renverra la valeur entière supérieure.

19

Exemple3 : Requête R1.5_3 «Prix de location de deux semaines
pour chaque appartement».

REQUETE SQL RESULTAT

SELECT NumAppart,CodeSaison,
ROUND(`Prix/Semaine`*2) AS 'Px

arrondi'
FROM tarification ;

20 20

11

1.6 Les opérations ensemblistes

Les opérations ensemblistes en SQL, sont celles définies dans l’algèbre
relationnelle. Elles sont réalisées grâce aux opérateurs :

 UNION

 INTERSECT (ne fait pas partie de la norme SQL =>pas implémenté dans
tous les SGBD)

 EXCEPT (ne fait pas partie de la norme SQL =>pas implémenté dans tous
les SGBD)

Syntaxe : SELECT ...
{UNION | INTERSECT | EXCEPT }
SELECT ...

Dans une requête utilisant des opérateurs ensemblistes :
•Tous les SELECT doivent avoir le même nombre de colonnes sélectionnées,
et leur types doivent être un à un identiques.
• Les doublons sont éliminés (DISTINCT implicite).
• Les noms de colonnes sont ceux du 1er SELECT.
• La largeur des colonnes est la plus grande parmi tous les SELECT.
• On ne peut trouver qu'un seul ORDER BY. S'il est présent, il doit être mis dans
le dernier SELECT et il ne peut faire référence qu'aux numéros des colonnes
et non pas à leurs noms (car les noms peuvent être différents dans chacune
des interrogations)

21 21

1.6 Les opérations ensemblistes

L'opérateur UNION

 Cet opérateur permet d'effectuer une UNION des tuples sélectionnés
par deux clauses SELECT (les deux tables sur lesquelles on travaille
devant avoir le même schéma).

SELECT …FROM … WHERE …
UNION

SELECT … FROM … WHERE …

 Par défaut les doublons sont automatiquement éliminés. Pour
conserver les doublons, il est possible d'utiliser une clause UNION
ALL

 Exemple : Requête R1.6_1 «Liste des appartements qui sont soit au
sud soit au 1er étage ».

SELECT * FROM appartement

WHERE EtageAppart =1

UNION

SELECT * FROM appartement

WHERE ExpoAppart ='S' 22 22

12

1.6 Les opérations ensemblistes

L'opérateur INTERSECT
Cet opérateur permet d'effectuer une INTERSECTION des
tuples sélectionnés par deux clauses SELECT (les deux tables
sur lesquelles on travaille devant avoir le même schéma).
SELECT …FROM … WHERE …
INTERSECT

SELECT … FROM … WHERE …

 Exemple : Requête R1.6_2 «Liste des appartements qui sont
soit à la fois orientés au sud et au rez-de -chaussée ».

SELECT * FROM APPARTEMENT

WHERE EtageAppart = 0

INTERSECT

SELECT * FROM APPARTEMENT

WHERE ExpoAppart ='S'

23 23

SELECT * FROM APPARTEMENT
WHERE EtageAppart = 0
AND ExpoAppart ='S‘
Ou
SELECT * FROM APPARTEMENT
WHERE EtageAppart = 0
AND NumAppart IN (

SELECT NumAppart
FROM APPARTEMENT
WHERE ExpoAppart ='S')

1.6 Les opérations ensemblistes

L'opérateur EXCEPT
et opérateur permet d'effectuer une DIFFERENCE entre les
tuples sélectionnés par deux clauses SELECT, c'est-à-dire
sélectionner les tuples de la première table n'appartenant pas à
la seconde (les deux tables devant avoir le même schéma).

SELECT … FROM … WHERE …
EXCEPT
SELECT … FROM … WHERE …

 Exemple : Requête R1.6_2 «Liste de tous appartements qui ne
sont pas orientés au nord ».

SELECT *

FROM APPARTEMENT

EXCEPT

SELECT *

FROM APPARTEMENT

WHERE ExpoAppart=‘N’ 24 24

SELECT * FROM APPARTEMENT
WHERE ExpoAppart <>‘N’
Ou
SELECT * FROM APPARTEMENT
WHERE NumAppart NOT IN (

SELECT NumAppart
FROM APPARTEMENT
WHERE ExpoAppart =‘N')

13

1.6 Les opérations ensemblistes

Le produit cartésien
permet de retourner chaque ligne d’une table avec toutes les
lignes d’une autre table.

SELECT …
FROM table1, table2 […]
WHERE …

 Exemple :

SELECT *

FROM saison, appartement

25 25A manier avec précaution

SELECT *
FROM saison CROSS JOIN
appartement

SELECT …
FROM table1 CROSS JOIN table2
[…]
WHERE …

1-Interrogation portant sur une seule table

2-Fonctions agrégats

3-Interrogation simple portant sur plusieurs tables

4-Regroupement

5-Les conditions sur regroupement

26

14

Elles permettent d'effectuer des calculs verticaux (en colonne)
pour l'ensemble ou un sous-ensemble des valeurs d'une
colonne.

(Le calcul porte sur un champ unique, mais concerne plusieurs
enregistrements).

Les fonctions principales sont :

Fonctions Symboles

SUM permet d'effectuer la somme des valeurs d'une colonne
numérique

AVG permet d'effectuer la moyenne des valeurs d'une colonne
numérique

MAX permet de rechercher la valeur maximale d'une colonne
numérique

MIN permet de rechercher la valeur minimale d'une colonne
numérique

COUNT permet de compter le nombre de valeurs d'une colonne
numérique 27

Exemple1 : Requête R2_1 «Nombre d’appartements en
location».

SELECT COUNT(*) AS `Nombre d appartements`
FROM APPARTEMENT

Exemple2 : Requête R2_2 «Nombre d’appartements de type T2
en location».

SELECT COUNT(*) as `Nombre de T2`
FROM APPARTEMENT
WHERE TypeAppart = 'T2'
Pour compter le nombre de valeurs distinctes prises par une

colonne, il faut indiquer l'argument DISTINCT suivi de
l'argument considéré.

Exemple3 : Requête R2_3 «Nombre de types différents
d’appartements».

SELECT COUNT(DISTINCT TypeAppart) AS `Nombre de types
d appartements `

FROM APPARTEMENT 28

15

Exemple4 : Requête R2_4 «Prix minimum, moyen et maximum
des locations en haute-saison». (CodeSaison :’H ’ dans la
table Saison)

SELECT MIN(`Prix/Semaine`) as Minimum,

AVG(`Prix/Semaine`) as Moyen,

MAX(`Prix/Semaine`) as maximum

FROM tarification

WHERE CodeSaison = 'H'

29

