DM2 : Recherche séquentielle et tris

Cette série d'exercices porte sur des révisions de recherche séquentielle et des algorithmes de
tri.

Exercice 1

Ecrire une fonction rechercheLineaire qui prend en parametre une liste de chaines de
caractéres L et une chaine de caractéres mot.

La fonction renvoie l'indice de la derniére occurrence de motdans L.

Si mot n'est pas trouvé dans L, la fonction retourne -1.

Entrée[10]: M def recherchelLineaire(L, mot) :
Entrées : L, liste de chaines de caracteéres,
: mot, chaine de caractére que 1l'on cherche dans L
Sortie : entier qui correspond a 1l'indice de la derniere
occurence de mot dans L si mot est present dans 1,
Si le mot n est pas trouve la fonction renvoie -1

A compléter

test de Lla fonction

L=["Bonjour","Bonjour", "tout", "le", "monde", "Bonjour"]
print(L)

print(recherchelLineaire(L, "Bonjour")) # affiche 5
print(recherchelLineaire(L, "Bonsoir")) # affiche -1
mnint+/ nAarhaAan~hAal SnnAaadinal/l "l ANN N\ H ALLS ~bhA D
['Bonjour', 'Bonjour', 'tout', 'le', 'monde', 'Bonjour']
5

-1

3

Exercice 2. Calcul de la somme maximale

Définir 2 fonctions sommeMaximale et sommeMaximaleLineaire renvoyant la plus grande
somme de 2 éléments contenus dans une liste d’entiers L passée en parameétre.
sommeMaximale correspondra a un algorithme naif de complexité temporelle quadratique
O(n2).

sommeMaximaleLineaire proposera une solution de complexité temporelle linéaire O(n).

Entrée[4]:

Entrée[28]:

M import numpy as np
def sommeMaximale(L: list)-> int
""" sommeMaximale(L: list)-> int
de complexité quadratique
Entrée : L, une liste d'entiers
Sortie : maxi, max(el + e2, (el,e2) dans L), m vaut @ si L est vide

A compléter

L=[0J5J2)3J4J2]
print(sommeMaximale(L))

def sommeMaximalelineaire(L : list) -> int

de complexité lineaire
Entrée : L, liste d'entiers
Sortie : max(el + e2, (el,e2) dans L), © si L est vide.
On calcule le maximum et le second maximum de la liste, puis on les som

A compléter

L=[0,5,2,3,4,2]

nnint/ ~AammAMAavSmAaTAlL SaAaas A/ AW

9
9

Exercice 3: Fusion de listes

Définir une fonction fusionListe qui prend en parametre une liste de listes d'entiers L et
renvoie la concaténation de I'ensemble des sous-listes.
exemple.

M def fusionListe(L) :
""" Entrée : L, liste de listes d'entiers
Sortie : Lres, liste d'entiers correspondant a la concaténation de l'en

des sous-listes de L

A compléter

LC:[[1J2]) [718)9]1 [1J2)3J4]]

mnint/ LiciAan/l NN\ H ALl ~hA~ 1 2 7 o n 1 2 o] 21

(1, 2, 7, 8, 9, 1, 2, 3, 4]

Exercice 4: Fusion de dictionnaires

Définir une fonction fusionDico qui prend en parameétre une liste L contenant des dictionnaires
dont les clés sont des chaines de caractere et les valeurs des listes d’entiers.

La fonction retourne un dictionnaire tel que I'ensemble de clés est exactement 'ensemble des
clés de tous les dictionnaires de la liste d’entrée et la valeur associée a une clé est la
concaténation des valeurs associées a cette clé dans chaque dictionnaire ou la clé est définie.

Entrée[7]:

Entrée[1]:

M def fusionDico(L : list)-»> dict :

Entrées : L, Une liste de dictionnaires (cle : chaine , valeur : liste
Sortie : dicoRes obtenu en aplatissant la liste...

A compléter

test de Lla fonction

L=
{'math" : [8,12], 'physique' : [14] },
{'math’ [6,9,8,9], 'Lv1' : [11] },
{'vi' : [7,6 1}
]
print(fusionDico(L))
H ALLS ~hA VLY Y P ro 17 z N o N1 "Abhvima ~riAl o raai L V4 LS r1- 7 c11

{'math': [8, 12, 6, 9, 8, 9], 'physique': [14], 'LV1': [11, 7, 6]}

Dichotomie

Exercice 5 : Recherche Dichotomique

Implémenter une fonction rechercheDichotomique renvoyant I'indice de la derniére
occurrence d'un mot dans une liste de mots triés par ordre alphabétique, avec une complexité
logarithmique.

Justifier la complexité.

M def rechercheDichotomique(1l,x) :

Entrées : 1, liste de chaines de caracteres triée par ordre alphabétiq
X, chaine de caracteres
Sortie : 1'indice de x dans 1 si x est dans 1, -1 sinon

A compléter

#test de La fonction
L= ["abecedaire", "alias", "Alsace", "amarre","arc","arrivee"]
print(rechercheDichotomique(L,"arc")) # affiche 4

nnint/ narhanchaAaNs ~haAatAams Analld "1 3nmAa"N \ H# ~ALLS~hA 1

4
-1

Prouver la correction de votre programme et justifier sa complexité

Tris

L'objectif de cette partie est de réviser les algorithmes de tri rencontrés en 1ére année. Ces
algorithmes tombent trés souvent lors des concours : il faut soit les reconnaitre, soit les
implémenter intégralement, soit compléter du code déja fourni.

Il ne sert a rien de recopier tel quel le code produit I'an dernier. Vous perdriez votre temps et le
mien. L'idée ici est d'essayer de les recoder, en regardant les principes si vous ne vous en
souvenez plus.

En vue des concours, je vous conseille trés fortement de vous faire un tableau de synthése, si
vous ne l'avez pas encore fait, que vous pourrez relire avant les épreuves. Ce tableau
constituerait une synthese des tris rencontrés I'an dernier avec le principe, le code, la complexité
dans le meilleur et dans le pire des cas, caractéristiques (tris en place ou pas? stable? ...).

Exercice 6: Tri par comptage

Ecrire une fonction triComptage qui prend en parametre une liste d'entiers et une borne
supérieure de 'ensemble des valeurs de la liste et renvoie une copie de la liste triée en temps

Entrée[10]: M def triComptage(tab, borneSuperieure):
A compléter

#test de La fonction
L = [1, 15, 3, 1, 3]

mnd (S CAamnta~arl/ T 1arC o 1 21 A A LN\ HALLS ~hA ra 1 2 2

[1, 1, 3, 3, 15]

1c1

Exercice 7 : Tri fusion

Définir la fonction triFusion qui paramétre en entrée une liste d’entier et renvoie une liste triée
selon l'algorithme du tri partition-fusion.

Entrée[4]: M def triFusion(L):
""" triFusion(L : list)
entrees : L, liste
sortie : listre triee par tri fusion

A compléter

#test de Lla fonction
print(triFusion([4, 7, 3, 9, 1, 2, 5]))#affiche [1, 2, 3, 4, 5, 7, 9]

[1J 2.’ SJ 9]
[1, 2, 3, 4, 5, 7, 9]

Exercice 8 : Tri rapide

Définir la fonction triRapide qui prend en entrée un liste d’'entier et renvoie une liste triée selon
I'algorithme du tri rapide, en utilisant un pivot aléatoire.

Pour la génération aléatoire, vous pouvez utiliser la fonction randint du module random.
randint(start, stop) génere un entier entre start et stop inclus.

Entrée[3]: M def triRapide (L):
""" triRapide(L : list)
entree : L, liste
sortie : liste triee avec le tri rapide

A compléter

test de Lla fonction

mindnd [FnSiDAnSAA/TE 2 1 C on OSO1\ \

[1J 2J 3J 5) 5) 89]

