
Entrée[10]: def rechercheLineaire(L, mot) :
"""

 Entrées : L, liste de chaînes de caractères,
 : mot, chaîne de caractère que l'on cherche dans L
 Sortie : entier qui correspond à l'indice de la derniere
 occurence de mot dans L si mot est present dans l,
 Si le mot n est pas trouve la fonction renvoie -1
 """

A compléter

test de la fonction
L=["Bonjour","Bonjour", "tout", "le", "monde", "Bonjour"]
print(L)
print(rechercheLineaire(L, "Bonjour")) # affiche 5
print(rechercheLineaire(L, "Bonsoir")) # affiche -1
print(rechercheLineaire(L "le")) # affiche 3
['Bonjour', 'Bonjour', 'tout', 'le', 'monde', 'Bonjour']
5
-1
3

Entrée[4]: import numpy as np
def sommeMaximale(L: list)-> int :

""" sommeMaximale(L: list)-> int :
 de complexité quadratique
 Entrée : L, une liste d'entiers
 Sortie : maxi, max(e1 + e2, (e1,e2) dans L), m vaut 0 si L est vide
 """

A compléter

L=[0,5,2,3,4,2]
print(sommeMaximale(L))

def sommeMaximaleLineaire(L : list) -> int :
"""

 de complexité lineaire
 Entrée : L, liste d'entiers
 Sortie : max(e1 + e2, (e1,e2) dans L), 0 si L est vide.
 On calcule le maximum et le second maximum de la liste, puis on les somme.
 """

A compléter

L=[0,5,2,3,4,2]
print(sommeMaximaleLineaire(L))

Entrée[28]: def fusionListe(L) :
""" Entrée : L, liste de listes d'entiers

 Sortie : Lres, liste d'entiers correspondant à la concaténation de l'ensemble
 des sous-listes de L
 """

A compléter

LC=[[1,2], [7,8,9], [1,2,3,4]]
print(fusion(LC)) # affiche [1, 2, 7, 8, 9, 1, 2, 3, 4]

9
9

[1, 2, 7, 8, 9, 1, 2, 3, 4]

Entrée[7]: def fusionDico(L : list)-> dict :
"""

 Entrées : L, Une liste de dictionnaires (cle : chaine , valeur : liste d'entiers)
 Sortie : dicoRes obtenu en aplatissant la liste...
 """

A compléter

test de la fonction
L = [
 {'math' : [8,12], 'physique' : [14] },
 {'math' : [6,9,8,9], 'LV1' : [11] },
 {'LV1' : [7,6]}
]
print(fusionDico(L))
affiche {'math': [8, 12, 6, 9, 8, 9], 'physique': [14], 'LV1': [11, 7, 6]}

Entrée[1]: def rechercheDichotomique(l,x) :
"""

 Entrées : l, liste de chaînes de caractères triée par ordre alphabétique,
 x, chaîne de caractères
 Sortie : l'indice de x dans l si x est dans l, -1 sinon
 """

A compléter

#test de la fonction
L= ["abecedaire", "alias", "Alsace", "amarre","arc","arrivee"]
print(rechercheDichotomique(L,"arc")) # affiche 4
print(rechercheDichotomique(L "alinea")) # affiche -1

{'math': [8, 12, 6, 9, 8, 9], 'physique': [14], 'LV1': [11, 7, 6]}

4
-1

Entrée[10]: def triComptage(tab, borneSuperieure):
A compléter

#test de la fonction
L = [1, 15, 3, 1, 3]
print(triComptage([1 15 3 1 3], max(L))) #affiche [1, 1, 3, 3, 15]

Entrée[4]: def triFusion(L):
""" triFusion(L : list)

 entrees : L, liste
 sortie : listre triee par tri fusion
 """

A compléter

#test de la fonction
print(triFusion([4, 7, 3, 9, 1, 2, 5]))#affiche [1, 2, 3, 4, 5, 7, 9]

Entrée[3]: def triRapide (L):
""" triRapide(L : list)

 entree : L, liste
 sortie : liste triee avec le tri rapide
 """

A compléter

test de la fonction
print (triRapide([5 2 1 5 89 3]))

[1, 1, 3, 3, 15]

[1, 2, 5, 9]
[1, 2, 3, 4, 5, 7, 9]

[1, 2, 3, 5, 5, 89]

