
ITC S3 - TD Dictionnaires

1

TD Dictionnaires

Dans les exercices, chacune des fonctions demandées devra être testée.

Exercice 1 : Fonction mini_maxi

Ecrire une fonction mini_maxi qui prend en entrée une liste non vide de nombres et qui renvoie
un dictionnaire comportant 2 éléments :
 La clé est soit la chaine "maximum", soit "minimum"
 La valeur correspond respectivement au maximum ou au minimum des nombres de la liste en

entrée.

Exemple d’exécution :
L = [1, 2, 15, -3, 25, 10, -6, -5]
d = mini_maxi(L)
print(d) #Affiche {'maximum': 25, 'minimum': -6}

Exercice 2 : Dérivation de polynômes

On souhaite gérer des polynômes définis suivant des puissances croissantes.
Exemple : P1(x) = 2 + 3x – 5x4

1. Dans une 1ère approche, on choisit de représenter ce polynôme par une liste de nombres
pour les coefficients, classés par ordre de puissances croissantes.

Exemples :

Pour P1(x) = 2 + 3x – 5x4, la liste sera constituée de : [2,3,0,0,-5]
Pour P2(x) = 4 (polynôme constant), la liste sera [4]
Pour P3(x) = 0 (polynôme nul), la liste sera [0]

Ecrire une fonction derivePolynome qui prend en paramètre une liste représentant le polynôme
(suivant le format précédent) et renvoie une liste comportant les coefficients du polynôme dérivé.
Exemples :

Pour P1(x) = 2 + 3x – 5x4, la dérivée vaut : 3 – 20x3
derivePolynome([2,3,0,0,-5]) renvoie [3,0,0,-20]

Déterminer en fonction du degré n du polynôme les complexités en temps et en espace de
derivePolynome.

2. Dans une 2ème approche, on choisit de représenter ce polynôme par un dictionnaire dont
les clés sont les degrés des monômes non nuls et les valeurs les coefficients associés.

 Exemples :
Pour P1(x) = 2 + 3x – 5x4, le dictionnaire sera composé de : { 0 : 2, 1 :3, 4 : -5 }
Pour P2(x) = 4 (polynôme constant), le dictionnaire sera { 0 : 4 }
Pour P3(x) = 0 (polynôme nul) , le dictionnaire sera { 0 : 0 }

Ecrire une fonction derivePolynome_Dict qui prend en paramètre un dictionnaire représentant le
polynôme (suivant le format précédent) et renvoie un dictionnaire des coefficients du polynôme
dérivé.
derivePolynome_Dict ({0 : 2, 1 :3, 4 : -5}) renvoie {0 : 3, 3 :20}
Déterminer en fonction du degré n du polynôme les complexités en temps et en espace de
derivePolynome_ Dict.

ITC S3 - TD Dictionnaires

2

Exercice 3 : Implémentation d’une table de hachage

L’objectif de cet exercice est de construire une table de hachage «à la main», afin de définir un
équivalent des dictionnaires Python(dict).
Dans ce but, il faut d’abord disposer d’une fonction de hachage adaptée. C’est l’objet de la
première partie.

Définitions de fonctions de hachage
Pour être adaptée à l’usage par une table de hachage, une fonction de hachage doit être :
rapide,

 cohérente : pour une même clef, on obtient un même code,
 injective : pour des clefs différentes, on obtient des codes différents. Pour des codes

identiques, les clefs sont nécessairement identiques. Dans le cas contraire, on obtient une
collision qu’on cherche à minimiser. Comme la table de hachage est de dimension finie, les
collisions sont inévitables. Donc l’injectivité est sacrifiée.

 uniformément répartie : pour des clefs qui se ressemblent, les codes obtenus doivent être
très différents, ceci pour limiter les collisions.

En pré-traitement, on réalise l’encodage de la chaîne de caractère ch en nombre entier de la
manière suivante :

෍𝑜𝑟𝑑(𝑐ℎ𝑎𝑖𝑛𝑒[𝑖]) ∗ 256௜
௡ିଵ

௜ୀ଴

Pour rappel :
ord(c): renvoie le nombre entier représentant le code Unicode du caractère passé en paramètre.
Exemples : ord('a') renvoie le nombre entier 97
 ord('€') (symbole euro) renvoie 8364.

1. Ecrire une fonction transforme_chaine_entier(chaine) qui prend en paramètre une
chaine de caractères chaine et retourne la valeur :

෍𝑜𝑟𝑑(𝑐ℎ𝑎𝑖𝑛𝑒[𝑖]) ∗ 256௜
௡ିଵ

௜ୀ଴

Exemples d’exécution :
print ("test devient ", transforme_chaine_entier("test"))
affiche test devient 1953719668
print ("dico devient ", transforme_chaine_entier("dico"))
affiche dico devient 1868786020

2. Dans un second temps, on cherche à compresser la valeur encodée dans l’intervalle des
index possibles [0, m – 1]. Si m est la taille de la table de hachage, on peut choisir :

 d’utiliser simplement une division :
hachage_d(nb, m)→ nb % m

 d’utiliser une multiplication et une division :

hachage_mult(nb, m)→ partieEntiere(m × (c * nb % 1)
 c ∈]0, 1[étant une constante réelle.

Le choix d’une fonction de hachage est délicat et il n’existe pas de méthode pour atteindre
l’optimal.
Ecrire puis tester les fonctions hachage_d et hachage_mult en Python.
Pour faire vos tests de fonction, vous pouvez utiliser : m=4500 pour la taille de la table de hachage
c =(√5−1)/2 pour la constante c de la fonction de hachage hachage_mult

ITC S3 - TD Dictionnaires

3

Implémentation d’une table de hachage
On souhaite créer une table de hachage permettant de manipuler des données issues d’un fichier
qui recense les capitales des pays du monde entier. Cette table doit donc traiter des clefs de type
str (le nom du pays) et des valeurs de type str (le nom de la capitale).

Les données concernant les pays du monde et
leur capitale se trouvent dans le fichier
capitalesMonde.csv dont le format est le
suivant :

Il nous faut, dans un premier temps, récupérer les données contenues dans ce fichier pour les
charger en mémoire vive sous forme de liste de tuples (NomPays,CapitalePays)

3. Écrire une fonction recup_Donneescsv(fichier, separateur) qui importe les données
d’un fichier dont le chemin est passé en paramètre.Cette fonction renvoie une liste de
tuples.

Ci-après l’en-tête de la fonction :
def recup_Donneescsv(fichier, separateur=","):
 """recup_Donneescsv(fichier : str, separateur: str):lst
 entrees : fichier, chaine qui correspond au chemin du fichier à ouvrir
 separateur, chaine qui indique le separateur de colonnes. Par defaut ","
 sortie : liste de tuples contenues dans le fichier """

Tester la fonction sur le fichier capitalesMonde.csv et doit renvoyer une liste de tuples (NomPays,
NomCapitale).

Extrait de liste résultante :

4. Écrire une fonction créer_TableHachage(liste, taille_table, fonction_hachage) qui
renvoie une table de hachage (liste contenant des listes) remplie à l’aide d’une liste de

ITC S3 - TD Dictionnaires

4

tuples liste, passée en paramètre en utilisant la fonction de hachage dont le nom est passé
en paramètre.
Tester la fonction sur la liste de tuples générée par l’appel de la fonction précédente pour
les capitales des pays, avec la fonction hachage_d.

Extrait de la table de hachage résultante :

5. Écrire une fonction obtenir_Valeur(cleCherchee, tableHachage) qui permet de récupérer
la valeur de la clé cle_Cherchee à l’aide de la table de hachage tableHachage.

Tester cette fonction pour obtenir la capitale d’un pays présent dans le fichier.

6. Créer l’ensemble de toutes les valeurs de hachage (indice des alvéoles) de la table pour
lesquelles il existe une valeur, puis parcourir la table à partir de cet ensemble.

Astuce : Vous pouvez utiliser la fonction Enumate:
https://www.pythoniste.fr/python/enumerer-des-listes-avec-la-fonction-enumerate-de-python/

Les capitales apparaissent-elles dans un ordre quelconque ?

7. Déterminer le nombre d’alvéoles utilisées si on utilise hachage_d ?

8. Faire apparaître les sous-listes de la table s’il y en a (même valeur de hachage obtenue).

Exemple d’exécution :

Cet exercice a uniquement un but pédagogique pour comprendre le fonctionnement des
tables de hachage. Bien entendu, si par la suite vous avez besoin d’une table de hachage,
il faut utiliser le type dict de Python et ne pas réinventer la poudre…

ITC S3 - TD Dictionnaires

5

Exercice 4 : Résultat de QCM

Dans le cadre d’un examen en ligne, un QCM a été réalisé.

Les réponses correctes au QCM sont stockées dans un dictionnaire nommé reponses_valides.
Les clés sont des chaînes de caractères de la forme ‘Q1’. Les valeurs possibles sont des chaînes
de caractères correspondant aux quatre réponses 'a', 'b' , 'c' , 'd' , 'e'.

Exemple :
reponses_valides = {'Q1': 'a', 'Q2': 'c', 'Q3': 'd', 'Q4': 'e', 'Q5': 'b', 'Q6': 'c'}

Les réponses données par les élèves sont stockées dans le dictionnaire reponses_Eleves dont
voici un exemple possible :
{ '110': {'Nom': 'Abadie', 'Prenom': 'Juline','Q1': 'b', 'Q2': 'a', 'Q3': 'd', 'Q4': 'a', 'Q5': 'b', 'Q6': 'b'},
 '111': {'Nom': 'Baron', 'Prenom': 'Lila', 'Q1': 'a', 'Q2': 'c', 'Q3': 'd', 'Q4': 'e', 'Q5': 'b', 'Q6': 'c'},
 '112': {'Nom': 'Charrez', 'Prenom': 'Ines', 'Q1': '', 'Q2': 'd', 'Q3': 'd', 'Q4': 'e', 'Q5': 'a', 'Q6': 'c'},

'113': {'Nom': 'Clapotas', 'Prenom': 'Marc', 'Q1': 'a', 'Q2': 'c', 'Q3': 'd', 'Q4': 'e', 'Q5': 'e', 'Q6': 'b'}
}

Les clés de ce dictionnaire correspondent aux numéros des étudiants (ex. 110, 111, …)

La valeur est un dictionnaire comportant Nom, Prenom et réponses aux questions. Lorsqu'une
élève n'a pas répondu à une question, la clé (Q1, Q2,) sera présente mais sa valeur sera la
chaine vide.

La notation du QCM est la suivante : 3 points par réponse correcte, -1 point par réponse incorrecte
et 0 s’il n’y a pas eu de réponse.

1. Ecrire la fonction correction_QCM (reponses_Eleves,reponses_valides) qui, à partir
des dictionnaires reponses_Eleves et reponses_valides passés en paramètres, calcule le
score de chaque élève et le stocke dans le dictionnaire reponses_Eleves (ajout d’une clé
‘Score’ et la valeur du score)

Exemple de dictionnaire résultant :
{ '110': {'Nom': 'Abadie', 'Prenom': 'Juline', 'Q1': 'b', 'Q2': 'a', 'Q3': 'd', 'Q4': 'a', 'Q5': 'b', 'Q6': 'b', 'Score': 2},
 '111': {'Nom': 'Baron', 'Prenom': 'Lila', 'Q1': 'a', 'Q2': 'c', 'Q3': 'd', 'Q4': 'e', 'Q5': 'b', 'Q6': 'c', 'Score': 18},
 '112': {'Nom': 'Charrez', 'Prenom': 'Ines', 'Q1': '', 'Q2': 'd', 'Q3': 'd', 'Q4': 'e', 'Q5': 'a', 'Q6': 'c', 'Score': 10},
 '113': {'Nom': 'Clapotas', 'Prenom': 'Marc', 'Q1': 'a', 'Q2': 'c', 'Q3': 'd', 'Q4': 'e', 'Q5': 'e', 'Q6': 'b', 'Score': 10}
}
Cette fonction agit directement sur le contenu du dictionnaire reponses_Eleves (action avec effet
de bord)

2. Proposer une fonction
correction_QCM_sansEB (reponses_Eleves,reponses_valides)

qui génère un dictionnaire résultant (donc sans effet de bord)

3. Les réponses des élèves ont été stockées de manière persistante dans le fichier
reponses.csv ainsi structuré :

ITC S3 - TD Dictionnaires

6

Les 2 1ères lignes du fichier sont particulières :

 La 1ère ligne correspond au nom des clés du dictionnaire de chaque élève.
 La 2ème ligne correspond aux réponses valides (les 3 1ères colonnes sont inutiles pour

nous)

Créer une fonction generation_dictionnaires(fichier) qui génère un dictionnaire au format de
celui de reponses_Eleves et un dictionnaire au format de reponses_valides . Tester la génération
sur le fichier reponses.csv.

Proposer 2 versions à cette fonction :

- Une qui traite le fichier comme un fichier texte quelconque
- Une qui traite le fichier comme un fichier csv en utilisant par exemple le module csv

Exemples d’utilisation :
https://stackoverflow.com/questions/14091387/creating-a-dictionary-from-a-csv-file

Exercice 5 : Anagrammes

Le but de cet exercice est de tester si deux mots sont des anagrammes. Cet algorithme classique
se résout très bien avec les dictionnaires.

1- Une 1ère approche est de parcourir le 1er mot, et de compter le nombre d'occurrences de
chaque lettre du mot. Puis, on réalise cette même opération sur le 2ème mot et on regarde si
les deux dictionnaires résultants sont égaux.

Écrire la fonction sont_anagrammes_v1(mot1, mot2) qui prend deux mots en paramètres et
teste s'ils sont des anagrammes l'un de l'autre.

2- L'égalité entre deux dictionnaires s'écrit facilement mais est coûteuse. Une autre idée est
pour le 2ème mot, de le parcourir et d'enlever une occurrence de chaque lettre rencontrée
dans l'alphabet du 1er On doit pouvoir détecter rapidement s'ils sont ou pas deux
anagrammes.

Écrire la fonction sont_anagrammes_v2(mot1, mot2) suivant la 2ème approche.

3- Créer une fonction récursive genere_Anagrammes qui génère la liste de tous les
anagrammes (sans doublon) d’un mot passé en paramètre en utilisant un dictionnaire. La
fonction prend d’autres paramètres que mot, à déterminer.

ITC S3 - TD Dictionnaires

7

Exercice 6 : Algorithme de compression LZ78

Mettre en œuvre l’algorithme de compression LZ78.

1- Compression

Créer la fonction compressionLZ78(texte) qui effectue la compression du texte passé en
paramètre et retourne le code, ainsi que le dictionnaire.

2- Décompression

L'algorithme de décompression fonctionne en sens inverse.
À partir de la liste alternée, appelée code, il faut reconstruire le dictionnaire au fur et à mesure.
Créer la fonction decompressionLZ78(code, dico) qui effectue la décompression.

Astuce : Pour faciliter la programmation, on peut inverser le dictionnaire utilisé pour la compression :
les valeurs deviennent clés et les clés deviennent valeurs.

