ITC S3 - TD Dictionnaires

TD Dictionnaires

Dans les exercices, chacune des fonctions demandées devra étre testée.

Ecrire une fonction mini_maxi qui prend en entrée une liste non vide de nombres et qui renvoie

un dictionnaire comportant 2 éléments :

e Laclé est soit la chaine "maximum”, soit "minimum"

e La valeur correspond respectivement au maximum ou au minimum des nombres de la liste en
entrée.

Exemple d’exécution :

L=11, 2, 15, -3, 25, 10, -6, -5]
d = mini_maxi(L)

print(d)

On souhaite gérer des polynémes définis suivant des puissances croissantes.
Exemple : P1(x) = 2 + 3x — 5x*

1. Dans une 1 approche, on choisit de représenter ce polyndme par une liste de nombres
pour les coefficients, classés par ordre de puissances croissantes.

Exemples :
Pour P¢(x) = 2 + 3x — 5x*, la liste sera constituée de : [2,3,0,0,-5]
Pour P2(x) = 4 (polyndme constant), la liste sera [4]
Pour P3(x) = 0 (polyndme nul), la liste sera [0]

Ecrire une fonction derivePolynome qui prend en parameétre une liste représentant le polynéme
(suivant le format précédent) et renvoie une liste comportant les coefficients du polyndme dérive.

Exemples :
Pour P(x) = 2 + 3x — 5x*, la dérivée vaut : 3 — 20x3
derivePolynome([2,3,0,0,-5]) renvoie [3,0,0,-20]

Déterminer en fonction du degré n du polyndme les complexités en temps et en espace de
derivePolynome.

2. Dans une 2°™ approche, on choisit de représenter ce polyndme par un dictionnaire dont
les clés sont les degrés des mondmes non nuls et les valeurs les coefficients associés.

Exemples :
Pour P4(x) = 2 + 3x — 5x*, le dictionnaire sera composé de: {0:2,1:3,4:-5}
Pour P2(x) = 4 (polyndme constant), le dictionnaire sera{0: 4}
Pour P3(x) = 0 (polyndme nul) , le dictionnaire sera{0: 0}

Ecrire une fonction derivePolynome_Dict qui prend en paramétre un dictionnaire représentant le
polynéme (suivant le format précédent) et renvoie un dictionnaire des coefficients du polynbme
dérivé.

derivePolynome_Dict ({0:2,1:3,4:-5}) renvoie {0: 3, 3:20}

Déterminer en fonction du degré n du polyndme les complexités en temps et en espace de
derivePolynome__ Dict.

ITC S3 - TD Dictionnaires

L’objectif de cet exercice est de construire une table de hachage «a la main», afin de définir un
équivalent des dictionnaires Python(dict).

Dans ce but, il faut d’abord disposer d’'une fonction de hachage adaptée. C’est I'objet de la
premiére partie.

Définitions de fonctions de hachage

Pour étre adaptée a I'usage par une table de hachage, une fonction de hachage doit étre :
rapide,

e cohérente : pour une méme clef, on obtient un méme code,

e injective : pour des clefs différentes, on obtient des codes différents. Pour des codes
identiques, les clefs sont nécessairement identiques. Dans le cas contraire, on obtient une
collision qu’on cherche a minimiser. Comme la table de hachage est de dimension finie, les
collisions sont inévitables. Donc l'injectivité est sacrifiée.

e uniformément répartie : pour des clefs qui se ressemblent, les codes obtenus doivent étre
trés différents, ceci pour limiter les collisions.

En pré-traitement, on réalise I'encodage de la chaine de caractére ch en nombre entier de la

maniére suivante :
n—-1

Z ord(chaine[i]) * 256!

i=0
Pour rappel :
ord(c): renvoie le nombre entier représentant le code Unicode du caractére passé en paramétre.
Exemples : ord('a") renvoie le nombre entier 97

ord(‘€") (symbole euro) renvoie 8364.

1. Ecrire une fonction transforme_chaine_entier(chaine) qui prend en paramétre une
chaine de caractéres chaine et retourne la valeur :
n-1
z ord(chaine[i]) * 256
i=0
Exemples d’exécution :
print ("test devient ", transforme_chaine_entier("test"))
affiche test devient 1953719668
print ("dico devient ", transforme_chaine_entier("dico"))
affiche dico devient 1868786020

2. Dans un second temps, on cherche a compresser la valeur encodée dans l'intervalle des
index possibles [0, m — 1]. Si m est la taille de la table de hachage, on peut choisir :

o dutiliser simplement une division :
hachage_d(nb, m)— nb % m

o d’utiliser une multiplication et une division :
hachage_mult(nb, m)— partieEntiere(m x (c *nb % 1)
c €]0, 1[étant une constante réelle.

Le choix d’'une fonction de hachage est délicat et il n’existe pas de méthode pour atteindre
I'optimal.

Ecrire puis tester les fonctions hachage_d et hachage_mult en Python.

Pour faire vos tests de fonction, vous pouvez utiliser : m=4500 pour la taille de la table de hachage
¢ =(\5-1)/2 pour la constante ¢ de la fonction de hachage hachage_mult

ITC S3 - TD Dictionnaires

Implémentation d’une table de hachage

On souhaite créer une table de hachage permettant de manipuler des données issues d’un fichier
qui recense les capitales des pays du monde entier. Cette table doit donc traiter des clefs de type
str (le nom du pays) et des valeurs de type str (le nom de la capitale).

, pays,capitale
Les données concernant les pays du monde et | n i1 5244, sukhumi

leur capitale se trouvent dans le fichier Afghanistan, Kabul
capitalesMonde.csv dont le format est le Akrotiri and Dhekelia,Episkopi Cantonment
suivant : Albania,Tirana

Algeria,Blgiers

American Samoca,Pago Pago
Andorra,BAndorra la Vella
Angola, Luanda

Anguilla, The Valley
Antigua and Barbuda,St. John's
Argentina,Buenos Aires
Armenia,Yerevan
Aruba,Oranjestad

Ascension Island, Georgetown
Australia,Canberra
Austria,Vienna
Azerbaijan,Baku

Bahamas, Nassau
Bahrain,Manama

Il nous faut, dans un premier temps, récupérer les données contenues dans ce fichier pour les
charger en mémoire vive sous forme de liste de tuples (NomPays,CapitalePays)

3. Ecrire une fonction recup_Donneescsv(fichier, separateur) qui importe les données
d’'un fichier dont le chemin est passé en paramétre.Cette fonction renvoie une liste de
tuples.

Ci-aprés I'en-téte de la fonction :
def recup_Donneescsv(fichier, separateur=","):
"""recup_Donneescsv(fichier : str, separateur: str):lst
entrees : fichier, chaine qui correspond au chemin du fichier a ouvrir

separateur, chaine qui indique le separateur de colonnes. Par defaut ",
sortie : liste de tuples contenues dans le fichier e

Tester la fonction sur le fichier capitalesMonde.csv et doit renvoyer une liste de tuples (NomPays,
NomCapitale).

Extrait de liste résultante :

[('Abkhazia', 'Sukhumi'), ('Afghanistan', 'Kabul'), ('Akrotiri and Dhekelia', 'Episk
moa', 'Pago Pago'), ('Andorra', 'Andorra la Vella'), ('Angola', 'Luanda'), ('Anguill
s Aires'), ('Armenia', 'Yerevan'), ('Aruba', 'Oranjestad'), ('Ascension Island', 'Ge
Baku'), ('Bahamas', 'Nassau'), ('Bahrain', 'Manama'), ('Bangladesh', 'Dhaka'), ('Bar
', 'Belmopan'), ('Benin', 'Porto-Novo'), ('Bermuda', 'Hamilton'), ('Bhutan', 'Thimph
Sarajevo'), ('Botswana', 'Gaborone'), ('Brazil', 'Brasilia'), ('British Virgin Islan
'Burkina Faso', 'Ouagadougou'), ('Burundi’', 'Bujumbura'), ('Cambodia', 'Phnom Penh')
yman Islands', 'George Town'), ('Central African Republic', 'Bangui'), ('Chad', "N'D
lying Fish Cove'), ('Cocos (Keeling) Islands', 'West Island'), ('Colombia', 'Bogota'
'), ('Croatia', 'Zagreb'), ('Cuba', 'Havana'), ('Curagao', 'Willemstad'), ('Cyprus',

4. Ecrire une fonction créer_TableHachage(liste, taille_table, fonction_hachage) qui
renvoie une table de hachage (liste contenant des listes) remplie a l'aide d’une liste de

3

ITC S3 - TD Dictionnaires

tuples liste, passée en paramétre en utilisant la fonction de hachage dont le nom est passé
en parametre.

Tester la fonction sur la liste de tuples générée par I'appel de la fonction précédente pour
les capitales des pays, avec la fonction hachage_d.

Extrait de |la table de hachage résultante :

ik T1s Bl T (Bl T15 8hs: 186 (ks Tl s; T (Bl T ks Tl (ks T Wil Tl (s
racao’, 'Willemstad')], [1, [1, [1, [1, [(‘Turkey', ‘Ankara")1, [1, [1, [1, [1, [I,
‘Austria’, 'Vienna')], [(‘Bahamas', 'Nassau')], [1, [1, [1, (1, [1, [1, (1, [1, [,
o Tl Wl Tl Bl B ke T8 Tl I T T Bl T Ll T Ll 100 [le [e I
[1, [1, [1, [('Slovenia‘, 'Ljubljana’)], [1, [1, [1, [1, [1, [1, [I, [1, 1, [1, [,
n'), ('Wales', 'Cardiff')], [1, [('Mozambique', 'Maputo')1, [1, [1, [1, [1, [1, [I,
il Tl o T (Edss The ik Tl 160 T 0 Pl (Bl T Blks; Tl (Elloy Ul 0l T-Babi
, I1, [1, [1, [1, [1, [(*Christmas Island’, 'Flying Fish Cove')], [1, [1, [1, [1, []
(1, [1, [1, [1, [1, [1, [1, [1, [1, [1, [1, [('French Polynesia', 'Papeete’)], [, [
T 0d; sl mhe mls Il £l plowds Tl DRI Bl Th D0 T Ol [T
(L, [0, (1, {1, [, [0, [1, [, 1, 01 {1, 1, [1, L1, [('Jamaica’, ‘Kingston')], [

5. Ecrire une fonction obtenir_Valeur(cleCherchee, tableHachage) qui permet de récupérer
la valeur de la clé cle_Cherchee a I'aide de la table de hachage tableHachage.
Tester cette fonction pour obtenir la capitale d’'un pays présent dans le fichier.

6. Créer I'ensemble de toutes les valeurs de hachage (indice des alvéoles) de la table pour
lesquelles il existe une valeur, puis parcourir la table a partir de cet ensemble.
Astuce : Vous pouvez utiliser la fonction Enumate:
https://www.pythoniste.fr/python/enumerer-des-listes-avec-la-fonction-enumerate-de-python/

Les capitales apparaissent-elles dans un ordre quelconque ?
7. Déterminer le nombre d’alvéoles utilisées si on utilise hachage _d ?

8. Faire apparaitre les sous-listes de la table s’il y en a (méme valeur de hachage obtenue).

Pays stockés avec la meme valeur de hachage : [('Guyana', 'Georgetown'), ('Wales', 'Cardiff')]

Pays stockés avec la meme valeur de hachage : [('Aruba', 'Oranjestad'), ('Eritrea', 'Asmara')]

Pays stockés avec la meme valeur de hachage : [('Kazakhstan', 'Astana'), ('Somalia', 'Mogadishu')]

Pays stockés avec la meme valeur de hachage : [('Andorra', 'Andorra la Vella'), ('Uzbekistan', 'Tashkent')]

Pays stockés avec la meme valeur de hachage : [('Antigua and Barbuda', "St. John's"), ('Mauritius', 'Port Louis')]

Pays stockés avec la meme valeur de hachage : [('Bolivia', 'Sucre'), ('Bolivia', 'La Paz')]

Pays stockés avec la meme valeur de hachage : [('Akrotiri and Dhekelia', 'Episkopi Cantonment'), ('Montenegro', 'Podgorica')]
Pays stockés avec la meme valeur de hachage : [('El Salvador', 'San Salvador'), ('United States', 'Washington')]

Pays stockés avec la meme valeur de hachage : [('Iran', 'Tehran'), ('Uruguay’', 'Montevideo'}]

Exemple d’exécution :

Cet exercice a uniquement un but pédagogique pour comprendre le fonctionnement des
tables de hachage. Bien entendu, si par la suite vous avez besoin d’une table de hachage,
il faut utiliser le type dict de Python et ne pas réinventer la poudre...

ITC S3 - TD Dictionnaires

Dans le cadre d’'un examen en ligne, un QCM a été réalisé.

Les réponses correctes au QCM sont stockées dans un dictionnaire nommé reponses_valides.
Les clés sont des chaines de caractéres de la forme ‘Q1’. Les valeurs possibles sont des chaines
de caractéres correspondant aux quatre réponses 'a','b', 'c', 'd', 'e".

Exemple :

reponses_valides = {{Q1" 'a', 'Q2": 'c', 'Q3": 'd', 'Q4" 'e', 'Q5": 'b', 'Q6": 'c'}

Les réponses données par les éléves sont stockées dans le dictionnaire reponses_Eleves dont
voici un exemple possible :

{ '"110": {Nom': 'Abadie', 'Prenom": 'Juline','Q1": 'b', 'Q2": 'a', 'Q3": 'd", 'Q4": 'a', 'Q5": 'b', 'Q6": 'b'},
'"111": {Nom": 'Baron', 'Prenom': 'Lila’, 'Q1"'a','Q2"'c','Q3" 'd', 'Q4": 'e', 'Q5": 'b', 'Q6" 'c'},
'"112": {Nom". 'Charrez', 'Prenom": 'Ines’, 'Q1": ", 'Q2":'d’, 'Q3"'d’, 'Q4" 'e', 'Q5" 'a', 'Q6" 'c'},
113" {Nom": 'Clapotas', 'Prenom': 'Marc', 'Q1": 'a’, 'Q2" 'c', 'Q3": 'd’, 'Q4": 'e', 'Q5" 'e', 'Q6": 'b'}

}

Les clés de ce dictionnaire correspondent aux numéros des étudiants (ex. 110, 111, ...)

La valeur est un dictionnaire comportant Nom, Prenom et réponses aux questions. Lorsqu'une
éléve n'a pas répondu a une question, la clé (Q1, Q2,) sera présente mais sa valeur sera la
chaine vide.

La notation du QCM est la suivante : 3 points par réponse correcte, -1 point par réponse incorrecte
et 0 s’il N’y a pas eu de réponse.

1. Ecrire la fonction correction_QCM (reponses_Eleves,reponses_valides) qui, a partir
des dictionnaires reponses_Eleves et reponses_valides passés en paramétres, calcule le
score de chaque éléve et le stocke dans le dictionnaire reponses_Eleves (ajout d’'une clé
‘Score’ et la valeur du score)

Exemple de dictionnaire résultant :

{'110": {Nom': 'Abadie’, 'Prenom": 'Juline', 'Q1": 'b", 'Q2" 'a', 'Q3": 'd", 'Q4". 'a’, 'Q5": 'b", 'Q6" 'b", 'Score": 2},
111" {Nom": '‘Baron’, 'Prenom": 'Lila’, 'Q1": 'a', 'Q2" 'c', 'Q3" 'd', 'Q4": 'e', 'Q5" 'b', 'Q6": 'c', 'Score": 18},
"112": {Nom': 'Charrez', 'Prenom’: 'Ines’, 'Q1": ", 'Q2": 'd", 'Q3" 'd", 'Q4": 'e', 'Q5": 'a’, 'Q6": 'c', 'Score": 10},
113" {Nom": 'Clapotas’, 'Prenom". 'Marc', 'Q1": 'a’, 'Q2": 'c', 'Q3": 'd', 'Q4": 'e', 'Q5". 'e', 'Q6": 'b', 'Score": 10}

}

Cette fonction agit directement sur le contenu du dictionnaire reponses_Eleves (action avec effet
de bord)
2. Proposer une fonction
correction_QCM_sansEB (reponses_Eleves,reponses_valides)
qui génére un dictionnaire résultant (donc sans effet de bord)

3. Les réponses des éléves ont été stockées de maniére persistante dans le fichier
reponses.csv ainsi structuré :

ITC S3 - TD Dictionnaires

Numero, Nom, Prenom, Q1,Q2,03,04,Q05,Q06
0, reponse, reponse,a,c,d,e,b,c
110,Abadie, Juline,b,a,d,a,b,b
111,Baron,Lila,a,c,d,e,b,c

112, Charrez, Ines, ,d,d,e,a,c
113,Clapotas,Marc,a,c,d,e,e,b
114 ,Darvis, John,a,byc,;b;b;c
115, Farton; Thibault;d;ec;d;e,ec;c

116,Galin, Ambre, a,c,d,e,b,c
117,Meuner, Chloé,a,c,d,e,b,c
118, Prante,Nina,b,a,b,e,b,a
119, Sarthe,Vanina,a,c,d,d,a,c
120, Zalu,Mehdi,b,a,c,e,b,d
Les 2 1%slignes du fichier sont particuliéres :
e La 1°*ligne correspond au nom des clés du dictionnaire de chaque éléve.
e La 2°™ |igne correspond aux réponses valides (les 3 1éres colonnes sont inutiles pour
nous)

Créer une fonction generation_dictionnaires(fichier) qui génére un dictionnaire au format de
celui de reponses_Eleves et un dictionnaire au format de reponses_valides . Tester la génération
sur le fichier reponses.csv.

Proposer 2 versions a cette fonction :

- Une qui traite le fichier comme un fichier texte quelconque

- Une qui traite le fichier comme un fichier csv en utilisant par exemple le module csv
Exemples d’utilisation :
https://stackoverflow.com/questions/14091387/creating-a-dictionary-from-a-csv-file

Le but de cet exercice est de tester si deux mots sont des anagrammes. Cet algorithme classique
se résout trés bien avec les dictionnaires.

1- Une 1 approche est de parcourir le 1°" mot, et de compter le nombre d'occurrences de
chaque lettre du mot. Puis, on réalise cette méme opération sur le 2°™ mot et on regarde si
les deux dictionnaires résultants sont égaux.

Ecrire la fonction sont_anagrammes_v1(mot1, mot2) qui prend deux mots en paramétres et
teste s'ils sont des anagrammes I'un de l'autre.

2- L'égalité entre deux dictionnaires s'écrit facilement mais est colteuse. Une autre idée est
pour le 2™ mot, de le parcourir et d'enlever une occurrence de chaque lettre rencontrée
dans l'alphabet du 1¢" On doit pouvoir détecter rapidement s'ils sont ou pas deux
anagrammes.

Ecrire la fonction sont_anagrammes_v2(mot1, mot2) suivant la 2°™ approche.

3- Créer une fonction récursive genere_Anagrammes qui génére la liste de tous les
anagrammes (sans doublon) d’un mot passé en parameétre en utilisant un dictionnaire. La
fonction prend d’autres paramétres que mot, a déterminer.

ITC S3 - TD Dictionnaires

Mettre en ceuvre I'algorithme de compression LZ78.

1- Compression

Créer la fonction compressionLZ78(texte) qui effectue la compression du texte passé en
paramétre et retourne le code, ainsi que le dictionnaire.

2- Décompression

L'algorithme de décompression fonctionne en sens inverse.
A partir de la liste alternée, appelée code, il faut reconstruire le dictionnaire au fur et a mesure.
Créer la fonction decompressionLZ78(code, dico) qui effectue la décompression.

Astuce : Pour faciliter la programmation, on peut inverser le dictionnaire utilisé pour la compression :
les valeurs deviennent clés et les clés deviennent valeurs.

