Dictionnaires : Exercices complémentaires -

Eléments de correction

Partie 1 : Manipulation des dictionnaires

Exercice 1 : Températures

On dispose des températures a Bordeaux a 8h00 dans un dictionnaire :
temp={'J1':-10,'32"':-9, 'J3':-4, 'J4':0, 'J5':-1, 'J6':4, 'J7':-5, '318':1, 'J9':-2}

1. Ecrire une fonction moyenne qui prend en argument un dictionnaire ddu type
de celui défini ci-dessus etqui renvoie la valeur moyenne des températures.
temp={'J1':-10,'32"':-9,'33"':-4, 'J4':0, 'J5':-1, 'J6':4, 'J7':-5, '18':1, 'J9':-2}

print(moyenne(temp))#-2.8888888888388889

2. Ecrire une fonction froid(d,T0) qui prend en paramétre un dictionnaire d du type
de temp et une temperature t0. La fonction renvoie la liste des jours et le nombre
de jours pour lesquels la température a été inférieure a t0.

print(froid(temp, -1)) #(5, ['J1', '3J2', '33', "'37', '19'])

def moyenne(d):
""" entrée : d, dictionnaire des températures
sortie : flottant, moyenne des températures e
S=0
for val in d.values(): #parcours des cles de d
S =S+ val
return S / len(d)
temp={'J1':-10, 'J2':-9, '3J3':-4, 'J4':0, 'J5':-1, 'J6':4, 'J7':-5, 'J8':1,'J9':-2}
print(moyenne(temp))#-2.88888838888388889

def froid(d , t0):
""" entrées : d, dictionnaire des températures
: to, flottant, temperature plafond
sorties : entier, correspondant au nombre de jours
: liste, correspondant aux noms des jours
nbJ=0 #initialisation du nbre de jours
listeJours = [] #initialisation de la liste des jours ou T<T@
for k in d: #parcours des cles de d
if d[k]<t@: #on a trouve un jour ou il faisait froid
nbJ=nbJ+1 # on ajoute un jour
listeJours.append(k) #on ajoute le jour
return nbJ,listeJours
print(froid(temp, -1)) #(5, ['J1', '3J2', '33', '37', '19'])

Exercice 2 : Moyennes

Ecrire une fonction nomMoy qui prend en paramétre un dictionnaire dont les clés
sont les noms des éléves et les valeurs sont les listes des noteset qui renvoie un
autre dictionnaire dont les clés sont le nom des éléves et les valeurs la moyenne de
leur note.

Exemple :
print(nomMoy({'Lina':[12,15,12], 'Gabin':[15,17,16], 'Léa':[8,18,7]}))
#{'Lina': 13.0, 'Gabin': 16.0, 'Léa': 11.0}

def moyenne(L):
moy=0
for val in L:
moy=moy + val
return moy / len(L)

def nomMoy(d):
d_moy ={} # dictionnaire des moyennes
for k,v in d.items() : # parcours des cles
d_moy[k]=moyenne(v) # calcul de la moyenne des valeurs associees a k
return d_moy
print(nomMoy({'Lina':[12,15,12], 'Gabin':[15,17,16], 'Léa':[8,18,71}))
#{'Lina': 13.0, 'Gabin': 16.0, 'Léa': 11.0}

Exercice 3 : Matrices

1. Proposer une structure de dictionnaire permettant de manipuler des matrices en Python
clé : 2-uplet (i,j) qui indique la position
valeur, : coefficient a la position (i ,j)

On s’intéresse ici aux matrices parcimonieuses, c’est-a-dire dont la plupart des
coefficients sont nuls. Une tellematrice M de dimensions (n, p) pourra étre codée
par un dictionnaire ayant pour couples clefs/valeurs :

‘dim’ :(n,p)

—(i,j): Mij pour chaque couple (i,) tel que Mi,j # 0.

2. Définir le dictionnaire qui code la matrice :

00 0 O
00 4 0

mat = {'dim':(2, 4), (1, 2):4 }

3. Proposer une fonction sommeMat de 2 matrices (de méme dimension).
mat = {'dim':(2, 4), (1, 2):4}
mat2= {'dim':(2, 4), (0,0):3, (1, 2):4}
print(somme_mat(mat,mat2)) #{'dim': (2, 4), (1, 2): 8, (@, 0): 3}

def somme_mat(M1,M2):
assert M1['dim']==M2['dim'] ,"les 2 matrices doivent etre de meme dimension"
M={"'dim':M1['dim"']}
for cl in M1:
if c1 != "dim":

if cl1 in M2:
M[c1] = M1[cl] + M2[c1]
else:
M[c1]=M1[c1]
for c2 in M2:
if c2!="dim"
if c2 not in M:
M[c2]=M2[c2]
return M

mat = {'dim"':(2, 4), (1, 2):4}
mat2= {'dim':(2, 4), (0,0):3, (1, 2):4}
print(somme_mat(mat,mat2)) #{'dim': (2, 4), (1, 2): 8, (0, ©0): 3}

. . a !
4. Si la premiére matrice contient ¢ coefficients non nuls, et la seconde ¢, quelle
est la complexité temporellede cet algorithme ?
Quelle serait la complexité dans le cas d’'une matrice représentée sous forme de liste de listes.
En O(cc) .

En comparaison, pour une matrice écrite avec une liste de liste c’est en O(np) (deux
boucles for imbriquées).

Exercice 4 : Temps de parcours

Un site de voyages permet de calculer les temps de parcours entre 2 villes sous
forme d’un dictionnaire quicomporte les 4 clefs suivantes : ’jours’, ’heures’, 'minutes’ et
'secondes’ dont les valeurs associées représentent respectivement les durées en
jours, heures, minutes et secondes du voyage, le tout de maniére unique.

Exemple : 27 heures se traduit par 1 jour et 3 heures.

Si le voyage comporte plusieurs escales, on souhaite connaitre la durée totale que

vous aurez passée dans les transports.

Pour résoudre ce probléeme, on le décompose en plusieurs sous-problémes plus

simples a résoudre.

1. Ecrire une fonction decomposition(duree) qui prend en paramétre une durée
exprimée en secondes et renvoie un dictionnaire dont les valeurs sont entiéres et
dont les clefs sont ’jours’, ’heures’, ‘'minutes’ et 'secondes’.

dRes = decomposition(100124)

print(dRes) #{'jours': 1, 'heures': 3, 'minutes': 48, 'secondes': 44}

dRes2 = decomposition(1000)

print(dRes2)#{ 'jours': @, 'heures': @, 'minutes': 16, 'secondes': 40}

2. Ecrire la fonction inverse secondes(dico) qui prend en argument un dictionnaire
du type précédent pour renvoyer la valeur correspondante en secondes.

nbs = secondes(dRes)

print(nbs) #100124

3. A l'aide des 2 fonctions précédentes, écrire la fonction addition(dico1, dico2)qui
qui va additionner correctement 2 dictionnaires d1 et d2 correspondant a deux
voyages successifs et renvoyer un dictionnaire du méme type correspondant a
la durée totale du voyage.

dTotal = addition(dRes,dRes2)
print(dTotal) #{'jours': 1, 'heures': 4, 'minutes': 5, 'secondes': 24}

4. Ecrire une fonction affichage(dico) qui affiche le temps total passé en transportde
maniére un peu plus lisible au format ci-dessous.
affichage(dTotal) #Le voyage dure au total 1 jours, 4 heures, 5 minutes et
4 secondes

5. Ecrire une fonction tempsTotal(liste_de_durees) qui prend en paramétre une
liste (de taille arbitraire) de durées sous la forme des dictionnaires précédents
et renvoie le temps total de parcours sous forme de dictionnaire.

L= [dRes, dRes2]
dtot = tempsTotal(L)
affichage(dtot)

def decomposition(duree):
""" entrées : duree, entier, represente la durée en secondes
sortie : d, dictionnaire donc les clés sont jours, heures, minutes
d = {} # dictionnaire de retour
nbSecJours = 24*3600 # nbre de secondes sur une journee
j=duree//nbSecJours
Nbre de jours entiers
d['jours']=j

h = (duree%nbSecJours)//3600 # nb d heures (3600 s) dans le nb de sec restantes

d['heures'] = h

m = ((duree%nbSecJours)%3600)//60 # nb de min (60s) dans le nb de sec restantes

4

d["'minutes’]=m
s=((duree%nbSecJours)%3600)%60 # nb de secondes restantes
d['secondes']=s
return d
tests
dRes = decomposition(100124)
print(dRes) #{'jours': 1, 'heures': 3, 'minutes': 48, 'secondes': 44}
dRes2 = decomposition(1000)
print(dRes2)#{'jours': @, 'heures': @, 'minutes': 16, 'secondes': 40}

def secondes(d):

""" entrée : d, dictionnaire donc les clés sont jours, heures, minutes
sortie : duree, entier, represente la durée en secondes

duree =d['secondes']+d['minutes’]*60+d["heures']*3600+d['jours']*3600*24
return duree

#tests

nbs = secondes(dRes)

print(nbs) #100124

def addition(di, d2):

""" entrée : dl,d2: dictionnaires

sortie : dictionnaire qui correspond a la somme de dl et d2

conversion des 2 dictionnaires en une duree en secondes

dureel = secondes(dl)

duree2 = secondes(d2)

duree totale en secondes

duree_tot = dureel + duree2

return decomposition(duree_tot) # on renvoie le dictionnaire correspondant a la
duree totale en secondes

dTotal = addition(dRes,dRes2)
print(dTotal) #{'jours': 1, ‘'heures': 4, 'minutes': 5, 'secondes': 24}

def affichage(d):
""" entrée : d: dictionnaire
print('Le voyage dure au total ', d['jours'],' jours, ', d ['heures'] , ' heure
s, , d['minutes'], minutes et ' , d['secondes'], ' secondes')
affichage(dTotal) #Le voyage dure au total 1 jours, 4 heures, 5 minutes et 2
4 secondes

def tempsTotal(listeDurees):
""" entrée : listeDurees, liste de dictionnaires
sortie : dictionnaire qui correspond a la somme des dictionnaires contenus
dans listeDurees n
duree_tot=0
dr={"'jours': 0, 'heures': @0, 'minutes': @, 'secondes': 0}
for d in listeDurees:
dr=addition(dr,d)
return dr
L= [dRes, dRes2]
dtot = tempsTotal(L)
affichage(dtot)

Partie 2 : Dictionnaire et table de hachage
Exercice 5 : Double hachage

Le double hachage est I'une des meilleures méthodes connues pour I'adressage ouvert. Il

utilise une fonction dehachage de la forme :

1. Insérer les clés : 5,28,19,15,20,33,12,17,10 dans une table de taille m = 13 avec

h: NXN —

[0,m2- 1]

(k1) - (h1(k) + ih2(k)) mod m

hi(k) = k mod 13 et hy(k) =1 +(k mod 12).

k hi(k)

hy(k)

h(k)

5 m(5)=5%13=5

ha(5) =1+ (5%12) = 6

h(5)=(5+0x6)% 13=5

28 hi(28) = 28%13 =2

ha(28)=1+(28%12) = 5

h(28) = (2+0x5)%13 =2

19
M(19) = 19%13= 6

h(19)=1+(19%12)=8

h(19)=(6+0X 8)%13 = 6

(15)=15%13 = 2

h(15)=1+(15%12)=4

h(15)=(2+0x4)%13 =2.
Collision

on incrémente i de 1,i =1.
h(15) = (2+1x4)%13 =6,
Collision

onincrémenteide 1:i=2
h(15)=(2+2x%x4)%13 =10, ok

20 7(20) = 20%13=7

1(20)=1+(20%12)=9

h(20) = (7+0 X 9)%13=7

33 m(33) = 33%13=7

1(33)=1+(33%12)=

10

h(33)=(7+0x10)%13=7
Collision,
onincrémente i de 1, i = 1.

h(33)=(7 +1x10)%13=4

12 (12)=12%13= 12

h(12)=1+ (12%12)=1

h(12)=(12+0x1)%13=12

17 m(17) = 17%13= 4

h(17)=1+(17%12)=6

h(17)=(4+0 X 6)%13 = 4
Collision,

on incrémente i de 1,i = 1.
h(17) =4 +1X6)%I13 =10,

Collision, on incrémente de 1 :/ =2

h(17) = (4 +2X6)%I3 =3

10 m(10) = 10%13 = 10

1a(10) = 1 + (10%12) = 11

n(10)y = (10+0 X 11)%13 = 10

Collision, on incrémente de 1,i=1.

h(10) = (10 +1 X 11)%13 = 8.

Représentation de la table :

Indice
0 _
1 -
2 28
3 17
4 33
5 5
6 19
7 20
8 10
9 -
10 15
11 -
12 12
6

2. Proposer une fonction en Python qui prend en argument une table de hachage tab_h
de type array et une clé c(entier) quirenvoiela valeur de h(c) et agit par effet de bord
sur tab_h.

import numpy as np

def double_hachage(tab_h , k):
""" entrées : tab_h : array, table de hachage
: k, entier qui correspond a la valeur a hacher
sortie : h, la valeur hachée de k
tab_h est modifié par effet de bord

won

m = np.size(tab_h)

i=0

hli =k % m

h2 =1+ (k% (m-1))
h=(hl+1i*h2)%m

while tab_h[h]!=-1: #si coefficient different de - dans le tableau, il y a collision
i=1i4+4+1 # incremente i de un
h=(hl+1i*h2)%m # on calcule la nouvelle valeur de hachage

tab_h[h] = k # ajout de c dans la case h
return h

print("Exercice sur le double hachage")

m = 13 #taille de la table

#tab_h = np.zeros(m)

tab_h = np.full(m, -1) # table de hachage initialisee avec des -1

ou
tab_h = np.empty(m, dtype=int) # table de hachage
tab_h.fill(-1) #initialisee avec des -1

wun

L = [5,28,19,15,20,33,12,17,10]
for val in L:
print(double_hachage(tab_h, val))
print(tab_h) # [-1 -1 28 17 33 5 19 20 10 -1 15 -1 12]

Exercice 6 : Polynomes

On considére des polyndmes non nuls a coefficients entiers de degré quelconque mais
qui ne contiennent pasplus de 5 monémes. On utilise un tableau de longueur 16 = 8x2
pour stocker les couples (degré, coefficient)dans lequel on pourrait stocker au maximum
huit couples. Les places non occupées contiennent la valeur -1 .

La fonction de hachage h est la fonction identité : pour tout n € N, h(n) = n.
Donc a un degré qui vaut 10 , on associe le nombre 10, soit h(10) = 10.

Ensuite, avec 10%8, on obtient I'indice 2 et a cet indice on écrit le degré, (la clé), suivi du
coefficient, (la valeur).

Par exemple, le polyndbme 8 +3x10 —5x12 st stocké dans un tableau de la forme :

Indice |[degré| coefficient
0 0 8
1 -1 -1
2 10 3
3 -1 -1
4 12 -5

1. Donner le tableau correspondant au polynéme :
2x5 —3x34 +4x105,
degré 5: h(5) =5, puis 5%8=5
degré 34 : h(34) = 34, puis 34%8=2
degré 105 : h(105) = 105, puis 105%8=1

Indice |[degré| coefficient
0 -1 -1
1 105 4
2 34 -3
3 -1 -1
4 -1 -1
5 5 2

2. Quel est le probleme avec, par exemple :

8-5x2 +3x10 2
degré 0 : 0%8=0
degré 2 : 2%8=2
degré 10 : 10%8=2=> collision

3. En cas de collision, on décide d’utiliser la premiére place libre suivante. Les
mondémes sont entrés dansle tableau suivant 'ordre de lecture.

Donner un exemple de polynédme de degré minimum qui génére une collision pour chaque
mondme excepté le premier.

Il'y a collision, si tous les restes des divisions euclidiennes des degrés sont égaux.
o 2 10
Par exemple : x +x* +x'° +,26 4 ,34

4. On envisage une autre possibilité de stockage avec 2 tableaux :
e un tableau pour les couples (degré, coefficient)
e un tableau pour les indices,

les 2 tableaux ayant pour capacité 8 .

Avec le polynéme 4x® —2x5 +4x, on obtient les 2 tableaux de la maniére suivante :

8

e Dans le 1° tableau, on écrit chaque degré avec le coefficient correspondant
suivant 'ordre des degrés et on compléte le tableau avec des 0.

e Dans le 2éme tableau, on calcule d %8 ou d est un degré. On place a l'indice
trouvé l'indice ouon trouve le couple (degré, coefficient) dans le premier tableau.
On compléte le tableau avec des -1.

Extraits des tableaux :

Indice| IndiceCouple

Indice |degré| coefficient

0 -1

0 3 4
1 2
1 5 -2 > 5
2 9 4 3 0
3 0 0 vt =
5 1

Donner les deux tableaux correspondant au stockage du polynéme 3x2 —x18 +7x20,

Indice |degré| coefficient Indice | IndiceCouple
0 5 3 0 -1
1 18 | -1 1 -1
2 20 [7 2 1
3 0 0 3 0
4 0 0 4 2
5 [) 5 -1
6 0 0 6 -1
7 0 [0 7 -1

5%8=3 18%8=2 20%8=4

