
1

Dictionnaires : Exercices complémentaires –

Eléments de correction

Partie 1 : Manipulation des dictionnaires

Exercice 1 : Températures

On dispose des températures à Bordeaux à 8h00 dans un dictionnaire :
temp={'J1':-10,'J2':-9, 'J3':-4, 'J4':0, 'J5':-1, 'J6':4, 'J7':-5, 'J8':1, 'J9':-2}

1. Écrire une fonction moyenne qui prend en argument un dictionnaire d du type

de celui défini ci-dessus et qui renvoie la valeur moyenne des températures.
temp={'J1':-10,'J2':-9,'J3':-4, 'J4':0, 'J5':-1, 'J6':4, 'J7':-5, 'J8':1, 'J9':-2}
print(moyenne(temp))#-2.888888888888889

2. Écrire une fonction froid(d,T0) qui prend en paramètre un dictionnaire d du type
de temp et une temperature t0. La fonction renvoie la liste des jours et le nombre
de jours pour lesquels la température a été inférieure à t0.

print(froid(temp, -1)) #(5, ['J1', 'J2', 'J3', 'J7', 'J9'])

def moyenne(d):
 """ entrée : d, dictionnaire des températures
 sortie : flottant, moyenne des températures """
 S=0
 for val in d.values(): #parcours des cles de d
 S = S + val
 return S / len(d)
temp={'J1':-10, 'J2':-9, 'J3':-4, 'J4':0, 'J5':-1, 'J6':4, 'J7':-5, 'J8':1,'J9':-2}
print(moyenne(temp))#-2.888888888888889

def froid(d , t0):
 """ entrées : d, dictionnaire des températures
 : t0, flottant, temperature plafond
 sorties : entier, correspondant au nombre de jours
 : liste, correspondant aux noms des jours """
 nbJ=0 #initialisation du nbre de jours
 listeJours = [] #initialisation de la liste des jours ou T<T0
 for k in d: #parcours des cles de d
 if d[k]<t0: #on a trouve un jour ou il faisait froid
 nbJ=nbJ+1 # on ajoute un jour
 listeJours.append(k) #on ajoute le jour
 return nbJ,listeJours
print(froid(temp, -1)) #(5, ['J1', 'J2', 'J3', 'J7', 'J9'])

2

Exercice 2 : Moyennes

Ecrire une fonction nomMoy qui prend en paramètre un dictionnaire dont les clés
sont les noms des élèves et les valeurs sont les listes des notes et qui renvoie un
autre dictionnaire dont les clés sont le nom des élèves et les valeurs la moyenne de
leur note.

Exemple :
print(nomMoy({'Lina':[12,15,12], 'Gabin':[15,17,16], 'Léa':[8,18,7]}))
#{'Lina': 13.0, 'Gabin': 16.0, 'Léa': 11.0}

def moyenne(L):
 moy=0
 for val in L:
 moy=moy + val
 return moy / len(L)

def nomMoy(d):
 d_moy ={} # dictionnaire des moyennes
 for k,v in d.items() : # parcours des cles
 d_moy[k]=moyenne(v) # calcul de la moyenne des valeurs associees a k
 return d_moy
print(nomMoy({'Lina':[12,15,12], 'Gabin':[15,17,16], 'Léa':[8,18,7]}))
#{'Lina': 13.0, 'Gabin': 16.0, 'Léa': 11.0}

Exercice 3 : Matrices

1. Proposer une structure de dictionnaire permettant de manipuler des matrices en Python
clé : 2-uplet (i,j) qui indique la position
valeur, : coefficient à la position (i ,j)

On s’intéresse ici aux matrices parcimonieuses, c’est-à-dire dont la plupart des
coefficients sont nuls. Une telle matrice M de dimensions (n, p) pourra être codée
par un dictionnaire ayant pour couples clefs/valeurs :

‘dim’ : (n, p)
→(i , j) : Mi j pour chaque couple (i , j) tel que Mi , j ≠ 0.

2. Définir le dictionnaire qui code la matrice :

 0 0 0 0

0 0 4 0

mat = {'dim':(2, 4), (1, 2):4 }

3. Proposer une fonction sommeMat de 2 matrices (de même dimension).
mat = {'dim':(2, 4), (1, 2):4}
mat2= {'dim':(2, 4), (0,0):3, (1, 2):4}
print(somme_mat(mat,mat2)) #{'dim': (2, 4), (1, 2): 8, (0, 0): 3}

def somme_mat(M1,M2):
 assert M1['dim']==M2['dim'] ,"les 2 matrices doivent etre de meme dimension"
 M={'dim':M1['dim']}
 for c1 in M1:
 if c1 != "dim":

3

 if c1 in M2:
 M[c1] = M1[c1] + M2[c1]
 else:
 M[c1]=M1[c1]
 for c2 in M2:
 if c2!="dim" :
 if c2 not in M:
 M[c2]=M2[c2]
 return M

mat = {'dim':(2, 4), (1, 2):4}
mat2= {'dim':(2, 4), (0,0):3, (1, 2):4}
print(somme_mat(mat,mat2)) #{'dim': (2, 4), (1, 2): 8, (0, 0): 3}

4. Si la première matrice contient c coefficients non nuls, et la seconde c′, quelle
est la complexité temporelle de cet algorithme ?

Quelle serait la complexité dans le cas d’une matrice représentée sous forme de liste de listes.

En O(c c′) .

En comparaison, pour une matrice écrite avec une liste de liste c’est en O(np) (deux
boucles for imbriquées).

4

Exercice 4 : Temps de parcours

Un site de voyages permet de calculer les temps de parcours entre 2 villes sous
forme d’un dictionnaire qui comporte les 4 clefs suivantes : ’jours’, ’heures’, ’minutes’ et
’secondes’ dont les valeurs associées représentent respectivement les durées en
jours, heures, minutes et secondes du voyage, le tout de manière unique.

Exemple : 27 heures se traduit par 1 jour et 3 heures.

Si le voyage comporte plusieurs escales, on souhaite connaître la durée totale que
vous aurez passée dans les transports.

Pour résoudre ce problème, on le décompose en plusieurs sous-problèmes plus
simples à résoudre.

1. Écrire une fonction decomposition(duree) qui prend en paramètre une durée
exprimée en secondes et renvoie un dictionnaire dont les valeurs sont entières et
dont les clefs sont ’jours’, ’heures’, ’minutes’ et ’secondes’.

dRes = decomposition(100124)
print(dRes) #{'jours': 1, 'heures': 3, 'minutes': 48, 'secondes': 44}
dRes2 = decomposition(1000)
print(dRes2)#{'jours': 0, 'heures': 0, 'minutes': 16, 'secondes': 40}

2. Écrire la fonction inverse secondes(dico) qui prend en argument un dictionnaire

du type précédent pour renvoyer la valeur correspondante en secondes.
nbs = secondes(dRes)
print(nbs) #100124

3. A l’aide des 2 fonctions précédentes, écrire la fonction addition(dico1, dico2) qui

qui va additionner correctement 2 dictionnaires d1 et d2 correspondant à deux
voyages successifs et renvoyer un dictionnaire du même type correspondant à
la durée totale du voyage.

dTotal = addition(dRes,dRes2)
print(dTotal) #{'jours': 1, 'heures': 4, 'minutes': 5, 'secondes': 24}

4. Écrire une fonction affichage(dico) qui affiche le temps total passé en transport de

manière un peu plus lisible au format ci-dessous.
affichage(dTotal) #Le voyage dure au total 1 jours, 4 heures, 5 minutes et 2
4 secondes

5. Ecrire une fonction tempsTotal(liste_de_durees) qui prend en paramètre une
liste (de taille arbitraire) de durées sous la forme des dictionnaires précédents
et renvoie le temps total de parcours sous forme de dictionnaire.

L= [dRes, dRes2]
dtot = tempsTotal(L)
affichage(dtot)

def decomposition(duree):
 """ entrées : duree, entier, represente la durée en secondes
 sortie : d, dictionnaire donc les clés sont jours, heures, minutes """
 d = {} # dictionnaire de retour
 nbSecJours = 24*3600 # nbre de secondes sur une journee
 j=duree//nbSecJours
 # Nbre de jours entiers
 d['jours']=j
 h = (duree%nbSecJours)//3600 # nb d heures (3600 s) dans le nb de sec restantes
 d['heures'] = h
 m = ((duree%nbSecJours)%3600)//60 # nb de min (60s) dans le nb de sec restantes

5

 d['minutes']=m
 s=((duree%nbSecJours)%3600)%60 # nb de secondes restantes
 d['secondes']=s
 return d
tests
dRes = decomposition(100124)
print(dRes) #{'jours': 1, 'heures': 3, 'minutes': 48, 'secondes': 44}
dRes2 = decomposition(1000)
print(dRes2)#{'jours': 0, 'heures': 0, 'minutes': 16, 'secondes': 40}

def secondes(d):
 """ entrée : d, dictionnaire donc les clés sont jours, heures, minutes
 sortie : duree, entier, represente la durée en secondes """
 duree =d['secondes']+d['minutes']*60+d['heures']*3600+d['jours']*3600*24
 return duree
#tests
nbs = secondes(dRes)
print(nbs) #100124

def addition(d1, d2):
 """ entrée : d1,d2: dictionnaires
 sortie : dictionnaire qui correspond à la somme de d1 et d2 """
 # conversion des 2 dictionnaires en une duree en secondes
 duree1 = secondes(d1)
 duree2 = secondes(d2)
 # duree totale en secondes
 duree_tot = duree1 + duree2
 return decomposition(duree_tot) # on renvoie le dictionnaire correspondant a la
 duree totale en secondes

dTotal = addition(dRes,dRes2)
print(dTotal) #{'jours': 1, 'heures': 4, 'minutes': 5, 'secondes': 24}

def affichage(d):
 """ entrée : d: dictionnaire """
 print('Le voyage dure au total ', d['jours'],' jours, ', d ['heures'] , ' heure
s, ' , d['minutes'], ' minutes et ' , d['secondes'], ' secondes')
affichage(dTotal) #Le voyage dure au total 1 jours, 4 heures, 5 minutes et 2
4 secondes

def tempsTotal(listeDurees):
 """ entrée : listeDurees, liste de dictionnaires
 sortie : dictionnaire qui correspond à la somme des dictionnaires contenus
dans listeDurees """
 duree_tot=0
 dr={'jours': 0, 'heures': 0, 'minutes': 0, 'secondes': 0}
 for d in listeDurees:
 dr=addition(dr,d)
 return dr
L= [dRes, dRes2]
dtot = tempsTotal(L)
affichage(dtot)

6

Partie 2 : Dictionnaire et table de hachage

Exercice 5 : Double hachage

Le double hachage est l’une des meilleures méthodes connues pour l’adressage ouvert. Il
utilise une fonction de hachage de la forme :

h : N × N → [0, m – 1]
(k, i) → (h1(k) + ih2(k)) mod m

1. Insérer les clés : 5,28,19,15,20,33,12,17,10 dans une table de taille m = 13 avec
h1(k) = k mod 13 et h2(k) = 1 + (k mod 12).

k h1(k) h2(k) h(k)

5 h1(5) = 5%13 = 5 h2(5) = 1 + (5%12) = 6 h(5) = (5 + 0 × 6) % 13 = 5

28 h1(28) = 28%13 = 2 h2(28)=1+ (28%12) = 5 h(28) = (2 + 0 × 5)%13 = 2
19

h1(19) = 19%13= 6 h2(19)=1+(19%12)=8 h(19)=(6+0× 8)%13 = 6

15
h1(15)=15%13 = 2 h2(15)=1+(15%12)=4 h(15) = (2 +0 x 4)%13 = 2.

Collision

on incrémente i de 1, i = 1.
h(15) = (2+1×4)%13 = 6,

Collision
on incrémente i de 1 : i = 2
h(15) = (2 + 2 × 4)%13 = 10, ok

20 h1(20) = 20%13= 7 h2(20)=1+(20%12)=9 h(20) = (7+0 × 9)%13= 7

33 h1(33) = 33%13= 7 h2(33)=1+(33%12)= 10 h(33)=(7+0×10)%13= 7
Collision,
on incrémente i de 1, i = 1.

h(33)=(7 +1×10)%13=4.

12 h1(12)=12%13= 12 h2(12)=1+ (12%12)=1 h(12)=(12+0×1)%13=12

17 h1(17) = 17%13= 4 h2(17)=1+(17%12)=6 h(17)=(4+0 × 6)%13 = 4
Collision,
 on incrémente i de 1, i = 1.
h(17) = (4 + 1 × 6)%13 = 10,
Collision, on incrémente de 1 :i = 2
h(17) = (4 + 2 × 6)%13 = 3

10 h1(10) = 10%13 = 10 h2(10) = 1 + (10%12) = 11 h(10) = (10 + 0 × 11)%13 = 10
Collision, on incrémente de 1, i=1.
h(10) = (10 + 1 × 11)%13 = 8.

Représentation de la table :
Indice

0 -
1 -
2 28
3 17
4 33
5 5
6 19
7 20
8 10
9 -
10 15
11 -
12 12

7

2. Proposer une fonction en Python qui prend en argument une table de hachage tab_h
de type array et une clé c (entier) qui renvoie la valeur de h(c) et agit par effet de bord
sur tab_h.

import numpy as np

def double_hachage(tab_h , k):
 """ entrées : tab_h : array, table de hachage
 : k, entier qui correspond à la valeur à hacher
 sortie : h, la valeur hachée de k
 tab_h est modifié par effet de bord
 """
 m = np.size(tab_h)

 i=0
 h1 = k % m
 h2 = 1 + (k % (m - 1))
 h = (h1 + i * h2) % m

 while tab_h[h]!=-1: #si coefficient different de - dans le tableau, il y a collision
 i = i + 1 # incremente i de un
 h = (h1 + i * h2) % m # on calcule la nouvelle valeur de hachage

 tab_h[h] = k # ajout de c dans la case h
 return h

print("Exercice sur le double hachage")
m = 13 #taille de la table
#tab_h = np.zeros(m)
tab_h = np.full(m, -1) # table de hachage initialisee avec des -1
""" ou
tab_h = np.empty(m, dtype=int) # table de hachage
tab_h.fill(-1) #initialisee avec des -1
"""
L = [5,28,19,15,20,33,12,17,10]
for val in L:
 print(double_hachage(tab_h, val))
print(tab_h) # [-1 -1 28 17 33 5 19 20 10 -1 15 -1 12]

8

9

Exercice 6 : Polynômes

On considère des polynômes non nuls à coefficients entiers de degré quelconque mais
qui ne contiennent pas plus de 5 monômes. On utilise un tableau de longueur 16 = 8×2
pour stocker les couples (degré, coefficient) dans lequel on pourrait stocker au maximum
huit couples. Les places non occupées contiennent la valeur -1 .

La fonction de hachage h est la fonction identité : pour tout n ∈ N , h(n) = n.

Donc à un degré qui vaut 10 , on associe le nombre 10, soit h(10) = 10.

Ensuite, avec 10%8, on obtient l’indice 2 et à cet indice on écrit le degré, (la clé), suivi du
coefficient, (la valeur).

Par exemple, le polynôme 8 + 3x10 − 5x12 est stocké dans un tableau de la forme :

Indice degré coefficient
0 0 8
1 -1 -1
2 10 3
3 -1 -1
4 12 -5

.

1. Donner le tableau correspondant au polynôme :

 2x5 − 3x34 + 4x105.

 degré 5 : h(5) = 5, puis 5%8=5

degré 34 : h(34) = 34, puis 34%8=2

degré 105 : h(105) = 105, puis 105%8=1

Indice degré coefficient
0 -1 -1
1 105 4
2 34 -3
3 -1 -1
4 -1 -1

5 5 2

2. Quel est le problème avec, par exemple :

 8 − 5x2 + 3x10 ?

degré 0 : 0%8=0

degré 2 : 2%8=2

degré 10 : 10%8=2 => collision

3. En cas de collision, on décide d’utiliser la première place libre suivante. Les
monômes sont entrés dans le tableau suivant l’ordre de lecture.

Donner un exemple de polynôme de degré minimum qui génère une collision pour chaque
monôme excepté le premier.

Il y a collision, si tous les restes des divisions euclidiennes des degrés sont égaux.

Par exemple : x + x2 + x10 +x26 + x34

4. On envisage une autre possibilité de stockage avec 2 tableaux :
 un tableau pour les couples (degré, coefficient)
 un tableau pour les indices,

les 2 tableaux ayant pour capacité 8 .

Avec le polynôme 4x3 −2x5 + 4x, on obtient les 2 tableaux de la manière suivante :

9

 Dans le 1er tableau, on écrit chaque degré avec le coefficient correspondant
suivant l’ordre des degrés et on complète le tableau avec des 0.

 Dans le 2ème tableau, on calcule d %8 où d est un degré. On place à l’indice
trouvé l’indice où on trouve le couple (degré, coefficient) dans le premier tableau.
On complète le tableau avec des -1.

Extraits des tableaux :

Donner les deux tableaux correspondant au stockage du polynôme 3x5 − x18 + 7x20.

5%8=3 18%8=2 20%8=4

Indice degré coefficient
0 3 4
1 5 -2
2 9 4
3 0 0

.

Indice IndiceCouple
0 -1
1 2
2 -1
3 0
4 -1
5 1

Indice degré coefficient
0 5 3
1 18 -1
2 20 7
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

Indice IndiceCouple
0 -1
1 -1
2 1
3 0
4 2
5 -1
6 -1
7 -1

